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ABSTRACT

The transient adjustment of the baroclinic structure of a warm core disturbance forced by heating is
studied as an initial value problem. It is found that the divergent flow in convective regions adjusts on a time
scale of a few hours, and the surrounding divergence field outward to about 2000 km adjusts on & time
scale of about 1 day. This rapid adjustment is due to the outward radiation of gravity inertia waves. The
adjustment is sufficiently rapid that diurnally periodic forcings produce divergence fields that are almost
in phase, and in practically instantaneous equilibrium with the forcings.

In the case of latent heatings associated with local precipitation rates in excess of a few centimeters
per day, the strongly anticyclonic upper tropospheric pressure field may render the balance equation non-
elliptic. When they occur in the tropics, isolated events of this magnitude can produce cross-isobaric flows
on the order of 1 m s~ outward to beyond 2000 km. A plausible influence of these tropical flows upon
midlatitudes is hypothesized, following the argument in a climatological study by Blackmon et al. (1977).
The present results suggest that the mechanism in question can act on time scales as short as one or two

days after the inception of a strong tropical disturbance.

1. Introduction

A variety of investigations have dealt with the
adjustment of synoptic-scale flows to heating. Eliassen
(1952) investigates slow thermally driven vortices.
Charney and Eliassen (1964), Kuo (1965) and others
study the generation of tropical storms through con-
ditional instability of the second kind. Parameterization
theories of Kuo (1965), Ooyama (1971) and Arakawa
and Schubert (1974) represent attempts to couple the
instantaneous rate of moist convective heating to
various concurrent synoptic-scale measures of the
atmospheric state.

These theories generally have a quasi-equilibrium
hypothesis that limits the respective conclusions to,
heated circulations whose time scales are large with
respect to certain adjustment times. In the instance of
quasi-balanced circulations it is assumed that the time
scale must be larger than that associated with geo-
strophic adjustment. In the case of parameterization
theories, the time scale of destabilization is large with
respect to the time scale of individual convective ele-
ments. It is therefore questionable whether such
approaches may be appropriate for events in which
heating commences and ceases abruptly and almost
independently of any deep tropospheric circulation.
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Consequently, the theoretical studies have usually
avoided such highly transient phenomena.

One purpose of this study is to describe the transient
adjustment of heated flow within the context of a
linearized, hydrostatic model in which the heating rate
is pre-specified, and assumed to be strongest in the mid-
troposphere. The assumption that the. heating is
independent of the generated flow may be valid only
initially or for weak flow generation. However, in the
absence of a reasonable cumulus parameterization
theory for highly transient phenomena, it may be
difficult to improve upon this significantly. The pre-
sumption of maximum heating in the mid-troposphere
is qualitatively reasonable for rather deeply disturbed
conditions.

These assumptions result in a governing equation
analogous to the gravity inertia wave equation that
arises for a discretely layered fluid (Section 2). Thus,
this adjustment problem is formally analogous to the
homogeneous problem first treated by Cahn (1945).
Important generalizations are that the forcing appears
as an inhomogeneity, and the adjusted steady-state has
flow divergence as opposed to Cahn’s non-divergent
geostrophic steady state.

It is possible to obtain exact integral solutions,
applying to unbounded domains, that can be evaluated
by quadrature. This is described in Section 3. Sample
solutions are described in Section 4. They illustrate that
the adjustment to impulsive onset of steady localized
heating produces a nearly steady state divergence field
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over the heated region on the time scale of a few hours,
and an effectively steady state divergence outward to
about 2000 km after about 1 day. This rapid adjustment
appears to be due to the energy dispersion associated
with the local nature of the forcing and rapid outward
radiation of transient gravity waves produced by the
impulse. Although the Coriolis parameter plays only a
minor dispersive role, it is critically important for the
existence of a large region of flow compensation that
surrounds the heated area.

Section § investigates the limitations placed upon
this approach due to linearization. It appears that
although, in the vicinity of substantial heating, the total
nonlinear flow may depart from the linear solution, the
linear divergence solution is a reasonable simulation of
the nonlinear case. It is suggested that upper divergent
outflow from individual strong tropical disturbances
may modify higher latitude flows.

