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ABSTRACT

Three years of twice-daily NMC global operational analyses were projected onto normal mode Rossby waves
to produce a climatology of these waves. For zonal wavenumbers, | through 4, annual average geopotential
amplitudes at 50 kPa are about 5 gpm for the gravest symmetric meridional mode, and 10 and 20 gpm for the
next two meridional modes, although the amplitude for a given time and latitude can greatly exceed the average.
Seasonal average amplitudes differ by less than +25% from the annual average. The modes’ frequencies drift
during the course of a year, but this variation is not correlated with season.

Autocorrelations of Rossby wave time series become negligible for lags greater than approximately ten days,

which is of the order of the wave period.

For all ten modes examined, geopotential fluctuations exist in both Northern and Southern Hemispheres.

i. Introduction

Within a linearized approach, atmospheric normal
modes are waves whose speeds and structures are de-
termined by the resonant characteristics of the atmo-
sphere rather than by forcing mechanisms. Madden
(1979) and Salby (1984) have reviewed studies of plan-
etary scale traveling waves, of which normal mode
Rossby waves are a special case. Theoretical properties
of these waves have been studied by Kasahara (1980,
1981) and Salby (1980, 1981a,b), among others. Daley
(1981) has reviewed the use of normal modes to ini-
tialize numerical models. Ahlquist (1982) identified
twelve normal mode Rossby waves in the National
Meteorological Center (NMC) operational global anal-
yses. Lindzen ef al. (1984) have studied the behavior
of nine Rossby modes during 1979 using global anal-
yses from the European Centre for Medium Range
Weather Forecasts (ECMWF).

All normal mode Rossby waves travel westward.
Their tropospheric vertical structure is similar to that
of a Lamb wave, i.e., negligible tilt and vertical velocity,
maximum pressure changes at the surface, and geo-
potential disturbance and horizontal velocity propor-
tional to p~®/%, The effects of a nonisothermal and
nonresting basic state are more prominent above the
troposphere (Geisler and Dickinson, 1976; Schoeberl
and Clark, 1980, and Salby, 1981a,b), and Madden
and Labitzke (1981) have confirmed this observation-
ally for one of the modes. Horizontally, the geopotential
perturbations of these Rossby waves are largest in mid-
latitudes. We shall index a normal mode Rossby wave
by (s, [), where s is the zonal wavenumber and / is the
meridional mode number, defined as the number of
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nodes in the meridional velocity profile between the
north and south poles. [Some authors use the index (s,
n), where n = s + [.] The latitude of maximum geo-
potential response and the wave period are both
monotonic increasing functions of the meridional
mode /, and vary weakly with zonal wavenumber s.

Daley et al. (1981) have shown that planetary scale
normal mode Rossby waves are excited excessively in
some numerical models, causing noticeable errors after
as little as 24 hours of model integration. In fact, (Daley
et al., 1981, p. 1845), suppression of selected normal
mode Rossby waves can improve hemispheric forecasts
more than suppression of gravity waves when crude
tropical initial conditions are specified. Even with
proper tropical initial conditions, hemispheric forecasts
are contaminated by overly strong normal Rossby
waves. Roads and Somerville (1982) also have con-
firmed this. Daley et al. (1981) note in their conclusion
that proper treatment of normal mode Rossby waves
in numerical models is difficult because the waves’ at-
mospheric climatologies are largely unknown.

The present study seeks to fulfill this request for nor-
mal mode climatologies by a more thorough analysis
of the observed normal mode time series derived by
Ahlquist (1982). Section 2 presents histograms of ob-
served normal mode amplitudes. Section 3 discusses
interseasonal variability of Rossby mode amplitude and
frequency. Section 4 uses autocorrelations to.examine
the coherence time of normal mode Rossby waves.
Section 5 looks at the correlation between normal mode
Rossby waves and Northern and Southern Hemisphere
geopotential fluctuations. Results are summarized in
Section 6.
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2. Histograms of normal mode amplitudes

