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On the Dynamics of the East African Jet. Ii: Jet Transients
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ABSTRACT

A barotropic, primitive equation model on an equatorial beta plane is used to investigate the transient
behavior of the East African jet. Both analytic and numerical solutions provide insight into the jet
response to a diurnal fluctuation in the friction coefficient over land and to temporal variations in the
upstream (eastward) and southern boundary forcings.

Results indicate that the diurnal variation in the strength of the surface drag over land can account for
the observed increase in the speed and westward shift of the jet core during the night. The observed
large variations in the meridional wind just offshore and in the zonal wind field are not explained
by the theory.

In contrast to the diurnal variations in the finestructure of the jet, time-dependent variations in
the upstream and southern boundary forcings can produce changes in the large-scale features of the jet.
For either type of transient perturbation, the change in the jet speed can be significant and may explain
the observed jet surges. In the case of southern. boundary forcing, this result demonstrates that
eastward propagating, middle-latitude disturbances can have a significant effect on the flow at the
equator in the presence of an impermeable western boundary.

1. Introduction

The purpose of this study is to investigate the
transient behavior of the East African jet (EAJ).
Specifically, the jet response to a diurnal fluctua-
tion in the surface drag over land and to temporal
variations in the upstream (eastward) and southern
boundary forcings is modeled.

The recent MONSOON 77 aircraft exploration
(Hart et al., 1978) of the EAJ documenis the
diurnal variation in the jet. During the day the maxi-
‘mum jet speed is reduced by ~30% over land, while
the flow far over the ocean appears to be relatively
unaffected. Hart er al. (1978) suggest that this
phenomenon is the result of increased convective
activity over land during the daytime. In compari-
son, the low-level jet of the Great Plains of North
America [see, e.g., Bonner (1968) for a descrip-
tion] exhibits a strong (~100%) diurnal variation
which Blackadar (1957) first interpreted as an
inertial oscillation excited by the sudden reduction
in surface drag at nightfall. Such a description is not
applicable to the EAJ because of its equatorial
lIocation. This aspect of the EAJ is studied analyti-
cally and numerically by letting the coefficient of
surface friction over land undergo a prescribed
diurnal oscillation.

The motivation for the study of upstream transient
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forcing arises from the observation of Krishnamurti
and Bhalme (1976) that the meridional pressure
gradient over the Indian Ocean has a strong com-
ponent with a 14-day period during the northern
summer monsoon. Their spectral analysis also re-
vealed a similar oscillation in wind data of the EAJ.
Because the jet data were for a different year than
the pressure observations, it was impossible to
obtain the phase relation between the two. More
recently, however, Raghavan et al. (1978) show that
increases in the wind speed at Garissa, Kenya, lag
pressure drops over central India by a few days
during July 1973. This result suggests that the 14-day
monsoon oscillation causes surges in the EAJ.

This upstream forcing is modeled by a prescribed
variation in the source-sink term used to drive the
flow. Anderson (1976), in a similar study, found a
30% variation in the jet speed for a 160% variation in
the Northern Hemisphere sink with a 24-day period.
He noted that his large eddy diffusivity precluded a
higher frequency forcing from producing a signifi-
cant response. In this study, a linear analysis is
performed for an oscillatory, antisymmetric source-
sink distribution of arbitrary frequency. The
methodology is similar to that employed in the
oceanographic literature (see, in particular, Moore
and Philander, 1976; Cane and Sarachik, 1976, 1977).
Here the treatment is extended to include Rayleigh
damping. In addition, numerical calculations predict
the nonlinear response of the EAJ to a forcing
with a 14-day period.

Synoptic fluctuations to the south also appear to
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Fi1G. 1. Height field of 850 mb surface at 1200 GMT. Units
of tens of meters. Contour interval is 20 m. (a) 8 June 1977;
(b) 10 June 1977; (c¢) 11 June 1977.

be important in explaining the temporal variation
of the jet. Map analysis shows that the mean flow
can be severely distorted by the passage of middle
latitude disturbances over the Cape of Africa. Fig. 1
illustrates one such episode during MONSOON 77.
With: the high-pressure center over South Africa
(Fig. 1a), air is pumped vigorously northward
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through the Mozambique Channel. As the high
moves eastward, the southerly flow diminishes
(Fig. 1b) and is eventually reversed (Fig. 1c) as the
propagating high reinforces the Mascarene High to
the east of Madagascar. Hart er al. (1978) note that
intensification of the cross-equatorial flow is corre-
lated with strong flow up the channel though the
phase relation has not been determined as yet.

Forcing of tropical motions by middle latitude
disturbances has been investigated previously by a
number of authors. Mak (1969) in a stochastic ap-
proach and Lamb (1973) in a mode analysis used a
channel model of the tropics with a specified me-
ridional velocity at both the northern and southern
boundaries. In each case, a maximum response at
the equator was obtained for forcings of ~5 days.
Hayashi (1976), however, showed that this ‘‘non-
singular’’ resonance did not correspond to a realistic
tropical mode but rather to a westward propagating
anti-Kelvin wave that can exist only on an equatorial
beta plane of finite meridional extent. The present
approach circumvents this problem by considering
a semi-infinite beta plane. The flow is forced by a
meridional velocity specified along the southern
boundary. Analytic solutions of the linearized model
equations are obtained for forcing of arbitrary
frequency and zonal wavenumber. For the case of
no meridional boundary, the results agree with the
numerical calculations of Bennett and Young (1971):
only westward propagating waves of large zonal
wavelength have a significant response at the equa-
tor. The presence of a boundary is seen to alter this
conclusion. In the numerical simulation of the
nonlinear problem, an eastward propagating wave
of a 6-day period and wavenumber 6 is used. Such a
choice is consistent with the observed spectral peak
(Kao et al., 1970) in the meridional geostrophic
wind of middle-latitude disturbances in the Southern
Hemisphere.

The remainder of this paper is divided into four
parts. In Section 2 the model formulation and nu-
merical technique are described. Section 3 presents
a linear analysis of ‘the model equations with no
orography. Numerical solutions of the nonlinear
equations with orography are described in Section 4.
Comparison of the two solutions helps elucidate
the role of advection by the mean flow and of the
orography. In the last section, the main conclu-
sions of this investigation are summarized and the
limitations of the study are delineated.