2. Mathematical model
.a. Assumptions and equalions

The analysis is based upon the standard two-layer
model of the atmosphere linearized about a resting
basic state. Following the usual notation (e.g., Matsuno,
1966) the equations of motion and thermodynamics
may be written '

av,
—§+fo-‘]1+ V¢1=0, (1)
aV;
_6t—+fovs+ V¢s=0, . (2)
d
5(¢3—¢1)+3Aﬁw2= —RQ. 3

Here (V1,Vs) represent (upper, lower) tropospheric
horizontal velocities, (¢1,¢5) are the respective geo-
potentials, s, defined as :

d Inf
S=a—, (4)
ap

is the stratification, w, the vertical motion in the mid-
troposphere, R the gas constant, f the Coriolis parame-
ter, K the unit vertical vector, Ap is the pressure thick-
ness of each of the two layers and Q a specified heating

rate (°C s™) in the mid-troposphere.
In the present applications Ap will be 500 mb, so that
levels (1,2,3) correspond to pressures (250,500,750) mb.
Values of Q on the order of 10°C day will be taken
in the mid-troposphere. Such heating rates occur only
in association with precipitation rates on the order of
2 cm day~. The assumption that Q is independent of
large scale w is a reasonable first approximation in
circumstances where the atmosphere can produce

JAN PAEGLE

1679

heavy precipitation, conditional to the availability of
moisture, and where that availability is modulated
rapidly and virtually independently of the heat-
generated motion field. These conditions are typically
met over many continental climates during the summer,
and also in the tropics. Here, the rather strong ambient
conditional instability is often released or suppressed by
rapidly changing motions of the moist boundary layer
that can be effectively decoupled from the deeper
troposphere. Diurnal oscillations represent an important
case having these characteristics. In other cases where
Q is strongly dependent upon w, this assumption is
poor, but the results may still have “diagnostic” value.

Defining the vertical shear Vp and geopotential
thickness ¢p as

Vp=V,~V,, ()
dp=¢1—¢s, (6)
equations (1), (2) and (3) may be rewritten
V>
—gt—+fKXVD+V¢D=0, Q)
%)--l- (sAp*/2)V-Vp=RQ. 8)

Here, the continuity equation has been integrated to
give approximately

we=—V-ViAp=V-Vslp 9)

and w is assumed to be zero at the top and bottom of
the model. .

Egs. (7) and (8) can be combined into a single
equation

#?v-Vp

— f’V-VD—CZVz(V-VD)=—.RV2Q, (10)

where

c=z(sAp?/2)} (11)

is assumed constant.

Eq. (10) governs the baroclinic structure of the
divergence field of a heated disturbance. In the homoge-
neous (adiabatic) case, the solutions tend to a non-
divergent geostrophic balance from initially unbalanced
states, as in Cahn’s (1945) barotropic case. It is clear
that heating must modify this conclusion.

In subsequent sections only the divergence of the
upper level will be displayed. Because of the vertical
structure of the present model, the governing equation
of this is

3D
4 PD—VID=—G,,
ar

(12)
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where

D=V 'V1
}. (13)

Glz RV2Q/2

b T mplications of the assumptions

Subsequent sections will emphasize the evolution of
the divergence field as given by the solution of (10). It
is important to note that although the divergence field
tends to a steady state, the same does not hold for
the vorticity and temperature fields in the linear model
with non-zero Coriolis parameter.

The vertical shear of the vorticity is governed by

3
— (K- VXV0)=—(V-Vy). (14)

Thus, the vorticity continues to change even after the
divergence has attained a steady value: Since (7) im-
plies thermal wind balance for the vorticity (for steady
divergence), this implies that # is changing also. This
" monotonic time change of both horizontal circulation
and potential temperature for steady divergence are
consequences of the continued energy input and lack
of dissipation. These features also exist in heated quasi-
geostrophic models of atmospheric motions.

It is useful to describe the linear cases because they
admit closed solutions which, for the divergence field,
are similar to those of the nonlinear equations. The
exact solutions help illustrate the adjustment process.
They suggest that the divergence field adjusts on a
rather small time scale associated with the' rapid
dispersion of transient internal gravity waves, while
the rotational field adjusts more slowly, particularly at
large distances where the divergence is small.