Ahlquist (1982) projected 1200 days of twice daily
operational global analyses produced by the National
Meteorological Center (NMC) onto the planetary scale
normal mode Rossby waves of classical Laplace tidal
theory. This resulted in a time series of amplitude and
phase for each mode studied. This projection process
may be outlined as follows. For each analysis time, the
NMC global analyses for geopotential height 4, and
horizontal wind velocity, .# and v, at 85, 50, and 20
kPa were Fourier analyzed in longitude at each 10° of
latitude between 80°N and 80°S. The Lamb mode
structure, p~ %/, was then least squares fitted through
the three levels for u, v, and 4 independently for each
zonal wavenumber 1 through 4 at each latitude. Last,
the amplitude and phase for each Rossby mode, (s, /),
was determined by a process equivalent to least squares
fitting the Lamb mode components for zonal wave-
number “s” to the (s, /) mode’s meridional Hough
function structure for u, v, and 4. See Ahlquist (1982,
hereafter A82) for more information.

We have reanalyzed ten of A82 time series to esti-
mate the typical distribution of normal mode ampli-
tudes in the NMC global analyses. These ten barotropic
modes are the / = 1 to 3 modes detected by A82. Their
approximate frequencies are shown in Table 1. These
frequencies ar¢ the peak frequencies in the spectra of
Fig. 4 of A82. To avoid seasonal bias in this study, we
trimmed A82 twice daily time series to an integral
number of years, three to be exact, running from 1
September 1976 through 31 August 1979.

Each time series was then bandpass filtered by Fou-
rier transforming, zeroing out the average and all coef-
ficients for frequencies that were more than +0.05 cy-
cles day™! from the appropriate frequency in Table 1,
and inverse transforming. This bandwidth spans all the
normal mode peaks in Fig. 4 of A82. Even with this
filtering, each / = 3 time series is contaminated by low
frequencies not directly associated with the normal
mode (see Fig. 4 of A82), but the contamination was
not judged to be severe because the [/ = 3 filtered time
series behaved similarly to the / = 1 and / = 2 time
series.

TABLE 1. Frequencies (in cycles day™) of normal mode Rossby
waves as determined observationally from the spectral peaks in Fig.
4 of Ahlquist (1982). Negative frequencies indicate westward motion.

l

s 1 2 3

1 -0.21 -0.10 -0.05
2 —0.24 —-0.125 —0.05
3 -0.22 —0.11 —
4 -0.17 —0.09 —
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Figure 1 shows the resulting wave amplitudes at 50
kPa sorted according to their frequency of occurrence
to form histograms. (e.g., see Jenkins and Watts, 1968,
p. 64.) The histograms are scaled so that they may be
interpreted as probability density functions. That is,
the integral of such a function from one amplitude to
another is the probability (the fraction of time) that
the amplitude lies in that amplitude range. For merid-
ional modes 1, 2, and 3, the average amplitudes at 50
kPa are about 3, 10, and 20 gpm, respectively. A mode’s
maximum amplitude during the three year period is
roughly three times its average amplitude, and the
standard deviation is about 50% of the average ampli-
tude. The amplitudes in Fig. 1 apply to the latitude
where the geopotential portion of a mode’s Hough
function is a maximum. This varies between 30° and
65° latitude, depending on the meridional mode /. (See
A82, Fig. 1.}

The amplitudes of this study are less than those re-
ported by Madden (1978) and Hirooka and Hirota
(1983), who did not constrain a wave’s global structure.
For example, during solstice periods, the Northern and
Southern Hemispheres exhibit an uncorrelated re-
sponse for the (1, 3) mode, with the winter hemisphere
response being much larger. Daley and Williamson
(1985) demonstrated that the (1, 3) mode (or something .
like it) existed in only the Northern Hemisphere during
January 1979. We shall return to this matter in Section
5. Thus, at any given time, the time series of the present
study generally overestimate the wave amplitude in one
hemisphere and underestimate it in the other hemi-
sphere. These time series have two benefits, however.
One, the present time series are stationary and so are
candidates for standard statistical analysis. (This matter
is discussed in Section 3, where stationarity is necessary
to estimate the the autocorrelations.) Two, the same
projection process has been used by Lindzen et al
(1984) and Daley et al. (1981), which facilitates com-
parison of results. We now turn to these latter two
studies.

