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ABSTRACT
The similarity theory of an atmospheric boundary layer over a slightly inclined terrain, discussed in an
earlier paper (Sorbjan, 1983) is extended to the case of geostrophic wind varying with height. The forms of
resistance laws and universal functions are obtained in the cases when the Ekman height or the actual
boundary layer height are used as the boundary layer height scales.
1. Introduction i ) @ . B o .
Gutman and Melgarejo (1981) obtained the resis- dz \" dz sf = V) B =
tance laws for an atmospheric boundary layer (ABL)
. . . . N d dv
over a slightly inclined terrain. Their paper was a Nk ) - sfu—-Uy) =
further extension of ABL similarity theory, first for- dz\ dz
mulated by Kazanskii and Monin in 1961, and im- d d dR'
proved by different investigators during the last 20 —( sk *) +(u— Uy =
years. ] dz d ( 1 )
The results of Gutman and Melgarejo (1981) were av, _f _ g =
generalized by Sorbjan (1983; hereafter referred to dz 2T o7 constant
as S83). However, both of these papers assumed sta-
tionarity with baroclinicity related only to sloping ave = I n, = S, = constant
terrain thermal activity. The terms representing ver- dz &7 77
tical changes of the geostrophic wind and temperature 2
advection were excluded. R'(z) = R’(O)(l - —)
The aim of this paper is to extend the results ob- Zr

tained in S83 by taking into consideration the as-
sumptions that the geostrophic wind varies with
height and the actual boundary layer height is used
as the height scale.

2. Governing equations

We consider the airflow in the planetary boundary
layer over an unbounded homogeneous rough plane,
inclined to the horizontal plane by a small angle ¢
~ 107*~1073, We assume that horizontal and vertical
scales of the problem are respectively on the order of
10%-10 km and 10>-10° m. We assume also that the
potential temperature horizontal gradient is much
smaller than yy¢. Under these assumptions the prob-
lem can be described by the following equations (see
Appendix B):

! Permanent affiliation: Institute of Environmental Engineering,
Warsaw Polytechnic University, Warsaw, Poland.
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All variables are listed in Appendix A.
_For the lower and upper edges of the boundary
layer we can write: '

N

For z = z,:
u=0, v=0,
>0 during day
0’ = @y = constant = . .
<0 during night ¢ (2)
R’ = R(0)
U, = Uy = G cosx

Ve = Vg = G sinx
(we assume that surface geostrophic wind changes
along the slope can be neglected due to the small
terrain inclination)

k% = u% cosd, k%g = u3 siné, ayk

= Ku*T*.

dz
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dz @™ dz 2" 4z
The orientation of angles x and & are shown in
Fig. 1. - .

Under the assumption that 5, = 5, = 0 the problem
formulation is the same as in (S83). Setting 7, # 0,
n, ¥ 0 we consider the large-scale baroclinicity. Small-
scale baroclinic effects connected with the sloping ter-
rain local influence are expressed in (1) by terms
which are proportional to .

3

3. Ekman height scaling

. We convert the set of governing equations into a

new nondimensional form which enables us to for-

mulate the Rossby-number similarity theory of the

atmospheric boundary layer over a slightly inclined

terrain. : , '
It will be convenient to define new variables

du

X —kzi‘;
dv

J’—ka; ” C))
ae’

k'-kdz _

We now consider first the steady-state boundary
layer and introduce the nondimensional variables

X y h
X:——’ Y=——’ H:
u’ ul Ky Ty
z R’
Z=— K=a+—5, Rh=—"F7-/,
L XTery e o R
o Le o
Ho L*, Hs .IJ-O

where
2
Uy KUy
Ly = . Lg=—,
* KzﬂT* > E f' ’

2\ ~1

L,=aLg, a2=(l+—ﬂ—ﬂ/—) .