3. Solutions
a. Steady state, no rotation
In the steady case with f= 0, one solution of (12) is
D=RQ/(22), (15)

showing that divergence above heated flows varies
inversely with the stratification. This conclusion holds
approximately for more complicated cases as well.

b. Normal mode solution

Assuming a rectangular geometry, and a component
of Q of the form

Ay, ’wei(kz+ty+m)

gives a response Dy, in the same component of
amplitude:

Dito=Rg(B+P) A1 1,0/[(—o?+ )+ #+P)]. (16)
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Resonance can occur only if

A 4P) =P~ f.

c. Initial value solutions

Although normal mode techniques may be used to
simulate solutions to initial value problems, this is a
tedious task for truly local disturbances in effectively
unbounded domains, and may produce singularities at
resonance. It is also possible to obtain closed solutions
for such cases more explicitly. In the inhomogeneous
case, Duhamel’s principle [see Churchill, 1972, p. 270,
Garabedian, 1964, p. 210 and Carslaw and Jaeger (1959)
for other examples] is useful because such solutions to
the homogeneous problem are known.

We consider first a homogeneous linear differential
equation:

%

o
L)=-—+L 4;— —pv=0,
o i x,-2_

an

with data assigned at {=r:

v(x,t; 7)=F(x,7)=0 (ati=7)
dv
- (X,t > T) =G (X,T)
ot

Here, ¢ is time and (x1, %2, ...)=X is a point in space.
Then, the Duhamel integral

u(x,t)=/“v(x,t; r)dr (18)
[

will be the solution to the inhomogeneous equation
L) =G(x,t)

with homogeneous initial conditions.
The demonstration proceeds by operating on (18)
with L, which gives

0
L[u (X,l)] =g(xai ’ T) =G (X,If).

Therefore, the solution of the general inhomogeneous .
problem :
' L(u)=Gy(x,0)

is given by the r integral (18) of those solutions of the
homogeneous Eq. (17) for which Gi(x,!) represents
initial data on dv/d¢ at ¢t=r, while the initial data on v
att=71is 0.

This approach is useful because initial value solutions
to the homogeneous gravity inertia wave equation have
been given for the one-dimensional problem by Cahn
(1945) and for the two-dimensional case by Obukhov
(1949) (see Phillips, 1963; Blumen, 1972). The com-
plete solution of (12) satisfying the radiation condition
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at large distance in the one-dimensional case (assuming
no variation in y) is then

2+t
D(x)= { [ G(OTof (/[ P— (t—2) )

—ct
J ot

+5; FETo{(f/olct— (§~2)" ]} dt

z—cl

atc(t—7)
+ f dr f Gt ol (/=)

L—c (t—7)
—(¢—x)J}dg, (19)

where

F(x)=D(x,t=0),
aD
G(x)=—/(x,1=0),
at

and J, is the zero-order Bessel function of the first kind.
In the two-dimensional case the solution is

/ /‘“ F (47 cosb, y+1 sinf)
S

D(xyy:t) =
2wc 3¢t
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S e 6, 0
S (o) WO e
c

S
f S ce(t—r)
X cos(—)ndnd0+ / /
c 0 2mc

XGl(x-i-n cosf, y-+7 siné, 7)
.Sl

fS
cos(— ndndbdr, (20)
c

where

F(x,y)ED(% ¥, t=0))

oD
G(x)y)E__

’
t=0

S= (‘72’2_"72)9,
Si=[e(t~7)2—n2

The boundlng cone of dependence and the geometncal
interpretations of the symbols in (20) are depicted in
Fig. 1.

The first two integrals of (19) and (20) represent
solutions for the homogeneous case, obtained from
Cahn (1945) (one-dimensional) and Obukhov (1949)
(two-dimensional), while the third is the solution for
the inhomogeneous case, obtained from the Duhamel
integral.
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Fr1c. 1. Bounding cone of dependence and the geometrical
interpretation of the symbols of Eq. (20).