Lindzen et al. (1984) used ECMWF global analyses
for 1979 to study Rossby mode behavior at 50 kPa.
To minimally constrain their time series, they filtered
their time series to retain all disturbances that move
westward faster than the frequency of the annual cycle.
This means that their time series for any given normal
mode included frequencies not directly associated with
that mode, so it is not surprising that Lindzen ef al’s
maximum amplitude (see their table 3 in conjunction
with their Fig. 2) are somewhat larger than those shown
in Fig. 1 of this study.

To more closély compare our time series with those
of Lindzen et al., we plotted a number of amplitude
and phase records with filtering of our NMC time series
similar to that done by Lindzen ef al. In Fig. 2, we
show the (3, 1) time series for May through July 1979,
which can be compared to plots of the (3, 1) time series
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FiG. 1. Histograms of Rossby mode geopotential amplitudes at 50 kPa for the period September 1976
through August 1979. The columns are labeled with the meridional mode number 1, and the rows apply to
zonal wavenumbers 1-4, from top to bottom. The histograms are normalized with units of a probability
density function. For 1 = 1, 2, and 3, the ordinate units are 0.05, 0.02, and 0.01 (gpm)~! per tic mark. The
horizontal bar surrounding each average (AVG) denotes plus and minus one standard deviation.
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FIG. 2. Amplitude and phase of the (3, 1) mode in the NMC analyses for 90 days beginning on 1 May
1979. Ahlquist’s (1982) time series for this mode was filtered to pass westward moving disturbances with
periods of 50 days or less. The amplitudes are scaled for direct comparison with Fig. 9a and 9b in Lindzen
et al. (1984). To convert these amplitudes to the mode’s 50 kPa amplitude at 35° latitude, the latitude at
which the mode’s geopotential response is maximum, multiply these amplitudes by 0.45.
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for the same time period in Lindzen et al’s Fig. 9a,
based on. ECMWF analyses, and Fig. 9b, based on
Goddard Laboratory for Atmospheric Sciences (GLAS)
analyses. This comparison shows that the NMC time
_series is noisier than the ECMWF time series and is
less noisy than the GLAS time series. Close similarities
in amplitude and phase are apparent among all three
analyses. The similarity is even more marked when we
realize that the time series in Fig. 2 is based on data
from three levels (85, 50, and 20 kPa) while Lindzen
et al.’s time series utilized only 50 kPa data. This com-
parison supports statements of A82 and Lindzen et al.
to the effect that the gross behavior of normal mode
time series seems to be nearly independent of the
method by which any reasonably careful global analysis
is produced.

Table 2 shows the maximum amplitudes from the
present study referenced to a common latitude, 40°N,
instead of the latitudes of maximum Hough mode re-
sponse. We can compare these amplitudes to the
Rossby mode amplitudes at 50 kPa and 40°N reported
by Daley et al. (1981, hereafter D81) in their study of
planetary scale errors of several numerical models. The
amplitudes from D81 models are shown in Table 3.
Although D81 performed their tests using a spectral
shallow water model instead of a baroclinic model, they
first verified that (D81, p. 1841) “the barotropic model

does a very creditable job of reproducing the long-wave -

errors of the barotropic component of the baroclinic
model.” .

Comparison of Tables 2 and 3a reveals that D81
hemispheric model with artificial tropical initial con-
ditions (model CE, in their notation) suffered from
normal modes which were much stronger than the
maximum amplitudes observed in the atmosphere by
the author or by Lindzen et al. (1984). The D81 global
model with proper tropical initial conditions (model
CHB/G, in their notation) produced much more re-
alistic amplitudes except for the (1, 3) mode. Thus, as
D81 suggest in their introduction, part of the failure
of even global models to perform well at planetary
scales may be due to overly strong normral mode Rossby
waves.

TABLE 2. Maximum amplitudes in meters of Rossby mode geo-

potential fluctuations at 50 kPa and 40° latitude during three years

. of twice daily NMC global analyses (September 1976 through August
1979) using the time series of Ahlquist (1982).

l

s 1 2 3
1 17 21 16
2 11 29 23
3 10 29
4 13 24
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TaBLE 3a. Amplitudes in meters of Rossby mode geopotential
fluctuations at 50 kPa and 40°N produced by a five day integration
of a hemispheric barotropic model with artificial tropical initial con-
ditions. This is Daley et al. (1981) “CE” case; amplitudes were read
from their Fig. 13. The / = 2 modes are all zero because of the hemi-
spheric model’s equatorial boundary conditions.