2. The model

The approach used here follows that in Part I
(Bannon, 1979b). The equations of motion and of
continuity describing the depth-averaged flow on an
equatorial beta plane subject to Rayleigh damping
and to a reduced gravity are
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du oh Ru
—_—— = —g —— = —, ia
dt Ry & ox D (1a)
dv oh Ry
_—+ = —g — — —, ib
dt Ryu g ox D (1b)
dD ou v
< (— =) =0, (1¢)
dt ox dy
where
d (V] 0 i)
—= ety — + v —,
dt ot ox Ay

and the notation is that in Bannon (1979b). The
parameter settings are 8 = 2.3 X 107 m™ s,
g'=0.60ms2andR =1 cm s!. A rigid western
boundary is assumed at x = 0.

The numerical model is identical to that used in
Part I except for the absence of Madagascar. This
choice facilitates comparison with the linear analysis
of Section 3. In each numerical experiment of
Section 4, the model is started from day 12 of experi-
ment Bl in Part I and integrated forward in time for
three complete cycles. Experiment Bl provides a
fairly realistic simulation of the EAJ except for the
absence of a wind speed maximum off the tip of
Madagascar and of a trough-ridge pressure distribu-
tion over the island. In order to avoid complete flow
separation (i.e., D < () during the initial cycle, the
northern boundary was placed atyy = +400 km for
the case of southern boundary forcing only. All other
experiments haveyy = +500 km. Inspection of both
global and grid-point quantities (Bannon, 197%a)
indicates that an approximately periodic state is
achieved by the third cycle. All numerical results
presented here are based on the analysis of the
last cycle.

3. Linear analysis

Linearization of the model equations about a
state of rest yields, with flat bottom topography,

My 9D Rul
ot ox D,
v oD Rv
—+pu=-g ——-—:, 2
ot o D, |

D

Do)

ot ox ay

where D, = 2 km is a representative fluid depth.
The domain is taken to be semi-infinite in the
x-y plane with an impermeable meridional bound-
ary at x = 0. The general solution is separated
into time-independent and time-dependent compo-
nents, e.g.,

o(x,y.1) = v(x,y) + v'(x,y,1).
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Bannon (1979a) has solved (2) for the steady-state
solution subject to the boundary layer approxima-
tion for arbitrary 0 = Q(y). For the structurally

simple form
Q(y) = —bye "2, 3

where b > 0 and a2 = 2000 km, the solution of
the velocity field is

v, = Voe—ay2l2(1 + Ae—e.l')
Uy = Vo(aA)1/2ye—ay2/2(1 — 7<) ’

where V, = b/(aD,), ¢ = BD,/R and A = ¢*a. This
solution describes a western boundary current
analogous to that of Stommel (1948) for the Gulf
Stream. For R = 1 ¢m s™!, however, the jet width,
¢! = 217 km, is too narrow, and the amplification of
the cross-equatorial flow in the boundary current to
that far upstream, A = 85, is too large. Despite
these shortcomings, the solution (4) is used as a
standard of comparison for the transient linear
analyses to be presented in the following sub-
sections.

@

a. Diurnal variation of friction coefficient over land

During the day, increased insolation at the sur-
face will result in increased convective activity and,
hence, an increased frictional drag. As the diurnal

_variation in the surface temperature is much larger

over the land than over the ocean, this phenomenon
is generally confined to continental regions. Thus,
let the Rayleigh drag coefficient be given by R(x,y,t)
=R + R'(x,y,t), where R' describes the diurnal
variation over land from a constant value R. Esti-
mates of the dependence of the drag coefficient
Cp on stability (Deardorff, 1968) suggest that the
magnitude of the diurnal variation of R is roughly
half its value under neutral conditions. With R = 2
cm s~ over land, |R'| is taken to be 1 cm s~

In this subsection, the time-dependent variables
represent the response of the flow to the variable
drag coefficient. They satisfy

~

a !
L D RERW
or ox D,
0 éD R + R’
2= 2 BN gL )
ot ay Dy,

D o2y 30

ot ox oy

‘where the primes on i, v and D have been dropped

for convenience. Here F = —R'u,/D, and G
= —R’v/D, represent the perturbation of the
steady-state solution from equilibrium caused by the
variable bottom friction. They act as body forces
to drive the transient motion. Since v, > u, over
land, F is dropped compared to G.
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FiG. 2 Linear response of v at the equator to a diurnally varying
drag coefficient over land.

For Simplicity, a coastline independent of y-and a
_sinusoidal time dependence are assumed. Then

R’ = Roe™™™[1 — H(x — x/)],

where R, = 1 cms™, 27/} = 1day, H is the Heavi-
side Stepfunction and x, = 400 km denotes the
. longitudinal extent of the land surface from the
rigid western boundary at x = 0. Since IQDO/(R
+ R")| =S for Dy = 2 km, the damping terms in
(5) may be ignored. The simplified set is then identi-
cal to that of Lighthill (1969) who showed that the
meridional wind satisfies

3 2 2 ’-a
Py oo Lr LN e 2
ord oxz  oy?

v

G G
= §'Dof - =

o —g'D, . (6)

ox?
By making the boundary layer approximation and
noting that 2 > ,Bzyz near the equator, Eq. (6)
reduces to

I 5
o 87 o E TP o
¥G . &G
= PYER 0 ot Y]

The zonal variation of the steady-state meridional
wind (4) has been shown not to be representative
of the mean EAJ. This variation is therefore ignored

so that G may be written as i

G = -G ™% [l — H(x —xJl, (8)

where Gy = V4 R,/D,. (The convolution theorem
could be employed to obtain the response to forc-
ing with arbitrary zonal structure.) The land-sea
contrast is preserved in the forcing (8), while the
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finestructure of the jet over land is not. Here V,
is a typical jet speed over land and may be taken to
agree with observations (e.g., Vy = 15m s™!)
rather than with the two fast, linear, steady-state
solution (4).

Let

v = e WP Bl - H(x — x.)] + E(x)}, (9

where E, = G,/(i{}). Substitution of (8) and (9) into '
(7) yields

d’E
dx?

, ' dE
iOg'D, — g'DyB = + iQ%E
X -

= —EoBg'Dod(x — xc),

where § is the Dirac delta function.

A Green’s function solution to (10) is obtainable
in a straightforward manner. For x # x., (10) has
the solution .