With the exception of especially simple cases, ana-
lytical integration of (19) and (20) is difficult or im-
possible. Consequently, the solutions to be shown are
all obtained by quadrature. One-dimensional Gaussian
quadrature is used in each dimension, with the exception
of the azimuthal integration in the two-dimensional
case, where Simpson’s rule is used. Up to six applications
of ten-point quadrature are used in each dimension as
required for resolution. Gaussian quadrature is not
useful for integrands such as those in (20) with singu-
larities. Therefore, the singularities at the edge of the
bounding cone of dependence are removed by the
variable transformation

y=—(a*—n)},
where
a?= (ct)?

in the first two integrals of (20) and
a?=[c({—1)T

in the third. The resulting integrals do not contain
singularities.

4. Numerical examples

Particular one- and two-dimensional examples are
illustrated in the present section. All start with zero
divergence and zero divergence tendency (F=0,G=0)
and the differences of the solutions are due to different
forcings or latitudes.

a. One-dimensional tmpulsive heating

The following distribution of Q (°C day™) is assumed :

0, for all x, t<0
= (21)
{10 exp[— (k2)*]—2), £20.

We select £ = 1/(400 km) to model heating within
500 km of the origin, peaking at x=0 at a rate of 8°C
day~! in the mid-troposphere. Assuming a vertical pro-
file similar to that given by Newell et al. (1972, Table
7.3) for equatorial convection gives the column-averaged
maximum heating rate of about 5°C day—!, correspond-
ing roughly to the latent heat release rate of about
1200 cal day—! cm™. This corresponds to a maximum
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T o 2 -
@ o1 - = ] -1
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A 3 a 1000/,
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o 0 26 - 0 -
8
e ] ) -2 4 1 1 L ! !
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-4 . — x(km) —
-6 F16. 4. One-dimensional steady-state divergence as a function

1 1 i 1
1200 1600 2000 2400 2800

] !
o 400 800
- x(km)—>

Fic. 2. One-dimensional divergence evolution for the case
k=1/(400 km), f=0. Curve labels are in hours following heating
onset (no initial divergence). Only the evolution for x>0 is shown
since the solution is symmetric about x=0. See text for other
details.

precipitation rate of about 2 cm day™'. As x —> £,
Q becomes negative, asymptoting toward —2°C day™!
in the mid-troposphere. This is approximately the
typical magnitude of longwave radiative cooling.

The impulsive onset simulated by (21) models a
suddenly developing, and rather broad band of moder-
ate precipitation. The parameter ¢ is taken as 44 m s,
consistent with Ap=500 mb and a potential tempera-
ture lapse rate of 2.2°C km™". This lapse rate is between
the standard lapse rate of 3.5°C km™ and neutral
stratification. It is sufficiently weak to be conditionally
unstable in a moist atmosphere.

Solutions at equatorial and mid-latitudes are displayed
in Figs. 2 and 3, respectively. The adjustment toward
steady-state divergence occurs on a time scale of-a few
hours in the vicinity of the heating, but requires about a

-4 ] L 1 ] 1 1
(o] 400 800 1200 1600 2000 2400
: x(km)—>

2800

Fic. 3. As in Fig. 2,.except for f=10"4s1,

of x for forcings of indicated scales, and f=10"¢s"1,

day or more at distances about 2000 km or further from
the center of heating in mid-latitudes.

Itis obvious that heating generates stronger divergent
outflow in the tropics than in mid-latitudes. For the
chosen scale, the implied vertical circulation is only
about half as strong around 45° as at the equator.

The scale dependence of the adjusted steady state at
about 45° latitude is depicted in Fig. 4. The heating is
specified by (21) in all cases.

‘b. Two-dimensional impulsive heating
The distribution of Q in this case has the form
0, for all r, for t<0 .
Q0= (22)
{10 exp[ — (k)*]—2}, (20

where r now represents radial distance from the center
of heating. This two-dimensional case models a local

18
2

-2 1 1 1 | 1 1
(o] 400 800 1200 1600 2000 2400 2800
r(km)—>»

Fi1g. 5. Two-dimensional divergence evolution for the case
k=1/(400 km), f=0. Curve labels are in hours following heating
onset (no initial divergence). See text for further details.
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source having the same maximum heating rate as the
one-dimensional case. Figs. 5 and 6 illustrate the time
evolutions of divergence for f=0 and f=10"* s,
respectively, for k=(1/400) km™'. The adjustment
toward steady-state divergence in both cases again
occurs within a few hours in the heated region and is
almost complete outward to beyond 2500 km within
one day. The transient gravity wave propagating out-
ward from the center of the initial impulse damps much
more markedly in Figs. 5 and 6 than in Figs. 2 and 3,
due to the geometrical dispersive effect of two-
dimensionality.