!

s | 2 3

1 60 0 125
2 35 0 —
3 25 0 —

Hayashi (1981, Fig. 2) has reported realistic ampli-
tudes for the (1, 1) and (1, 3) modes at 51.5 kPa at
40°N in a 9-layer GFDL spectral model (cf. Madden,
1978, Fig. 9). Thus, not every global model appears to
suffer from overly strong normal mode Rossby waves.

3. Interseasonal variability

Madden and Stokes (1975) and Madden (1978) ex-
amined the seasonal detectability of the (1, 1) and (1,
3) modes using cross spectra. They showed that the
waves’ signal-to-noise ratios at midlatitudes are differ-
ent in different seasons. In the Northern Hemisphere,
(Madden, 1978, Figs. 1 and 2), the (1, 1) mode is most
easily detected during summer, while the (1, 3) mode
is most easily detected during winter. Both modes are
detectable throughout the year with at least some sta-
tistical significance. Lindzen et al. (1984) demonstrated
that the globally averaged amplitude of Rossby modes
varied weakly with season during 1979. Hirooka and
Hirota (1985) and Daley and Williamson (1985) have
established that large differences in amplitude can exist
between the Northern and Southern hemispheres dur-
ing the course of the year.

With the latter caveat in mind, we have examined
the interseasonal variability of the same ten modes
studied in Section 1. This was done by plotting am-
plitude histograms of the bandpass filtered time series
for each three-month season, September-October-

TABLE 3b. As in Table 3a, except that tropical initial conditions
were generated by Cressman’s method of objective analysis. This is
Daley et al. (1981) “CHB” case; amplitudes were read from their
Fig. 13 (or 18). The / = 2 modes are all zero because of the hemispheric
model’s equatorial boundary conditions.

K 1 2 3

1 30 0 125
2 20 0 —
3 15 0 —
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TABLE 3c. As in Table 3a, except that the model is global and
tropical initial conditions were generated by Cressman’s method of
objective analysis. This is Daley et al. (1981) “CHB/G” case; am-
plitudes were read from their Figs. 18 and 19.

s 1 2 3

1 10 — 60

2 10 25 —

3 5 10 —
November (SON), December-January-February

(DJF), March-April-May (MAM), and June-July-
August (JJA), during the three year period 1 September
1976 through 31 August 1979, where the same seasons
for different years were lumped together. Seasonal his-
tograms for the / = 1 modes are shown in Fig. 3. The
averge amplitude is a weak function of season. Indeed,
the average for any season lies within plus or minus
one standard deviation of the average for any other
'season. Seasonal histograms for / = 2 and 3 behaved
similarly.

Figure 4 shows the ratio of the seasonal mean to the
annual mean as a function of season for all ten modes.
December through February is the strongest season for
six of the ten modes, while March through May is next
in prominence. All the modes are weaker than average
during June through August. The (1, 3) and (3, 2)
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modes exhibit the strongest seasonal variation in am-
plitude, amounting to +25% of their annual averages.

The variability of normal mode frequencies can be
seen through complex demodulation (e.g., see Bloom-
field, 1976). Complex demodulation removes a carrier
frequency from a time series by multiplying it by
exp(iwt) for some frequency w; for a complex-valued
time series, this removes a linear trend in phase. In the
present case, this corresponds to watching a wave from
a reference frame rotating around the earth where we
chose the angular velocity to be the wave’s average an-
gular velocity. For economy of presentation, only the
complex demodulated record for the (1, 3) mode is
displayed in Fig, 5, since the other modes behaved sim-
ilarly. In detail, Fig. 5 was constructed as follows. After
the bandpass filtering of Section 2, the phase time series
was computed and adjusted objectively by adding
multiples -of 27 so that the difference in phase from
one time to the next was never more than 7. A line
was then fitted to the phase time series using the least
squared error criterion. The slope of this line was
—0.046 cycles per day, and this linear trend was then
subtracted from the phase time series.