(10)

. Sikx + ik-x > .
EGr) = {Ele' E2e. , X > X, an
Ese*+® + Ee’ %, x <x,,
where
’ 2 2 12
A 2Q0) 20 g'D,
With g’ =60cm s™% and Dy =2 km, A, = 3.22

X 103 km and A_ = —2.77 x 10° km. Since k% > a,
the boundary-layer approximation holds a posteriori.

The four constants in (11) are found by applying
the following boundary conditions: 1) radiation con-
dition at x = +; 2) continuity of E(x) at x = x;
3) integration of (10) across x = x, to obtain a con-
dition on the derivative of E at x = x,; and 4)
u(x = 0) = 0. The result is

2 = 09
~ik—x¢
E4 = ﬁEO ¢ ]
Q (k, - k)
iBE, . , ‘
E, = —[ﬁl" ¥ CE]/ .

El = E3 + E4éi(k—_k+)zc,
where ;
c [ QB + ak.g'D, ]
e =i —— .
- QO — k%D,

The response of the cross-equatorial flow is shown
in Fig. 2. The forced meridional wind field is con-
fined to lie over the land area and leads the drag
variation by a quarter period (i.e., the maximum in-
crease in v occurs 6 h after the minimum in the drag
coefficient). The magnitude of the oscillation is
|0/Voo| = Ro/(QD,) = 6.85% for R, = 1 cm s™*. In
contrast the response over the ocean is weaker,
Iv/VOO] =~ 0.30% and, just offshore, is 180° out of
phase with R(z).
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While the response of the v field is largest at the
equator for the forcing (8), both the 4 and D fields
are zero aty = 0 and reach maximaaty =
|ulVoo| = 1.14% and |D/D,y| = 0.7% (for Vo,
= 20 ms™), respectively. Both fields are continuous
at x = x.; there are no infinite divergences or
pressure gradients. They represent long wavelength
(~3000 km) inertio-gravity waves.

b. Time-dependent upstream forcing

Here the zonally symmetric source-sink forcing
is assumed to undergo a sinusoidal variation in
time:

Q@y,t) = —b'ye ¥ 2e~ivi(h’ > (). (12)

The complete solution to (2) consists of the forced
response and the homogeneous solution. The
former is independent of x. The latter consists of the
iree modes of (2) which may be a function of x.
They are needed to satisfy the boundary condition
u(x = 0) = 0. For example, let

v(x,y,t) = e *ug(y) + vp(x,y)],

where the subscripts Q0 and F denote the forced
and free solution, respectively.
The forced meridional wind field satisfies

1 do

- ~ yZ)v =——>
g,Do(l) ¢ DO dy

d? (Y] Bw

2 e +( :
d)’ g'D,

13

where @ = w + iR/D,. (The Rayleigh coefficient is -

assumed constant in time and uniform in space in this
subsection.) Eq. (13) is solved using an eigenfunction
expansion for vy and 1/Dy(dQ/dy). We consider the
set of Hermite functions defined by

1
(zmm!)llz 71.1/4
m=0,1,2,3...,

where H,(z) are the Hermite polynomials (see, e.g.,
Morse and Feshbach, 1953). Each 4, is a solution to

Yn(2z) =

e *H ,(2),

2
-‘—1— Ym + Cm + 1 — 220, = 0, (14)
dz?
subject to the boundary conditions ¢, = 0 at z
= =00, The Hermite functions form a complete set
over the complex plane and are orthonormal in the
sense that .
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re 1, n=m
m n dz = ’
J n(@Wa(2)dz \0, e
Expanding v, and (1/Dg)(dQ/dy) in terms of the
P, yields

o

vo(y) = 2= Vntmpey), (15)
1 d0 2
—_——= mPm(y), (16)
Dy dy mE_OQ Py

where w = (B2w/g’D @)% is complex. Substituting
(15) and (16) into (13) and making use of the relation
(14) and of the orthonormality of the ,,, one finds

'U — gﬂ
m Am ’
where
Am = —2_ _ 2m + Dy

0

In the inviscid problem, a singular resonance occurs
for A, = 0. Here inclusion of Rayleigh damping
precludes such a possibility. The «# and D fields for
the forced solution are ;

/D B2 )1/4

w®?

x [(’" ; I)I/Zwmﬂw) + (%)mwm-l(uy)] :

Dq(y) = —'—[Q(y)
w

ug(y) = 2 tvm(

d
— D, '2; UQ(}’)] .

The free mode solutions to (2) satisfy

kB

a7

3201: + ( Y] k2
dy* g'Dy @

BPw 2>
- ——— ¥ p=0. (18)
2'Do@> e
The solution bounded at y = x®is
va = Cmeikmld/m(l‘f}’)’ m = 0’ 19 29 R}

where - the zonal wavenumber is determined from
the dispersion relation

k2 +-fik,,,— @b
w gDo

The correspondiﬁg u and D fields are

+@m+ D2 =0. (19)

m +. 1\12 m \L2 .
. g'Dof? \14 ( 2 ) Pme1(y) (—2—) Ym—a (1Y)
MF,,, - ml< w&)3 ) 1 - km 1 " km ’
m + 1\ m\?
oD, ( ) ) (7) Br(17)

= Cpl
m m (gvDoﬁZwii('b)l/‘l

1 — ky,

1+ ky,
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where
g'Dy

wd

ko = k ( )

The quadratic (19) allows two complex roots.
Here only the root with its imaginary part greater
than zero is used. This choice assures a finite value
at x = +, The m = 0 root merits special discus-
sion. In order that the solution is bounded aty = *«
(Matsuno, 1966),

wa) )1/2

k =(
. ¢ g'D,

This root corresponds to the Yanai or mixed Rossby-
gravity wave and has a positive imaginary part. The
other root ko = —(wd/g"Dy)* corresponds to the
spurious westward propagating anti-Kelvin wave
which is unbounded at y = o and at x = +.

In addition, a free-mode solution exists with v
identically zero. This eastward propagating Kelvin

B

~

(0]

(20)-

mode is denoted by m = —1:
vy = 0,
. g’D 2\ 1/4
U_ = C_ll(_l—of—) lpo(l‘(‘y)’
ww -
ipD
D_.l = C-I B ¢ lbo(l-‘z)’),

PN

;o 1/2
ki = +( e ) .
: g'Dy
The C, are determined by satisfying the

boundary condition # = 0 at the western wall. The
Mth forced mode of (17) is matched by a sum of
free modes m < M such that the boundary condition
is satisfied for all y. The technique is described in
detail in Moore and Philander (1976). One finds that
only the even (odd) m modes are needed for M even
(odd).