. anf

From Egs. (1), (4) and (5) it follows that

x4 ( 31)
X= KdZ K “
7 () |
=K—|x— 6
Y KdZ )i (6)
— (_@_)
ﬂ _ ﬂ' _ v— Vgo 2 ] — )
d7 [nT* ask N +asn,Z|=0
g1—)—/’=sa1<u 8 _ sa’n,Z=P
dz Uy ™
ai_ _(1-d) (u=Uy ’
dz n Ux
(1-ad% dR’,
+a nxz + a7
where n = ua/x%. From (7) we can also obtain
d*X  staY —snH) -,
dz’ F
d? X
27? (@Y — snH) — 51—( = —asny (8)
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The third equation in (8) can also be written in the

form
4 i[ﬂ' s(1 — &%) ”—Vm]_&
AT AV Uy z @

Lower boundary conditions can be expressed in the
form:

For Z = Z,:
X =Xy=cosd, Y =Y, =sind,

1
H=Hy=—, R,=Ry0)
ag

L . (10)
P =Py = —ask cosx
Cg
% siny
=Qp=n—+as
Q=0 =1 T, K o

4. Universal defect profiles

Now we make the hypothesis that functions dX/
dZ, dY/dZ and dH/dZ are universal in the sense of
Rossby-number similarity, i.e., for Z > Z, they do
not depend on the roughness length. The physical
basis of this hypothesis for the horizontal case is dis-
cussed in Wippermann and Yordanov (1972).

From (7a,b) and (9) we can write

u — G cos A

« =X = FAZ, g, 4,0, 8, A M)
Uy

v—Gsiny ©-6
K 1 T,

=F(Z, us,a, 1,9, xx’ >\y)
(1 —-a*» v-— Gsinx

K
an
= FO(Z’ Ms, A, M, 5’ x)«77 >\y)

as
Ux

L
> (1)
@_G)F

+ 5
Ty

Ux

where the internal baroclinic parameters A,, A, and

external baroclinic parameters 7., 7, are related by
Ac = 15 €OSd + 7, sin|d]
oo ) (12)
A, = —nysin|é| + 7, cosé

In the surface layer we have

1
5As = As(ﬂ-s, a, 1, 6, As, >‘y) - As(au'sa a, 1, o, 0’ O) = ; 6P0 - ln(KZO)5X0
0B, = Bs(l"-ss a, n, 6, Ax, Ay) - Bs(ﬂs; a,n, o, 0, 0) = —6Q0 —as lI'1(’(20)5Y0 ro

aO
BCS = CS(M’S’ as 7” 6’ AX’ Ay) - CS(”’S, a’ 713 63 0’ O)= ;g 6(_)
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U zZ V4
= oo 2) + o )
v ) z z \
2 smB[ln(Zo) + ¢( L)] . (13)
_1( (z EA TN
T, % [m(ZO) ‘p(L*)] * T,

where ¥ and ¥ are the universal surface-layer func-
tions.

Matching the inner (13) and outer (11) profiles and
using classic procedure (e.g., Zilitinkevich, 1970) we
obtain the so-called resistance laws:

—In(xZy) cosd — k X )
Ce
= Adus, a, , 0, Ay, Ay)
. sinx 9’0
s(a sind — sng) In(xZy) + asx + 0=
Ce T,

, (14
_Bs(ﬂsa a, m, 0, Ax, >\y) k ( )

(1-d)
aHT— 1+s a0
*

(1 — @ siny
— g @) AnX
ano Cg

o 9 sina] In(xZo)

= C(us, a, m, 6, A, Ay)

J

where Z, = zy/Ls, 19 = n/a and the universal func-
tions A, B, and C; for the sloping terrain take the
form of the universal functions 4, B and C for hor-

-izontal terrain (i.e., when ¢ = é = 0). The form (14)

is the same as that obtained analogously in (S82).

5. Form of the universal functions

The resistance laws (14) can be rewritten in the

more convenient form

|
—XO ln(KZO) + a—s PO = As
s(aYo — smo) In(xZy) + Qg = — B
2 L. (15)
—[1 LS oa) YO] In(xZo)
ano
0 , 2
apy 00 1—a
0 = C,
az T* 02170 QO

If we rewrite (15) for the barotropic case (A = A,
= 0) and subtract from the baroclinic form of the
equations (A, * 0, A, # 0) we obtain

(16)
1 ~ a?
ano

&) 1-4

T o 0@ — s In(xZ)d Y,
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where 0P, 6Qo, 60Xy, 0Yo, 8(8y/T,) are defined in an
analogous way to 64,, 6B, and 8C;, as differences
between baroclinic and barotropic values.