The scale dependence of the divergence displayed in
Fig. 7 also suggests a stronger response for smaller
scales.

¢. Two-dimensiondl diurnally oscillating heating
The distribution of Q is now specified to be
1<0 ‘
{10 cos(wt) exp[— (kr)*]—2},
dun/24nw/2—w< (w) <nmw/2, n=1,5,9, ...
{(—10 cos(wf) (exp[— (kr)?]—1)—2}, ‘

(0, forallr,

0= (23)
mr/2—r<wi<nmw/2, n=3,7,11, ...
w>0,
1 if n=t
6lﬂ==
e 0 if »nzl.

The solution to this problem becomes periodic as
transients to the impulsive onset radiate outward. For
the divergence, this occurs in about one day for the
domains depicted in Figs. 8 and 9.

-4 1 L 1 L L L
(o] 400 800 1200 1600 2000 2400 2800
r(km) —

Fic. 6. As in Fig. §, except for f=10"4s71,
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10 T T T T T

k = (Y500) km™' -

6 _q1 -1 N
k=(7400) km
o
v 4 .
v
Q
= k= (Y1000} km™
o2 i

- | | 1 Il | 1
20 400 800 1200 1600 2000 2400 2800
r{km)—

F16. 7. Two-dimensional steady divergence as a function
of r for forcings of indicated scales, and f=10"*s7L

Assuming w=27/24 h, and k= (1/400) km~ simulates
a diurnal oscillation in Q that might occur in areas
where latent heating has a diurnal cycle. For the case
that f=10—* s (Fig. 8), the latitude is similar to the
central Great Plains of the United States. Eq. (23) may
then represent the diurnal oscillation of convective
heating that is found there during the summer (Wallace,
1975), roughly one-half day out of phase with the
convection over adjoining terrain. The particular
heating rates imply a maximum precipitation of about
2 ¢m in the course of a 12 h wet phase.

t=36h

-6 |- —

Il 1 1 1
1200 1600 2000 2400 2800
r{km)—>

-8

0 300 800

Fi1c. 8. Two-dimensional divergence as a function of ¢ and 7 for
f=10"* 5™ for diurnally oscillating forcings (solid curves). The
solution at £=42 h coincides with the abscissa. The dashed curve
is the steady-state solution corresponding to a steady forcing
equal to that at-48 h. The 36 h steady result (not shown) is the
negative of this.
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=10

|
o} 400 800 1200 1600 2000 2400 2800

f{km)—

F16. 9. As in Fig. 7 except for f=0. The upper and lower solid
curves lag those of Fig. 7 by 2 h to correspond to the time of
maximum response. The dashed curve is the steady solution
corresponding to a steady forcing equal to that at 48 h.

. The solutions at the times of maximum and minimum
heating are rather similar to the steady-state solution
corresponding to the forcing specified at these times.
The fact that these solutions have somewhat larger
magnitude than the steady-state solutions is a reflection
of the amplified response suggested by (16) for w?>0.
However, their overall similarity to the corresponding
steady solutions is an example of the remarkably rapid
adjustment that the flow divergence in the present
model makes to the heating.

The diurnally oscillating case for f=0 (Fig. 9)
suggests a similar conclusion. It also indicates a slight
broadening of scale, in accordance with (16), but no
resonances because the present local forcing occurs in
an infinite domain. This conclusion could be funda-
mentally different in normal mode freatments over
periodic domains, that would have discrete spectra and
possible resonances.