By symmetry of the forcing (12), 0,, = 0 for all
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odd m. Thus only the modes with m even are present.
A convenient- measure of the convergence of the
series (16) after M terms is given by

SM = SM/Soo,

= %_ sz’

where
S _.J+°° ( 1 dQ f" )2 77. 1/2
[umE e HE) 5

For $,; = 1, the series has converged.. Note that Sy,
is complex. Table 1 gives |Sg| for various values of
R, a and forcing period P. For these representative
parameter settings, the series (16) may be safely
truncated after m = 8.

Also displayed in Table 1 is a measure of the
power of the zonal wind for each forced mode since

o0 : : '

Cm + 1) D, 5>
J up pdy | = £ f)B |vm|2.
o 2. w6)®

Table 1 shows that the Yanai (m = 0) mode is the
dominant forced response. Because @ is zonally
symmetric, only gravity waves are excited directly
by the forcing. For the relatively long-period
fluctuations considered, the Yanai mode is the
gravity mode closest to resonance (i.e., |Ao| < |An|,
m > 0). In addition, the projection of (1/D)(dQ/dy)
onto the y,, modes for large-scale forcing (a < 0.25
x 10712 m~2) is largest for m = 0. For forcing of nar-
rower meridional extent (a = 0.50 x 10712 m™2),
the m = 2 projection is greatest. The explana-
tion of the unusual dependence of power on R
(power increasing for increasing R, except for
m=0and P =6 days) lies in the fact that while
Qn| decreases for increasing R, the decrease in
An| is greater.

Table 1 suggests that a fairly accurate solution
will be given by including the m = 0 mode only.
The zonal wind forced by the time-dependent Q
may then be written approximately as

—_— bl

TABLE 1. Modal power and series convergence for Q(y,?) given by (12).

(2m + 1)|v,|? [arbitrary units]
R a-
" (em s™Y) (x 102 m?) m=0 m=2 m=4 m=6 m=38 |Ss]
A. P = 14 days
1. 0.25 1.561 0.082 0.043 0.013 0.003 1.010
1 0.25 1.790 0.155 0.063 0.017 0.004 1.049
2 0.25 2.212 0.396 0.116 0.025 0.005 1.130
1 0.50 0.808 0.283 0.019 0.001 0.000 1.042
! 1 0.125 2.910 0.033 0.047 0.035 0.021 0.937
. B. P = 6 days
%3 0.25 2.050 0.065 0.038 0.012 0.003 0.994
1 0.25 2.064 0.080 0.042 0.013 0.003 1.005
2 0.25 2.055 0.135 0.058 0.016 0.004 1.037
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. ng 2\ 1/4 »

ug(y,t) = wo(—_—ff ) Papy)e . 21
ww

Westward flow in the Southern Hemisphere lags the

forcing by a quarter period. The boundary response

to (21) is a free Yanai mode

ve(x,y,0) = —vo(1 — kohpo(py)ei®or—en,  (22)

At the boundary, the cross-equatorial flow is
roughly 180° out of phase with Q. Because k, is
complex, the zonal structure resembles the time de-
pendence of an underdamped harmonic oscillator.
The dependence of wavelength 2w/k, and e-
folding distance d, on P and R is shown in Table 2.
In all cases d, is greater than the steady-state jet
width from linear theory, R/BD,, and comparable
to the actual mean jet width of ~1000 km. In addi-
tion the wavelengths of the boundary response are
large compared to the actual mean jet width. Thus
the small-scale (~100 km) variation in jet position
observed by Hart et al. (1978) is not explained
by these results.

A convenient measure of the magnitude of the
boundary response (22) is obtained by comparison
with the steady-state solution (4). Here we define
the intensification factor [ as

[DF(O’O,O)/JO quy]
[vs«),m / [ ux = o, y)d'y]

The numerator (denominator) is the ratio of the
meridional wind along the equator at the boundary to
the net zonal flow incident on the boundary in the
Southern Hemisphere for the transient (steady-
state) flow. For example, if the net inflow for the
transient and steady-state forcings are the same,
I measures the strength of the transient cross-
equatorial response relative to that for the steady
state. For the solutions (21) and (22), and (4), I
may be written

. wh \'2 R
(g'Do) BD,

For high-frequency oscillations, the Yanai wave is
essentially a gravity wave, ky,~ 1 and 1 =0.
Physically the boundary response to the incident
mass flux for short periods is an increase in fluid
depth and no meridional flow. Using the dispersion
relation (20), (23) may be rewritten as

1
I= -,
vy +1i

(1 = ko). (23)

where y! = Ri(wDy) = (2m)™ X (oscillation period/
frictional spindown time, 7, = Dy/R). For long-period
oscillations, the fluid surface acts as a rigid lid. In
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TABLE 2. Wavelength and e-folding distance of Yanai mode
forced at western boundary.

P R 2alky dy
(days) (cm s7Y) (10% km) (km)
6 0 —4.12 w
23 —4.28 2431
1 -4.97 1352
2 —-8.33 938
14 0 —-1.47 ®
1% —1.83 566
1 -2.94 439
2 -8.35 519
00 i 0 217

order to conserve mass, the boundary response is a
meridional flow. Thus, as @ — 0, y— 0 and |I| — 1.
For R=1 cm s7', 277, ~ 14 days. A 14-day
oscillation will therefore cause almost twice as great
a change in the jet as a 6-day oscillation (see Table 3)
ifthe net zonal flow excited is the same in each case.
The effect of including the other terms (i.e., m
< 8) is depicted in Fig. 3 for P = 6 and 14 days. In
each case, the magnitude of the forcing b’ and a
= 0.25 x 1072 m~? are the same. Because a long-
period oscillation excites a stronger zonal wind
fluctuation, the cross-equatorial flow is stronger for
P = 14 than P = 6 days. In agreement with Table 2,
the longer period response is more closely trapped
to the wall. '

c. Time-dependent zonally asymmetric southern
boundary forcing

In this subsection the linear response of the EAJ
to motion forced along a southern latitude is deter-
mined. Mathematically the problem consists of solv-
ing the homogeneous form of (2) subject to the
inhomogeneous boundary condition of a specified
meridional velocity aty = —y,, i.e.,

U(x , —)70,[) — VSei(ks.l‘—wt).