On the basis of Appendix C and for a = 1 [for 8

~03X107"ms?2K,y~102Km™, oy ~ 1,
Y~ 1073 f ~ 107*s7!, we have a®> ~ 1/(1 + 107°)
= 1], we obtain

0Py = 1:bi(uo) + n,b5(1o)

00 = S(ﬂxbz(#o) - nybl(MO))‘

6Xo = s(nxb3(Zy, o) — ﬂyb4(Zo, ro))

8Yo = nxba(Zo, po) + myb3(Zo, 1o)

eo)
i 52) -0

where b, = P Zy, wo), b = P(Zy, o) are functions
of the parameter po, independent of Z,, since 4;, By,
C, are universal functions. The functions b; = ¥,(Z,,
to)s ba = Py (Zo, o) depend on Z, but their product
with In(Z,) is independent of Z, from the assumption
of Rossby-number similarity. Substltutlng (17) into
(16) we finally obtain

04, =cmx + c277y

, 47

6Bs =0yt CaMy ’ (18)

0C;=0

where functions ¢,~c,, which depend on stability and
the sign of the Coriolis parameter but do not depend
on slope characteristics, can be expressed by functions
b,~bs. External parameters of baroclinicity 1y, 7, can
be converted to internal parameters of baroclm1c1ty
Ax, A, with the help of (12). Notice that in the hori-
zontal case Egs. (18) take the form obtained by Yor-
danov (1973). The general form of the functions 4;,
Bs, Cy(us, a, m, 8, 0, 0) was derived. in S83.

6. Actual ABL height scaling

It was shown in a number of papers that the Ekman
height Ly is an unsatisfactory parameter character-
izing the ABL, especially when the unsteady or con-
vective or tropical boundary layer is considered (e.g.,
Arya and Wyngaard, 1975; Yamada, 1976). It was
suggested first by Deardorff (1972) through three-di-
mensional numerical ABL simulation that the Ek-
man height should be replaced by the actual’ ABL
height 4. Over land in the daytime A, can be deter-
mined from temperature and humidity soundings. At
night, however, there is a controversy dealing with
the hocturnal ABL height definition (Arya, 1981).
The values of 4, generally seem determinable from
a rate equation which incorporates primarily the ef-
fects of entrainment and mean vertical velocity on
the top of the boundary layer.

From these arguments it seems convenient to ex-
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tend the results obtained in the earlier sections to the
case when the actual ABL height 4 is used as a scaling
parameter. To this aim we redefine some nondimen-
sional variables introduced in (5) as follows:

z k
Zn-;;Q Kn_ahszf’ (19)
h h A h
L e =g
K L* > Ls’ Mx u* Sx9 y u* Sy ( 0)

The rest of the parameters are unchanged. Instead of
(6)-(9) we now have

\
d u
X = nk, dz, (K u*)

d v ) L
= — 21
Y = nk, iz, (K )l 2n
A
H=nkn 7 \T,
ax _ @ V= Vg ]
— — + askM,Z,
dZ,, [ T, ask ” askM,
iz~ wol e )
* L , (22)
4 4
"az, " dz,
o s(l—az)_v—Vgo:l_di;_,
X [T* T T, dz,
2 _ ]
3ZX2 say X snH) = asnkM,
n n
a2 X
- —_ _ = 2
4z @Y —snH) — s K, SnkM, (23)
_dd_ —a)dY dR,
dz, an dZ, dZ,

J

On the basis of (22) and the previous arguments we
can write

u — G cosx
g — L TPX
Ux

=Fu(ZmV'a/-‘:Ssa>n,6 M,, M)

v — G siny 0 — 0
ask u -7 T .
- * F.(24)
AZn, 1y s, @, 1, 6, M, My)
0— @F+S(1 - aZ)Ku— G siny
T* an Uy

= Ft’(Z'U Hs Hs, a’ n, 5, Mx9 My) J
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Matching (13) and (24). we obtain
cosy 1

t4
= a,(u, us, a, 1, 6, M,, My)

—In(Z,,) cosé — «

s(a sind — sno) In(Zy,) + as« Sinx + 9 %
Ce Ty
= _bx(ﬂa s, 4, m, 0, M, My) s (25)
o 1—ad
o =~ [1 + s( @) sin6:| In(Z,,)
Ty ane .

(1 — a®) sinx
ano Cg

= ¢s(m, ps, a, m, 6, M, M)

— 8K

where Z,, = zo/h,. Functions a,, b;, ¢, are identical
with functions ag, by, ¢, for horizontal terrain, when
¢ = 0, 6 = 0. Moreover, in this case the resistance
laws (25) have the same form as equations obtained
by Zilitinkevich and Deardorff (1974) for barotropic
conditions.