The presence of phase drifts in Fig. 5 shows that the
wave does not circulate steadily around the earth at
the demodulating frequency. Rather, a range of fre-
quencies is involved like that described by baroclinic
modeling (Salby, 1981b). It is noteworthy that no con-
sistent seasonality is apparent in the phase drifts, also
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FIG. 3. Histograms showing the amplitude of the / = 1 Rossby modes as a function of season during
September 1976 through August 1979. The top row is identical to the first column in Fig. 1 and is included
for comparison. The geopotential amplitude in gpm is the abcissa and the empirical probability density in
(gpm)~!, the ordinate. The labeling for the graph in the lower left corner applies to all the graphs in the
figure. The horizontal bar surrounding each average (AVG) denotes plus and minus one standard deviation.
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FIG. 4. Ratio of the seasonal average amplitude to the average
annual amplitude for the 10 modes shown in Fig. 1. The mode num-
ber is coded into each curve by means of dot patterns. For example,
the (1, 3) mode has the largest ratio during December-January-Feb-
ruary (DJF), the (2, 1) mode the next largest, etc., with the (1, 1)
mode having the smallest ratio during DJF.

in agreement with baroclinic modeling (Salby, 1981b,
Fig. 4).

4. Normal-mode Rossbhy wave coherency times

Using observations, Madden (1983, pp. 1111-1112)
estimated that the average lifetime of the (1, 3) mode
1s 38 days. Nonetheless, Madden was concerned that
this lifetime might be an overestimate caused by overly
sharp filtering. Lindzen ef al. (1984) reported that the
time scale for surges in normal mode amplitudes is on
the order of 5-20 days. However, this latter figure is
more a measure of how often the waves are noticeably
excited than how long they survive. In this section, we
estimate wave lifetime using the autocorrelation func-
tion (Morse and Ingard, 1968, pp. 54-57; Jenkins and
Watts, 1968, Chapter 5).

The calculation of autocorrelations requires that a
process be statistically stationary, and Salby (1980) has
pointed out that normal mode behavior may be non-
stationary, so this matter must be addressed first. Ac-
cording to Jenkins and Watts (1968, pp. 147-149), a
minimum requirement for stationarity is time inde-
pendence of the probability density function. The re-
sults in Section 3 show that the probability density
functions for Hough mode behavior are essentially in-
dependent of season. Last, calculations (not shown)
verify that the probability density functions for the first
half of the three year period are like those of the second
half of the three year period. Therefore, we conclude
that the time series are at least minimally stationary.

Prior to the autocorrelation calculations, we filtered

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 42, No. 19

Ahlquist’s (1982) time series with a boxcar filter cen-
tered on each mode’s eigenfrequency from Table 1.
Various filter widths were tried. As long as the filter
width was at least 0.1 cycles day™!, which was the filter
width used in Section 2, results differed somewhat in
detail but not in substance. For the results that will be
displayed here, the filter width was 0.15 cycles day™*,
with the exception that the upper cutoff frequency for
the two / = 3 modes was reduced so that the annual
cycle was just excluded. After filtering, the autocovar-
iance was estimated according to the formula

COMPLEX DEMODULATED (I,3) TIME SERIES

AMP,
{gpm)

1976 1977

PHASE
(radions)

1977

1978

1978 1979

T F N AWM T T a
TIME (months)

i A
S O N D

FiG. 5. Amplitude and complex demodulated phase in radians of
the (1, 3) mode’s geopotential fluctuations at 50 kPa and 65° latitude
during September 1976 through August 1979. The latitude of max-
imum response is 65° for the (1, 3) mode in Laplace tidal theory.
The time axes are labeled with the first letter of each month of the
year beginning with September. The time series was formed by pro-
jecting the NMC global analyses onto the (1, 3) mode of Laplace
tidal theory and then filtering to retain only westward propagating
disturbances with frequencies between 0.001 and 0.1 cycles day™'.
The phase was complex demodulated by subtracting the linear trend
in phase (i.e., the integrated average propagation speed).
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N—t'
C(ty=N"' 3 conj[w(H] w(t + )

=1
where ¢’ is the lag, N is the number of observations,
“conj” is the complex conjugate, and w(z) is the filtered
version of complex-valued time series W(¢) represent-
ing wave amplitude and phase [See Ahlquist, 1982, for
the precise definition of W(¢).] The autocorrelation is
the autocovariance divided by the variance, i.e., the
autocovariance at lag zero. The autocorrelation at neg-
ative lags is equal to the conjugate of the corresponding
positive lag. The phase of the autocorrelation is the
average phase difference for observations differing by
lag ¢'; the slope is the angular rate of separation.