5. Nonlinearity
a. Equations

The linear solutions are likely to be valid only for
small Rossby number. The importance of this assump-
tion may be checked by returning to the nonlinear
versions of (1)-(3). It is still assumed that the baro-
clinic disturbance has negligible horizontal flow and
geopotential gradients at 500 mb. Although this appears
to be a rather strong assumption, it is roughly consistent
with the circulations composited by Reed and Johnson
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(1974) over the tropical western Pacific. This is also a
useful assumption in order to isolate the modifications
of the solutions due to nonlinearity.

The upper tropospheric temperature field 7Ty may be
approximated as

T1=($p1—¢2)/R,

where ¢. is the mid-tropospheric geopotential.
For the radially symmetric case, the system governing
the upper tropospheric flow is

(29)

ou ou Ou 2 Iy

e e S
.ot dar 9P r Or
" -/ B

—= —(u—-{-w—) —uv/r—fu, (26)
& \Nor o

o¢ ¢

e W sAp(w/2)+RO/2. @7
ot or

Here (u,9,w) are (radial, tengential, vertical) motions
in the upper level, and (r,p) are (radial, vertical
pressure) coordinates. It is assumed that only half of
the total latent heating occurs in the upper layer, and
that ¢, is steady.

The following finite difference approximations are

now used :
ou
w= -(~+_)AP/27
. dr

(28)
r = =

d(u,v)

——=—(4,)/(Ap/2). 29
ap

Substitution of (28), (29) into (25), (26), (27) gives

ou ) re W o
Zo =[] o0
at or ar r r
dv 0 )
—+ fu=——(uv)—2uv/7, (31)
o dr
8¢1 ou u a¢1
— <__+_) (sAp*/4)—RQ/2=—u—, (32)
ot or r or

The right-hand sides of these represent the non-
linearities. _
Linearized versions of (30)-(32) would lead to (12)
with
c==+ (SAP2/4)},
instead of
c=(sAp?/2)}

as in (11). The difference is due to the finer vertical
pressure differencing used presently. This resolves a

- shorter vertical mode than that implied in the original
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two-layer model, resulting in slower horizontal propaga-
tion. If the stratification is maintained as in the previous
examples, the amplitude of the response in D almost
doubles as in the simpler solution (15), while the
adjustment time increases by about 409, because of
smaller c.

In the examples to be shown s will be taken to be
twice its previous value, giving the same ¢ value as
before.

Eqgs. (30), (31), (32) can be solved numerically. This
is done using a simplified Adams Bashforth scheme that
has second order accuracy in time. The grid size is 50
km, the time step 75 s, and the integration extends
radially outward to 5000 km. Standard centered space
differencing is used, and the numerical scheme is
checked by comparison with a leapfrog approach that
uses a horizontal staggering of variables suggested by
Arakawa and Mesinger (1976) for geostrophic adjust-
ment. These comparisons, as well as comparisons of
linear numerical solutions with the previously discussed
linear analytical solutions, are in good agreement,
lending reliability to the present numerical calculation.

Fig. 10 illustrates the solution at 28 h (when the
divergence and # are practically steady to beyond
2400 km) for the same case as shown in the linear
solution in Fig. 6. The maximum vorticity in this case
is 3.6X10~% s, and the ratio of this to the Coriolis
parameter indicates a Rossby number of order 1/3 for
this heating rate.

Linear numerical solutions of (30), (31) and (32) are
shown for comparison. These solutions are very close to
the linear analytic results. It is quite clear that at mid-

latitudes the effect of nonlinearity upon the final

divergence is small for the presently studied heating

8 T T T T T T

¢|/g—’

1 I |

1 | I3
(o] 400 800 1200 1600 2400 2800

r(km) —>

2000

F16. 10. Solution of V-V (1078571), % (ms™), 2 (m571), ¢1/g (m)
for the two-dimensional case at #=28 h, Solid curves are from
nonlinear equations (30), (31), (32) for the same case as in Fig. 6.
The dashed curves are the predictions from a linear solution as
explained in the text. )
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40 T T T T T

1 1 1 1 i 1
o] 400 800 1200 1600 2000 2400 2800

r{km) —

F16. 11. As in Fig. 10 except at 10°N, and a heating rate
that is four times as strong.

rates. The transient adjustment (not shown) is also
rather similar to the linear solutions of Fig. 6.

b. Heating and strongly nongradient flow
MacDonald (1977) and Paegle and Paegle (1976b)

have described actual warm core systems for which the
upper tropospheric flow is quasi-irrotational with
respect to space, but strongly divergent. The Rossby
number is then order 1 and the heating must be several
times greater than that given by (22) in order to
achieve this in the present model.