The general form of Eqs. (23) and (24) is the same
as for the equations obtained with Ekman height scal-
ing in S83. This argument enables us to adopt the
results obtained in S83 and rewrite them for a = 1,
ie.,

aS(”’a Mo, 1, 6, Os 0) = aO(""Oa p‘) c0sd A
— 5(sind — sno)bo(ko, 1) — sno
bs(‘l., Ho, 1, 6, 09 0) = bO(/"O’ #) COS5 s (26)

+ s(sind — smo)aolus, 1)

C:(ﬂ} Hos 15 6’ Oa O) = cO(I"'O’ ﬂ) J

where a,, by, ¢ are the similarity functions for the
horizontal case. The first two equations of (23) can
be written in the form

d’T
I— = —nksiM,

dz,? 'K, @n

where M = M, + iaM,. Eq. (27) is analogous to Eq.
(C1). Since from (C1) we obtained set (18), analo-
gously from (27) we obtain

oa; = n(C\M, + C,M,)
6b5 = n(C;MX + C4My) s
oc, =0

(28)

where éay, 6b;, 6c, are differences between values of
as, by, ¢ in the baroclinic and barotropic cases, de-
fined analogously to (16). Functions C,-C, are de-
fined in a corresponding way to functions c¢,-¢,
in (18). )
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7. Concluding remarks

The similarity theory which has been presented is
based on several crucial assumptions. We assume that
the difference between the potential temperature close
to the ground and that at the same level in the free
atmosphere is constant along a slope. We also assume
that geostrophic wind changes along the slope can be
neglected. This requires, that if we consider motions
on the scale of 10°-10° m in length, we must consider
a terrain slope of 1074-1072 to have ground surface
altitude differences smaller than 10?> m. Finally we
assumed that the potential-temperature horizontal
gradient is much smaller than vyy. Using these as-
sumptions we obtained the form of resistance laws
and universal functions for a baroclinic ABL which
are consistent with those obtained earlier for hori-
zontal terrain.

APPENDIX A
List of Symbols

2\~1/2
a parameter [:(1 o ﬁl‘P_) :l

aHf

universal functions of sloping terrain
resistance laws for time-dependent
ABL

universal functions of time-dependent
ABL for the horizontal case

universal functions of sloping terrain
resistance laws

universal functions for the horizontal
case

geostrophic drag coefficient

specific heat of air at constant pressure

modulus of the Coriolis parameter

modulus of the surface geostrophic
wind

actual boundary height

eddy viscosity

nondimensional eddy viscosity

Monin-Obukhov length [=u2%/(k*8T%)]

Ekman length [=«xu,f]

Ekman length over sloping terrain
[=aLg]

parameters of baroclinicity
(M, = (hy/ts)Sx, My, = (hy/ux)S))

n ‘parameter [=u/u]

Qs surface potential temperature flux

radiative heat flux in the boundary
layer, in the free atmosphere and the
difference between these two
quantities

surface Rossby number {=G/(fz,)]

N sign of the Coriolis parameter

components of the geostrophic wind
vertical gradient

Ty temperature scale [= —Q,/(xcpptix)]

as, by, ¢

ay, bO; Co

AS! BS’ CS

P

RFS QTN

S
hh’*\c
=

X
B
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components of wind velocity in
horizontally oriented Cartesian
coordinates

components of wind velocity in terrain-
following Cartesian coordinates

friction velocity

axes of horizontally oriented Cartesian
coordinates

axes of terrain-following Cartesian
coordinates

roughness parameter

boundary layer height

nondimensional height

angle between geostrophic wind and
surface stress vectors

the inverse turbulent Prandtl number

buoyancy parameter [=g/6q]

vertical gradient of potential
temperature in the free atmosphere

angle between the surface stress vector
and the x axis

von Karmdn constant

parameter [=py/x’]

parameter [=7/a%]

potential temperature of the free
atmosphere

constant average value of the potential
temperature

potential temperature in the boundary
layer

difference between temperature in
boundary layer and free atmosphere

surface value of &

stability parameter of time-dependent
ABL - [=h/L,] '

internal stability parameter over
horizontal terrain [=Lg/L,]

internal stability parameter over the
sloping terrain [=L,/L,]

air density

angle between the geostrophic wind
vector and x axis

- angle between the geostrophic wind

vector and x axis
internal baroclinic parameters
PN "
s f oz > My f oz >
parallel to surface stress vector and
v, is adequately perpend@cula}r
component of geostrophic wind]
external baroclinic parameters
k% U, > 8V,