The estimated autocorrelation functions in Fig. 6
show that the response at any given time has anteced-
ents which can be traced 10 days (roughly one wave
period) into the past and whose consequences extend
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an equal time into the future. As mentioned above,
this result is only a weak function of the width of the
bandpass filter. The / = 1 modes decay somewhat faster
when a somewhat wider filter is used, but a bandpass
of 0.15 cycles day™! more than surrounds the [ =
spectral peaks in Fig. 4 of Ahlquist (1982).

For the (1, 3) mode, the antecedent plus consequent
coherence time is approximately 25 days. Since this is
shorter than Madden’s (1983) 38 day lifetime, we re-
peated his compositing calculations. We began by fil-
tering the westward traveling portions of the (1, 3) time
series with a boxcar filter having the same center fre-
quency (Y cycles day™!) and the same bandwidth
(0.043 cycles day™') as the half power points in Mad-
den’s filter (see Madden, 1978, p. 1612). Then we com-
puted a composite of the ten most prominent maxima
in the filtered (1, 3) time series, excluding any maxi-
mum that lay within 30 days of a more prominent

0.8
0.4

/2

-7/2

0.8
0.4

/2

-1/2

0.8
0.4

/2
-n/2

0.8
0.4

w/2
-11/2

LAG (DAYS)

FiG. 6. Estimated autocorrelation functions (amplitude and phase) for ten Rossby
modes. Before autocorrelations were estimated, each time series was filtered to retain
a band of frequencies 0.15 cycles day ™" wide centered about the appropriate frequency
from table 1. (The upper cutoff frequency for the two / = 3 modes was reduced so that
the annual cycle was excluded.) The columns are labeled with the meridional model
number /, and the rows apply to zonal wavenumbers 1-4, from top to bottom.
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maximum. Before compositing, the ten segments were
aligned in phase at their midpoints. The resulting com-
posite is shown in Fig. 7a, and 40 days is indeed the
lifetime that one would deduce. We then used the same
ten time periods to compute a new composite, where
now the time series was not filtered at all before (or
after) compositing. This unfiltered composite is shown
in Fig. 7b. The amplitude in Fig. 7b decays at a rate
similar to that of the corresponding autocorrelation in
Fig. 6. Thus, it appears that Madden (1983, p. 1112)
was correct in his suggestion that his filter was too sharp.
Composites (not shown) of the other modes also show
amplitudes that decay at rates similar to those of their
autocorrelations.

A 25 day average lifetime does not preclude incidents
when the (1, 3) mode could be coherent for a notably
longer interval. For example, Fig. 5 indicates that the
(1, 3) mode traveled at a steady rate with significant
amplitude during January and February 1979. The
wave appears to have been reexcited during the first

. part of February. The (1, 3) mode during this period

|
10 20

10 0
DAYS

FIG. 7. Amplitude in gpm and phase in radians of composites of
ten local maxima for the (1, 3) mode. In Fig. 7a, the time series was
_ filtered before compositing to retain only westward moving fluctu-
ations in a band centered on ;s cycles day™! which is 0.043 cycles
day™! wide. This is similar to the filtering used by Madden (1978,
1983). In Fig. 7b, the same ten periods were composited, but no
filtering was applied before or after compositing.