29

The solution is obtained in two steps. First the
response to (24) is calculated in the absence of a
meridional boundary. Then the free mode solutions
required to satisfy the conditionu = 0 at the western

TasLe 3. |1] for various values of y~*.

vt = (P2mr,) |1}

0 0

Ys 0.196

% 0.447

1 0.707

2 0.894
s 0.981

w 1

8QDXWKHQWLFDWHG _

'RZQORDGHG



2160

TTr7TrT

teves by sy bypa

AR E RN EREN!

1 ] | |
5 6 7 8

[ 1
3 4 9

X (103 km)

o

L.Sprrrprrrr

Uﬂ
LI

€

s

'y

9

~

N
IRTIREENISNREASNRTARGRTISNSNIRNNE] IRRVINRERA AT

> -0 wt=0

-1.5

|||IIllllllll—T||I|llllrrlrl—|l

-2.5

NI RSN NN IR SNENE RO NI RE AN AR NN

0 5 10 15 20 25 30 35 40
X (103 km)

A

Fi16. 3. Linear response of v at the equator to a periodic
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boundary atx = 0 are determined. This latter condi-
tion is crucial for eastward propagating forcing to
have a significant effect on flow at the equator.

The meridional wind field satisfies (18). For
convenience R is taken to be zero in this analysis;
so @ = w. The equation may be rewritten as

0%

-5—53 + n¥{w,k,&v = 0, (25)
where
_ 462 1/4
£ ( g'Dy ) Y
¥ w,k, &) = a + V5 — ¢4 . (26)

g'D,
BZ

2a+f=( o —kz—-li'[i)(

g'D, )

>1/2
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Solutions to (25) which are bounded as y — +®
are the Weber or parabolic cylinder functions (see,
e.g., Whittaker and Watson, 1958)

(&) = Dy(§). 27

The solution forced by the inhomogeneous boundary
condition is )
. v = VSei(ks.z‘—ml)DaS(f),

where &, = £(yo) = 2.88 for y, = 2.5 x 10° km,
Vs = Vs/Do(—&), and oy is given by (26) with

= kS' .

The quantity n(w,k, £) is the index of refraction of
the tropical atmosphere. As such it measures the
ability of a disturbance to propagate in the merid-
ional direction. For »n% > 0, the solution is oscilla-
tory in y. For n% < 0, the index of refraction is
imaginary and the solution is evanescent. In such a
case, motion forced at middle latitudes will have
little effect at the equator. The minimal require-
ment for a propagating solution is that & > —%. For
waves of meteorological importance, w is small,
and this criterion can be written approximately
using (26) as ) . '

k?  k
- (-_ + _) > 0.

B ®

This constraint is met only for relatively long-
wavelength, westward propagating (k/w < 0) waves
(see Table 4). Bennett and Young (1971) reached a
similar conclusion by treating the problem as a
numerical eigenvalue problem. In addition they con-
sidered the effect of a mean flow with latitudinal
shear. Here the condition (28) may also be applied
to cases with uniform mean flow U, provided w is
replaced by the Doppler-shifted frequency o
=@ — kU,. :

The « and D fields corresponding to (27) are

(28)

o (g’DoB°’ )”“{Daﬂ(f)' Du-l(§)]
Uy = —= + o s
N AN 1 — k* 1+ k*
b - i Do ( B )“‘*[Daﬂ(f) Dor(®) }
o -« ’
: V2 o \g'D, 1~ k* 1+ k*

where k* = k(g'Do/w*)'?. Examples of the lati-
tudinal structure of #, v and D are given in Fig. 4. The

TABLE 4. ag for various periods and zonal wavenumbers.

Period (days)

Wavenumber* 6 14
-12 . -0.40 +3.11
-6 +0.27 +1.98
0 -0.41 —-0.48
+6 -2.42 —-4.28
+12 ~5.76 -9.42

* + (—) denotes eastward (westward) phase propagation.

\
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F1G. 4. Latitudinal structure of the linear response of u, v
and D to a southern forcing of period 6 days and zonal wave-
number 6. Each curve is normalized to have a maximum value
of unity. No meridional boundary is present. (a) Eastward
propagating; (b) westward propagating.

lack of an equatorial influence for eastward propa-
gating disturbances is evident. For an eastward forc-
ing, the phase of the D(u) field leads (lags) the v field
by 90° i.e., high pressure and westward flow lie
to the west of northward flow. This is the correct
phase relation for a middle-latitude disturbance in
the Southern Hemisphere. For a westward forcing,
the phase of v and D are shifted 180°. Thus, as indi-
cated in Fig. 4, eastward forcing has little effect on
flow at the eguator in the absence of a meridional
boundary. A zonal wind field is excited in the interior
by this forcing, however. The presence of a western
boundary requires that the zonal wind be set to zero
at the boundary. This boundary condition is satxs-
fied by the free modes of the sysiem.

in the case of the free modes, v(—y,) = 0, and the
set of permissible «’s is given by the roots «,,, m = 0,

1,2,3,...,0f
D, (=§0) = ©. (29)

PETER R.

BANNON 2161
Philander (1977) plots solutions of (29) as a function
of &. For & = «, a,, = m, and the solutions (27)
reduce to the (unnormalized) Hermite functions
used in the preceding subsection.

Eq. (26) is the dispersion relation which gives
km = kp(w,ay). Here w is set by the forcing and
a, by (29). The equation is quadratic in &, and
allows two roots. For a real radicand, the negative
root is taken. Such a choice is consistent with that
made if Rayleigh damping is included. For m = 0§,
this method leads to the selection of a Yanai-type
solution. Thus the spurious, anti-Kelvin wave
branch is not utilized. For complex roots, the
one whose imaginary part is greater than zero is
used. This choice assures a bounded response
atx = +oo.

The set of free-mode solutions is completed with
the inclusion of the equatorial Kelvin wave. Because
this mode has v identically zero, it is unaffected by
the presence of the longitudinal boundary at
y = —Yyo. As in Section 3b, this mode is denoted
bym = —1.

The magnitude of the free mode response is deter-
mined by satisfying the boundary condition u(x
= 0) = 0. As in the previous subsection, the zonal
wind components of the free modes u, , m = —1,
0,1, 2,...,form a complete set but are not or-
thogonal. Here the a,,’s are not integers. Thus the
u,,’s are not simply related to each other as in the
case of the Hermite functions. As a consequence,
the approach used in Section 3b is not applicable.