[”‘=732’"y’ f az]‘

where u, is

Rfcp
pressure term [:Cp@(_) s
Py

Py = 1000 hPa | .
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APPENDIX B
Derivation of the Governing Equations

We start from the general equations of an atmo-
spheric boundary layer, which we write in the form

Dii 0 or DO .
= _sfo=———+F = =
o wox % pr e
Db 0 o P\~/er
— 4+ 7= — — — + Fi — -
Dt Sfu @0 8)7 s ™ CP@O(P()) H
ou v ow_ ®om _ _
0z "oz oz 0,0z ¢
(B1)
where
D_9d, 49,59 ,:9
Dt ot ax ay 9z’
_ 9 9
F=—K—
9z " 8z’
_ 9 _90 4R
Fo=—K—— —
® T 9z 9z 9z’

and the bar denotes that variables are designated with
respect to Cartesian -coordinates oriented as shown
in Fig. 2. The X axis lies in the plane of slope gradient
vector. The pressure, temperature and radiative heat
flux are expressed in terms of standard (free atmo-
sphere) variables and deviations (primed), i.e.,

T=mp+ 7

. (B2)
O=0r+0
R=Rs+ R

We assume that standard variables are defined as

®r 5 0 5 0 ORe )

at ¢ ax ¢ 3y 4z

90

—— =y = tant > 0

9z ¥ = constant >

@pa‘ﬂ'g > . ‘ .
L —E = _5fV, , (B3
o ax IV o B
@Faﬂ'g —

L8 = U

0, a5 Vs

Op Omg _ _

0, 07

where U,, V, are the wind components in the free
atmosphere.- )
With the help of (B2), (B3) the set (B1) becomes
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Di . . o )

Dt~sf(v Vy) = 6_+Fu

Dy _ r —

__+ 17— _ — —_—

Di h‘vf(u aﬁ+Fv

0z 9z o9z

DO 80y . 30 .

—+@—-V,)—= — —= , (B4

pr TV Gt O V) (B4)
+ wy = Fy

o’

a7~ P®

where

3 (00 R’
Fy=—=K -
° oz ( 7) 8z

The equations are subsequently rewritten in a co-
ordinate system that is locally parallel to the terrain.
The transformation matrix which transforms the vec-
tors from the barred system into the new system has
the form

cosy O siny
A= 0 1 0 , (BS)
—siny 0 cosy

where ¢ is the angle of the terrain slope (Fig. 2).
For this transformation we have
D d_3 d

d J
bl Tt s
Dt di o x v6y+waz’

(B6)

where the variables in the new coordinate system are
denoted without bars.

Taking (B4a) X cosy + (B4c) X siny and (B4a)
X (—siny) + (B4c) X cosy and using (B6), we obtain
the new system of equations

du
Z sf(v — V) cosy
an’
= - o + B0 siny + Fu
% + sf(u cosy + wsiny ~ U,)
_ s (BD
oy
ou w w_ o
0z 0z 0z
© 0%+ - 1 ]
dt * [(u ) dx -V dy
+ f(u — U,) sing + wcosyly = Fg

ZBIGNIEW SORBJAN
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A ?
Fi1G. 2. Orientation of coordinate systems.
where
F = sin¥y 9 K 9 + siny cosy |
dx Ox
0 i) i} d
(8 Kaz 4z Ka )
+ cosznp K 9
9z
o'
Fy = sin2¢ 9 K Q—— + siny cosy
r. (B8)
K — K o
( dz az )
a v/
+. COSz\P K il
az
Ky . dKy OR’
+ . —_— — ——
ax siny + Py cosy Ix siny
b _(; COSIP.

Now we simplify the set of the governing equations.
Let us scale (B7) with the velocity scale Uy, horizontal

- and vertical scales Ly and A, temperature difference

scale A and pressure scale my = ghA/Q,. We require
that the two characteristic numbers R,, R, which
appear in the substantial derivative and the pressure
terms of the first two equations in (B7) are small,
ie, Ry = Uo/(fLy) < 1 and R, = ghA/(©g Uof Lo)
<1LForUy~10ms!, f=10"s", g~ 10m
s7!, A ~ 30 K and 6, = 300 K we obtain L, > 10°
m, h < 10° m. Under these assumptions we can omit
total derivatives and pressure terms in the first two
equations of (B7).