Fig. 11 displays solutions at 10°N, 28 h after the
onset of heating that is four times as strong as given
by (22). The maximum implied precipitation rate is
10 cm day™! at r=0. The implied precipitation rate
averaged over the region 7 <400 km is about 3 cm day!
(corresponding to heating of about 10°C day™'). This
might represent a strongly convective circulation in the
vicinity of the ITCZ. The upper level divergence is
almost 4X1075 s71, suggesting a Rossby number in
excess of 1. Nevertheless, a linear numerical solution
gives practically the same flow divergence profile.

This again suggests that the modifications due to
advection are not very important for the simulation of
flow divergence in the present model, although they are
important for the vorticity and temperature. The flow
shown in Fig. 11 is sufficiently nonlinear for the balance
equation to be non-elliptic (e.g., Paegle and Paegle,
1974) within about 500 km of the center of heating,
where

2V2 (¢1)+ f2<0.

Paegle and Paegle (1974), (1976b) and (1978) have
argued that quasi-steady divergence out of pressure
fields for which the nondivergent balance equation is
non-elliptic may be estimated directly from the pressure
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Fi1c. 12. Curve 1, divergence as a function of 2V2(¢1)+ f2: from
frictionless non-elliptic estimate as in Paegle and Paegle (1974);
curve 2, from frictional non-elliptic estimate as in Paegle and
Paegle (1978); curve 3, numerical solution from Egs. (30), (31)
and (32) from the case of Fig. 11.

field. The most recent of these studies (1978) includes
a drag formulation of friction to simulate vertical mix-
ing of vorticity, while the earlier (1974) and (1976)
studies are frictionless.

Those diagnoses of the divergence as a function of -

—[2v2(¢1)+ /7]

are compared in Fig. 12 with the present numerical
results. The latter are averaged over the region <400
km to represent a synoptic scale that includes the most
intense heating. The drag coefficient in the frictional
non-elliptic case (following Paegle and Paegle, 1978) is
equal to 2.5X107% s71. In unpublished data investiga-
tions we have found that such a magnitude is necessary
to account for a reasonable acceleration-force balance
at 200 mb during Phase III of the GATE experiment.
The diagnostic estimates based upon our earlier
studies of non-elliptic pressure fields neglect thermo-
dynamics, tilting terms and inhomogeneities in the forc-
ing field. The simple analytical solution indicated in the
frictional non-elliptic case is nevertheless similar to the
solution of the more complete case described in this
study. Because of the different dynamics in these cases,
the close agreement may be partly circumstantial, and
detailed agreement should not be expected generally.
The present numerical solutions produce about half
the divergence of the frictionless non-elliptic estimates
over much of the non-elliptic range of Fig. 12. This
ratio is similar to the ratio of observed outflows from
heated regions to the diagnosed frictionless non-elliptic
estimates computed by Paegle and Paegle (1976a).
Such comparisons may support the hypothesis that
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much observed upper level divergence may in fact be
associated with pressure fields generated by such strong
heating that the standard balance equation is non-
elliptic.

If the latter conjecture is correct, then it is useful to
obtain reasonable diagnostic mass-flow relations in
these cases. This may be particularly important for
initialization of tropical forecast models containing
strongly convective features, and possibly for much
larger scales as well.

Fig. 11 suggests that cross-isobaric flow on the order
of 1 m s™! exists to distances on the order of 2000 km
from a strong localized disturbance in the tropics. Thus,
the effect of such a disturbance may extend to latitudes
of the subtropical jet stream, where zonal flow accelera-
tions on the order of 5 m s day~ may be produced.
The implied production of the vertical shear between
the upper and lower troposphere is twice this magnitude.
Blackmon et al. (1977) suggest that upper tropospheric
cross-isobaric flow of magnitude 1-2 m s~ may be
important for intensifications of both the jet stream and
(indirectly) the baroclinic waves in storm tracks over
the western Pacific and the United States.