Here the method of Mofjeld and Rattray (1971) is
employed. The zonal wind fields of both the forced
and free waves are expanded in a series of Weber
functions D; (¢) which satisfy

dq;:;@) . (871 + _;_ B
subject to the boundary conditions
dDe,
dy
Dy =0 at ¢= +o
As this is a Sturm-Liouville problem, the D, ,n = 0,

v
¢ )Dan(g)

2(_) at £ = -¢§

1,2, ..., form a complete orthogonal set. Thus
uam(g’km) = Z an(km)Dﬁ,,(g)’ (303)
n=0
Uog(€,ks) = Zo Guks)Ds (), (30b)
where
an = [ uamDandf J Dﬁanndg,
_fo —_—
G, = J oD d / J Dy Dsde.
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TaBLE 5. Boundary response to eastward propagating lateral
forcing with a 6-day period and wavenumber 6.

Phase of
vq,(0,0,1)

m G [04,(0,0,0)/V| (deg)
-1 -1 0.353* -100*

0 0.016 1.000 —177

1 1.102 0.065 135

2 2.299 0.227 -56

3 3.600 0.148 -72

4 4.981 0.004 115

5 6.420 0.075 . 96

6 7.905 0.074 113

7. 9.426 0.035 . 87

8 10.977 0.002 —67

9 12.553 0.023 —101
10 14.149 0.042 —68
11 15.764 0.021 -108
12 17.395 0.021 =170
13 19.040 0.001 -114
14 20.697 0.015 106
15 22.366 0.007 ! 61
16 24.045 ] 0.028 102
17 25.734 0.004 59
18 27.431 0.016 97

* p_, = 0; magnitude and phase refer to «_,(0,0,z).
Determination of the definite integrals is ac-

complished by breaking the integrals into two parts.
The first, from 0 to «, is evaluated using results
in Gradshteyn and Ryzhik (1965, p. 885). The
second, from —¢&; to 0, is evaluated by numerical

quadrature.
The boundary condition u{x = 0) = 0 may be
written as
2 Bmuam(g km) = —Vs“as(f’ks),

. m=—1
or using (30),

E B E anDs,, = (31)

_Vs2 G”DSn.
m-‘—l n=0
In practice the infinite series are truncated after
N (=20) terms. Eq. (31) becomes

E B 2 an'DG,,, = (32)

mr=1 n'=1

—VS 2 GnrD(sn,,
=

where m’ =m + 2 and n’' = n + 1. Multiplication

of (32) by D,,,, integration from ¢ = —§, to «, and

use of the orthogonality of the Dj; s, ylelds the

matrix equation

FTB = _V5G,

which may be solved using standard techniques.
. Nondimensional measures of the convergence of
the series expansion (30) after N terms are given by

N 00 0
Fuy =3 Fu? f Ds D dE / J U o, dE,
—£o —£o

n'=1
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’ N 00 oo
N = z Gn’2 J DS,,rDbnrdg/J U dE.
n'=t —éo —¢&

ForF,y = 1andGy = 1, the series have converged.
Table 5 gives the magnitude and phase of the cross-

equatorial flow at x = 0 for the free modes excited

at the boundary for an eastward propagating forcing

of a 6-day period and zonal wavenumber 6. The

convergence of the series expansion of the free
modes (30a)is excellent([mel = 1.00,m =1, 20);
for the forced motion G,, = 0.98. The dommant re-
sponse in the cross-equatorial flow is the m = 0 mode
with a magnitude equal to that of the meridional wind
specified at the southern boundary but ~180° out of
phase. The contribution of the other modes is to reduce
slightly the magnitude of the v field near the boundary.
For m > 1, the modes are zonally trapped having
complex wavenumber with e-folding distances
which decrease monotonically from 10° km for
m = 1to 167 km for m = 18. In contrast, them = 0
mode has a real wavenumber with a wavelength of
4.1 x 10° km. The fact that the reflected waves
have a different wavelength than the incident wave
is a consequence of the asymmetric dispersion rela-
tion for waves on the beta plane. (Similarly, in the
case of upstream forcing discussed in the previous
subsection, the incident wave with wavenumber
zero excited reflected waves with nonzero wave-
number.) Fig. 5§ summarizes the physical situation.
The results for lateral forcings of various periods
and wavenumbers are summarized in Table 6. In
each case the m =.0 mode is the dominant re-
sponse. Its wavelength decreases to 1.5 x 10° km
for a period of 14 days. For kg = 0 (<0), the cross-
equatorial flow is ~180° (0°) degrees out of phase
with V. This result is a consequence of the phase

1

f————— e 4 X {03 kM ————=]

WESTWARD
e
y=0 /LI//‘L/T\T\ [(T

x=0

EASTWARD
_

Y=~Yo

- ——— ~6xI03km -]

FiG. 5. Schematic illustration of southern boundary forcing
with a meridional boundary. Eastward propagating middle-
latitude disturbance of wavenumber 6 and period 6 days
exciting a westward propagating equatorial response of wave-
number 9 due to the presence of a meridional boundary at
x = 0. Thin arrows denote the meridional wind of the forcing
aty = —y, and of the response at y = 0. Thick arrows give the
zonal wind associated with the extratropical wave. Centers of
high and low pressure are also hoted. , i
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relation of the zonal wind relative to the lateral
forcing (see Fig. 4 and discussion). The increased
response for longer periods is due to the free sur-
face acting more rigid as the period increases. The
peak response at wavenumber zero for a given
period arises because the magnitude of the zonal
wind induced by the lateral forcing is a maximum.

It is important to emphasize that these results
are based on calculations assuming no background
flow. The addition of a uniform zonal wind U,
may be incorporated using a Doppler-shifted
frequency wp, = w — kU,. For easterly flow the
effective frequency is increased for eastward
forcing. A critical layer would develop only for
westward forcing (assuming U, < 0, as observed).
Investigations of such phenomena are, however,
outside the scope of the present study.