Since a horizontal scale is greater than a vertical
scale, 9/0x ~ 8/0y < 9/3z. From this and from the
boundary condition that w = 0 at z = 0, and also
from the continuity equation, we have w = 0.

Letting siny =~ 0 and cosy = 1, we obtain

Felxd - Lx[2,] %
Z az daz
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Moreover, we omit the term d(Kvy)/dz in Fj because
it does not play a substantial role in the surface layer
where v <€ d0//3z (Gutman and Melgarejo, 1981).
Further assumptions of steady state and horizontal
homogeneity in the equation of the temperature dis-
turbance @ enable us to omit the first term of the
left-hand side. The slope (third) term on the same
side has the order Ugyy ~ 107*. For convenience we
omit the advection (second) term on the left-hand
side of the temperature equation. We can do this if
we assume that the potential temperature horizontal
gradient is much smaller than vy; i.e., only a weak
" baroclinicity is considered. On the right-hand side of
this equation we have the difference of two compen-
sating terms (turbulent and radlative) each of which
have the order of fA ~ 1073
- The final form of the model equatlons is given by
set (1).

APPENDIX C

- The Solution of the Governing Equations

The first two equations of (8) can be written in the
form

ng - i; ~ —iasN, 1)
where i = V=1 énd

T=X+iS

S = s(aY — snH) (C2)

N =, + ian,
The solution of (8c) has the form (Sorbjan, 1982)
2
(@ -1 y
an

(1-ad) 1]( _g).
+[s o hreft-Z), ©

H=zs

where we assumed that the radiative heat flux R} is
a linear function of height R;, = R,(0)1 — Z/Z});
from boundary conditions it follows that

R(0) = 1 —_s( a" D gins.
an, n .

We assume that fundamental solutions of the ho-
mogeneous equation (C1) are equal to 7, and 7,.
The functions 7 and 7, depend only on Z and g,
since for the homogeneous form of (C1) the right
hand side equals 0. The general solution of the ho-
mogeneous equation takes the form

TAZ, us) = T\ + o T>. (C4)

The general solution of the nonhomogeneous equa-
tion can be found by the method of variable coeffi-
cients and has the form
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T(Z’ ZO) Hss 6a n, 4, N) = aSNi

y [T fz' ndz fz T,dZ _]
e Ty — TT, " 2Jy T\Th — TLTh
+ a1T1 + asz, (CS)

where primes denote height derivatives and coefhi-

cients @, and a, depend on boundary condition for-

mulations.
We can rewrite (C5) in the form

T(Z7 “’5)‘ 63 1’5 ay N)

= asNP(Z, ps) + T(Z, ps, 8,1, 2, 0),  (C6)

where by we have used ¥ = @, +.i¢, to denote the
term in the brackets in (C5). From (C6) and (C2) we
get '

0T = T(Z’ Hs» 6’ 7, 4, N) _’T(Za Hs, ,61 n, Q, O)
= X + i8S = dsNP(Z, y). (CT)

Variables 6X, 6S and 8Y, 6H, 6P, 6Q, 6X,, 0Y, are
defined analogous to 67 as the differences between
baroclinic and barotropic values. Moreover, with the
help of (C2), (C3), (C7), we obtain

83X = asinPuZ, us) — anP(Z, us)]
: 6S = as[ﬂx y(Zp #s) + any (Z #s)]
8Y = assS + 8Yy(1 — az)(l — —Z—) » (C8) -
Zr;

_ 5

5H = s(i—l—)[ 58 — a5Y0(1 - —)]
n ZT
and we assumed that dno = You/(x%ad) ~ 0 since

¥~ 1073,

%) _ _J‘ZTBH
52) - iz

w K
=5

From (C3), (C8), (6), (7) it follows that

N

— g2 {*Z
L~ a fr[sﬁs—’aayo
1 Iz

(-2%

dY 2 7
6P = 6(dz) =a (nx(py(Z, ﬂs)

- (C9)

2\

—2 5y,

1
+ aﬂy“’&(Z, l“s)) -

50 = B(Z)Z() = asin®'(Z, us)

— anP(Z, us)]

From (C3), (C8) we have also for Z = Z,
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8H, = 0, (C10)
8Yy = sa”'5S,
= 1P (Zo, ps) + an¥x(Zo, ng)-  (C11)
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