-20
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has been investigated in detail by Madden and Labitzke
(1981) and Daley and Williamson (1985). '

5. Interhemispheric differences in normal mode activity

Madden and Juhan (1973) showed that the (1, 1)
mode is equally prominent in the Northern and South-
ern hemispheres. For the (1, 3) mode, Madden (1978,
p. 1616) detected no statistically significant coherence
between 60°N, where the (1, 3) mode is known to be
strong, and 60°S, where the symmetry of this mode in
Laplace tidal theory would make it equally pro-
nounced. Schoeberl and Clark (1980), Salby (1981b),
and Daley and Williamson (1985) have theoretically
modeled the (1, 3) mode. Their models display inter-
hemispheric differences during solstice conditions, but
not of a magnitude to suggest that no coherence would
be detected between hemispheres. During equinox
conditions, the models portray normal modes as being
equally strong in the Northern and Southern hemi-
spheres. Hirooka and Hirota (1985) present an obser-
vational example from April 1979 when the (1, 3) mode
was present equally in both hemispheres.

We have computed the cross spectrum between
zonal wavenumber one geopotential fluctuations at
60°N and 60°S in the NMC analyses for a 1550 day
data record beginning on 1 July 1976. The method of
space-time spectral analysis (Hayashi, 1982) was im-
plemented using the direct Fourier transform method.
At both 50 and 20 kPa, statistically significant corre-
lation was detected near the frequency of the (1, 1)
mode but not near the frequency of the (1, 3) mode.
Although this confirms Madden’s (1978) findings for
the (1, 3) mode, it is not consistent with the theoretical
studies cited above. Therefore, we sought another test
for hemispheric involvement.

What we did was to compute the coherence squared
between A82 globally derived time series for each
Rossby mode, (s, /), and the 50 kPa geopotential for
wavenumber s at each 10° of latitude between 80°N
and 80°S. In effect, this measures the extent to which
the 50 kPa geopotential at a given latitude contributed
to the global normal mode time series. Figure 8 shows
the coherence squared. All 2400 twice daily observa-
tions in A82 time series were used for this calculation,
and each spectral estimate has 128 degrees of freedom.
Therefore (Bloomfield, 1976, Section 9.5), the 95%
confidence - limits for the coherence squared are
about =0.10. :

The obvious features in Fig. 8 are (i) the high co-
herence at normal mode frequencies and (ii) the sym-
metry between the hemispheres for the / = 1 and 2
modes at their appropriate frequencies, with lesser
symmetry for the / = 3 modes. The phases (not shown)
associated with the squared coherences agree with the
theoretical description of these waves, i.e., all latitudes
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are in phase for the / = 1 modes, the Northern and
Southern hemispheres are 180° out of phase for the /
= 2 modes, and the subpolar latitudes of the two hemi-
spheres are in phase for the / = 3 modes, with the tropics
being 180° out of phase.

Apparently, the (1, 3) mode exists in both the
Northern and Southern hemispheres of the NMC
analyses, but without consistent correlation between
the hemispheres. Hirooka and Hirota (1985) have
shown that activity is concentrated in the winter hemi-
sphere.

We also note that some of the graphs in Fig. 8 display
nonzero coherence squared at frequencies other than
the appropriate normal mode frequency. For example,
for s = 1 and 2, the / = 2 and 3 modes exhibit squared
coherencies exceeding 0.2 at Southern Hemisphere
subpolar latitudes near the frequencies of the s = 1
modes. This is evidence that the north—south structures
of the 4-5 day Rossby modes for s = 1 and 2 are not
pure Hough functions.

6. Summary and conclusions

In the NMC global operational analyses, the annual
average 50 kPa geopotential amplitudes of Rossby
modes for zonal wavenumbers one through four are
roughly 5 gpm for the first meridional mode, 10 gpm
for the second meridional mode, and 20 gpm for the
third. The maximum amplitudes for these modes in
three years of NMC analyses are roughly three times
the average values. These amplitudes refer to equato-
rially symmetric or antisymmetric structures and
thereby obscure the profound hemispheric differences
that can arise during solstices. Nonetheless, they con-
firm Daley et al. (1981) conclusions that deficient nu-
merical models can excite normal modes which attain
unrealistically large amplitudes.

Autocorrelations reveal that wave coherency extends
approximately 10 days (order of one wave period) into
the past and 10 days into the future.

We also have presented evidence that normal mode
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amplitudes are not a strong function of season if the
mode is considered in a global sense. This global view
is justified for at least the / = 1 and 2 modes because
both hemispheres contribute equally to the waves on
an annual basis, although pronounced hemispheric dif-
ferences do exist for some of the modes from season
to season.
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