The results of the jet response to time-dependent
source-sink and southern forcing may be sum-
marized together. The major role of either forcing
is to create a variation in the zonal mass flux incident
on the meridional boundary. The boundary response
depends critically on the frequency of the forcing.
For high-frequency oscillations, the fluid surface
acts freely, and the incident mass flux accumulates
at the boundary. At low frequencies, the fluid
surface acts rigidly, and the incident mass flux is
deflected into a meridional current. For forcings of
period =6 days, a significant increase in the cross-
equatorial flow is predicted to occur a quarter period
after an increase in the incident zonal mass flux.
The latter will occur roughly a quarter period after
an increase in the subsidence in the Southern
Hemisphere or in the lateral forcing at the southern
boundary (for eastward propagating forcing). The
zonal variation of the response of the cross-
equatorial flow is of the same order as the observed
jet width (~500-1000 km) and decays with distance
from the boundary.

4. Nonkinear calculations
a. Diurnal variation of surface drag over land

Here the Rayleigh coefficient of bottom friction
over land undergoes an oscillation of the form

R = Ry(l + ™),

where Ry = 1 cm st and Q is the angular rotation
rate of the earth. Thus 0 < R < 2 cm s~!. Over the
ocean, the coefficient assumes the constant value of
1cms™i.

Fig. 6 depicts the variation of the cross-equatorial
fiow over the third day of the simulation. The magni-
tude of the variation is large over the land (~*1.5
m s !) and relatively insignificant (~+0.1 m s™!) out
over the ocean. These results are in good agreement
with the linear analysis of Section 3a (cf. Figs. 6 and
2). The linear theory predicts a variation in v of

PETER R. BANNON
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TABLE 6. Magnitude and phase of 1,,(0,0,¢)/V for
various lateral forcings.

Period : Phase
(days) Wavenumber* | G | Magnitude (deg)
6 —-12 0.99 0.48 .3
-6 1.00 2.63 1

0 0.99 3.66 -178

6 0.98 1.00 -177

12 0.96 0.57 —-175

14 —12 1.00 1.61 1
-6 1.00 5.41 0

0 0.99 20.20 -179

6 0.97 2.89 -179

12 0.93 1.57 -178

* + (—) denotes eastward (westward) phase propagation.

+1.2 m s7! over land and +0.05 m s™! over the
ocean for a representative mean meridional wind
(Vo) of 18 m s~1. The large variation of the transient
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FiG. 6 (a). Nonlinear response of v at the equator to a
diurnally varying drag coefficient over land. Also shown is the
model bottom topography z at the equator (such that 10 m 57!
= 2 km). (b). Deviation of the meridional wind, Av, from the
time average of the fields in Fig. 6a.
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Fic. 7. Depth-averaged meridional wind at ~2°S as a function
of longitude during MONSOON 77. Here ‘*‘night” refers to
1900-0700 GMT and ““day” to 0700-1900 GMT. The model
orography is also shown. The true coastline is at 41.5°E,

v field over the land in Fig. 6 compared to that in
Fig. 2 arises because the linear analysis ignored
the -zonal variation of both » and D. The fact that

the largest response occurs closest to the western.

boundary is a consequence of the small fluid depth
there [hence, the perturbation stress G in (5) is
largest there]. The phase of the oscillation in Fig. 6
also ‘agrees with linear theory: the maximum in-
crease in v occurs 6 h after the minimum in the
drag coefficient. ,

The transient  and D fields are also consistent
with linear theory. Both fields have broad maxima
at roughly y = —1.5 x 103 km of 0.20 m s™! and
10 m, respectively. Over the: ocean, eastward
propagating gravity waves have wavelengths of
~2000 km. In addition, the fields display a local
oscillation in the northwest corner of the domain of
magnitude 0.35 m s~! and 20 m, respectively. This
oscillation is driven by the zonal stress F in (3).
Approximately, one has ' ’

ou Rou, . '
— =F= - e"“‘l—Hx—c.
ot D [ ( xe)l

The forced zonal response has a magnitude U, given
by Ry, /(QD). For the typical values of u;, ~ +1 m
s7 and D ~ 400 m over the sloping orography,
Uy=034ms, -

It is at first surprising to discover that the linear
analysis accurately describes the nonlinear results.
Afterall, the results of Part I indicate that the steady-
state jet is a highly nonlinear phenomenon. In the
case of oscillatory flow, a measure of the effect of
nonlinearity is given by the Strouhal number S (see
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Batchelor, 1967) which is the ratio of the local to the
advective derivative. For example, '

v
ot
S = , 33
v v (33)
U — v —
( Ox ay)
or
Q

T wiL,viLy

For the representative values of [/ = Ims, VvV
=20m s™!, L, = 200 km, and L, = 2000 km, one
finds S = (15,7) > 1. Thus nonlinearities are small
compared to the local time derivative, and the
linear analysis is a good approximation.

Fig. 7 presents the diurnal variation in the merid-
ional wind at ~2°S from the MONSOON 77 air-
craft data (see Hart et al. , 1978). Here ‘‘day’’ refers
to the depth and longitude average of all flights
from 0700- 1900 GMT and ‘“‘night” from 1900—
0700 GMT. (Local time is 3 h ahead of GMT.) This
figure should be compared to Fig. 6 with day (night)
being the profile at Q¢ = 7/2 (3m/2). Both figures
show that the peak velocity moves laterally ~50—
100 km to the west from day to night and that’
the maximum variation (~5 m s lies over the
higher orography. In each case, the variation de-
Creases toward the coast. The observations exhibit
a large (~2 m s™') fluctuation near the coast and
over the ocean that eventually changes sign at
x = 650 km. Because of the paucity of data for
x > 600 km (only one flight went beyond x = 600
km during the day), the significance of this feature
is not known. Analysis of the east-west component
(Bannon, 1979a) indicates that the depth-averaged
zonal wind over land increases 1—1.5 m s-! from
day to night. This variation is much larger than
that predicted by the nonlinear model.

b. Fortnightly variation in upstream forcing

e .
Here the source-sink forcing is assumed to
undergo a sinusoidal variation in time of a period of
14 days: i

Q(.1) = Q(y)(1 + e~y (34)
The meridional structure QO(y) is identical to that for

profile 1 in Table 5 of Part I.