The present results do not prove the implied associa-
tion between strong latent heat releases in the tropics
and significant energy sources for the subtropical jet
stream. However, if this effect does exist, then the solu-
tions suggest that a single, strong tropical disturbance
may begin to influence higher latitudes on the remark-
ably short time scale of 1 or 2 days. If these speculations
can be verified this would suggest the importance of
local tropical disturbances even in short-range predic-
tion of large-scale flows of mid-latitudes.

6. Conclusions

The principal conclusion is that deep atmospheric
flow divergence adjusts to heating on rather short time
scales (on the order of a day or less). One reason for this
is that the deep gravity waves associated with the
adjustment have high phase speeds, and their transients
radiate away rapidly. Equivalently, the hydrostatic
pressure field is strongly responsive for deep motions,
and an efficient mass-flow adjustment occurs for the
presently studied vertical structures. It may be noted
that this is not the case for shallow motions (e.g.,
Bolin, 1953). :

Inclusion of the feedback effects of the generated
flow upon the latent heat release is beyond the scope of
the present study. However, the fact that the present
one-way adjustment to heating occurs so rapidly may
support a tentative conclusion that quasi-steady
hypotheses may actually apply reasonably well, even
for diurnally periodic time scales. The feedback should
be quantitatively significant, since the vertical velocity
is on the order of 2-3 cm s™! in most of the specific
examples. Such vertical motions could significantly
increase low-level moisture influxes, and may amplify
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the final response. However, the convergence implied
in the present mid-latitude examples (about 10=2s71) is
still smaller than that which seems to accompany
diurnal boundary layer fluctuations over the United
States (Paegle, 1978). Consequently, the actual
triggering mechanism of the convection may not be
dominated by the generated flows in these cases.

For adiabatic motions, the Rossby radius of deforma-
tion A (=c¢/f) is an important parameter (e.g., Wash-
ington, 1964; Cahn, 1945; Obukhov, 1949); \ is on the
order of 400 km in the present mid-latitude examples.
Scales smaller than X are characterized by a divergence
evolution that is similar to the non-rotating case, and
is rather responsive to the heating, while the response
for scales larger than \ is reduced.

It may be demonstrated that solutions (19), (20)
possess nonzero area integrals of divergence over the
infinite domain in the absence of rotation (f=0). How-
ever, all rotating linear cases that tend to a steady state
and for which the solutions and forcing damp at least
as fast as ¢ for large r and positive g, have zero area
integrated divergence over the infinite domain. This
can be shown by an area integration of (12), application
of the divergence theorem, and taking the limit » —o.
This situation includes as special cases solutions to
localized forcings that satisfy Sommerfeld’s (1949)
radiation condition (damping as r—%). Therefore, total
flow compensation may be expected in rotating flows.
Solution (20) and Fig. 7 suggest that for heatings
having a horizontal scale on the order of A or less, flow
divergence may be expected outward to distances of
order N and compensating convergence from about
mA/2 to about 37A/2.

The solutions indicate that almost total compensation
occurs over this area, and that the compensating con-
vergence and related subsidence are about an order of
magnitude weaker than in the central region. This
suggests that the influence of locally heated disturbances
in mid-latitudes is effectively limited to distances on the
order of 2000 km, while heatings within the tropics may
have an impact outward to larger distances.

The rotational flow component (v) changes rather
slowly (in proportion to fu in a linear problem). Thus,
the rotational component of the heat-driven circulation
adjusts toward the steady-state value more slowly than
the divergent part, particularly at radial distances
beyond 1000 km. To the extent that tropical heating is
relevant, the generation and maintenance of strong
subtropical jet streams may therefore be favored in
those areas that lie poleward of heavy and persistent
tropical convective regions. It would be of interest to
ascertain the degree of dependence of the climatologi-
cally strongest 200 mb cross-isobaric flow, as well as
the strongest jet stream generation in the western
Pacific upon the proximity of the heavy winter monsoon
of the tropical western Pacific. We are pursuing both
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data and more complete model investigations of this
question.
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