The time-dependent, zonally symmetric model
equations with (34) as the forcing were solved
numerically in parallel with the two-dimensional
numerical model. The domain for the one-dimen-
sional problem extended from Y= -ytoy = +y,
with rigid northern and southern boundaries. This
solution provided the necessary inflow boundary
conditions (see Table 1 of Part I) at the eastern end
of the two-dimensional domain. The maximum east-
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ward flow of ~10 m s~ occurs about a quarter-
period after the maximum subsidence in the
Southern Hemisphere. The minimum was 4.6 m s,

The response of the cross-equatorial flow to this
fluctuation in the incident flow is shown in Fig. 8.
As in the steady-state calculations of Part I, the
location of the maximum meridional wind does not
change with a change in the strength of the inflow.
In addition, the magnitude and width of the time-
dependent cross-equatorial flow (Fig. 8a) increases
with increasing mass influx in a fashion similar to
that displayed in the steady-state calculations (see
cases Cl and C2 in Table 7 of Part I). Fig. 8 also
shows that the cross-equatorial flow is in phase with
the eastward inflow but lags the subsidence in the
Southern Hemisphere by a quarter-period. This re-
sult is in qualitative agreement with the observa-
tion of Raghavan ef al. (1978) which indicates that
increases in the jet over Kenya lag behind a pressure
drop over India by a few days.

Fig. 8b, which depicts the zonal variation of the
deviation of the cross-equatorial flow, should be
compared to that predicted by linear analysis shown
in Fig. 3b. The zonal structure of the transient v
field is in good agreement. However the nonlinear
response leads the linear one by a quarter-period.
This discrepancy arises because advective ac-
celerations in the jet dominate local time deriva-
tives for long-period fluctuations. For (U,V) of
order (10,20) m s and (L,,L,) =~ (1,2) X 10° km,
the Strouhal number S = (0.52,0.65) < 1for oscilla-
tions of a 14-day period.

In contrast, the phase of the zonal wind field pre-
dicted by the nonlinear solution agrees with that of
linear analysis. Far upstream, (U,V) = (10,1) m
stand (L, L,) = (»,2) X 10°km. Thus S = («,6.5)
> 1 and local tendencies dominate the nonfinear
field accelerations in the time-dependent, zonally
symmetric solutions.

A final comparison with the linear analysis can
be made in terms of the intensification factor 7/
[see Eq. (23)]. For periods of 14 days,R = I cm s™!
and D, = 2km, || = 0.71 (see Table 3fory~! = 1).
A nonlinear intensification factor may be defined
analogously as

Lo = Avpar(y = 0)/Dpmax(y = 0)

NL — 5 ’

AM in/M in

where M, is the net mass influx and the overbar
denotes a time average over the cycle. Here (¥max;
Avgay) = (17.5,3.0) m s~ and (M;,,AM;;) = (29.7,
13.0) km?® s'. Thus Iy, = 0.39, and the linear
measure I overestimates the increase in the maxi-
mum jet speed by roughly a factor of 2.

c. Six-day southern boundary forcing

Along the southern boundary, y = —y,, the
meridional wind field is given by

PETER R. BANNON

2165
25_| LU D L B L L B
L a |
]
-=-n|5 j
E wh=7 ]
> .
0 .
[\ wt=0 1
5F\ wi=dw2” ]
C ]
P N ST S IO I A S N DI ST I B OO A A
o] 500 1000 = 1500 2000 2500
X (km) '
4.0 T T T T T Ty T [T TP AT T iy Ty ToeT
b 3
3.0 3
kB wtz7/2 7]
20F - 3
I E
~ Lo/ T 3
v R .
E vof
> E 3
<l-|.o: m=o/ E
C ]
20 -
- N ot=3ar2 ]
-3.0F 3
]
~40F syt fiane g e e bgagafigns”

00 5 10 15 20 25 30 35 40
X (10® km)

FiG. 8. As in Fig. 6 except for the case of upstream forcing
with period P = 14 days.
v(x, —yo, 1) = VsS(x) expilkex — wgt), (35)
with
S(x) = sech(x/oy),

where Vi =5m s, 2n/wg = 6 days, k¢ = (6/
radius of earth) and oy = 3000 km. The eastward
propagating sinusoidal disturbance is modified by
the envelope S(x) which reduces the magnitude of
the forcing to ~0 at the eastern end of the compu-
tational domain. This modification is required by the
assumption that the flow satisfy the steady, zonally
symmetric equations there.

A plot of the nonlinear response of the cross-
equatorial flow to the forcing (35) is not presented.
The constant position of the peak speed and the
variation of the magnitude and width of the flow
are similar to that displayed in Fig. 8a for the case
of upstream forcing. Here the variation of the maxi-
mum wind speed is from 13.5 to 23.0 m s! with a
phase lag of about 120°. In comparison, the linear,
frictionless analysis of Section 3¢ predicts that the
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Fi1G. 9. Velocity vectors representing the deviation of the
flow from its time average for the case of southern boundary
forcing. The display points do not correspond to model grid
points. The maximum vector length corresponds to a speed of
5.6 and 8.0 m s™! in (a) and (b), respectively. (a) wgt = 0; (b)
wgt = /2. ’

variation of the cross-equatorial flow at the western
boundary should be 180° out of phase with the forc-
ing (35) and have roughly the same magnitude.
The phase discrepancy may be a consequence of
Rayleigh damping or nonlinearity, both present here
but absent in the linear theory. Following Section
4b, the Strouhal number is S = (1.2,1.5) = 1 for
oscillations of period 6 days. Thus advective and
local time derivatives are of equal importance in
this case. Physically one would expect the inertial
terms to advect the perturbations excited at the
southern boundary rapidly: into the jet. This
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mechanism is a possible explanation for the de-
crease in the phase lag between the southern
boundary forcing and the equatorial response ob-
served in the nonlinear results.

The deviation of the cross-equatorial flow from
the mean over the last cycle (not shown) is qualita-
tively similar to that in Fig. 3a which depicts the
flow response for upstream forcing of period 6 days.
(As previously noted, the linear analysis for southern
forcing does not include Rayleigh friction and thus
does not predict an exponential decay with distance
of the v field response. As both the southern and
upstream forcing cases both predict the m = 0 term
to be dominant, qualitative comparison with Fig. 3a
is justifiable.) Here the decay rate is greatest near
the boundary and larger than that exhibited in Fig.
3a. Both orographically enhanced friction and non-
linearities should produce greater trapping of the
response. - :

The velocity pattern and pressure field associated
with the flow are depicted in Figs. 9 and 10, respec-
tively. Fig. 9 shows that while the maximum re-
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Fi1G. 10. Free surface height (km) for the case of southern
boundary forcing. Contour interval is 50 and 70 m in (a) and (b},
respectively. (a) wgt = 0; (b) wgt = 7/2.
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