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ABSTRACT

Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling
System. We studied the impacts of three options for dealing with the upper boundary of the model. The standard
model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode
with a speed of about 90 m s™. An alternative formulation, which allows for an external mode, could require
recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived
in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to

models with scaled height coordinates.

1. Introduction

Vertical mode initialization (VMI) has been applied
. productively to regional scale models (Bourke and
McGregor, 1983) and has the potential of being applied
to mesoscale models. Such an application may be usefol
when high-resolution sounding data is used to initialize
the mesoscale model domain. This could be done when
special radiosonde soundings are available, or when
satellite-based radiometers, such as VAS (Menzel et
al., 1983), provide high resolution soundings.

Bourke and McGregor (1983; hereafter denoted BM)
demonstrated an initialization technique which relied
on formulating the model dynamical equations such
that terms in the linear shallow water equations,

= -V + f¢ (1a)
=—fD (1b)
= —gHD (lc)

were isolated. In Egs. (1) D is divergence, ¢ is geopo-
tential height, {'is vorticity, fis the Coriolis parameter,
H is the height of the fluid, and ()=98( )/or. The full
model equations were thus written for the BM ap-
proach as

D=~V +ft+ Np (2a)
{=—D+N; (2b)
¢=—gHD+N,, (2¢)

where the N represent nonlinear and residual terms.
Bourke and McGregor demonstrated how gravity
waves could be eliminated from (2) by setting D ¢
= 0 or by setting D = f§ — V% = 0.

In this study the equations of one version of the
Colorado State Regional Atmospheric Mesoscale
Modeling System (RAMMS) were manipulated into
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the form of (2), and vertical modes were derived. This
was done in anticipation of initializing the RAMMS
with nonhomogeneous fields of wind and temperature
data from a mesoscale sounding system.

2. Reformulation of the RAMMS equations

The version of RAMMS used in this study is hydro-
static and incompressible. The basic formulation is
summarized in Mahrer and Pielke (1977), and in Pielke
(1984; pp. 111-126). A salient feature of the model is
its vertical coordinate, which is a scaled height that
accounts for variable terrain height, zg. Unlike the
Mabhrer and Pielke (1977) version, scaling is done to a
fixed height §, such that.

-z~ 2
S-ZG

The height § is the initial height of a material surface
s, which serves as the top of the model atmosphere.
While § is a constant, s varies horizontally and with
time. The vertical coordinate and material surface will
be shown to have a substantial impact on derivation
of normal modes.

A 26-level version of the model was used (25 regular
levels plus the material surface), with values of z* rang-
ing from 10 to 13 500 m. With the above definition of
z*, the model equations may be abbreviated as

==
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3= b N, @)
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*

(5— ZG) e a [u(s zG)]+-—[v(s ze)]=0 6
or _ S—z8_ &
dz* 5 8 Se’ @

where u, v and w* are the velocity components, = is
the Exner function, 6 is potential temperature, 6, is the
horizontally domain-averaged potential temperature,
and the symbol N represents the nonlinear terms.

In working (3)-(7) toward the form of (2) an expres-
sion is needed for the horizontal divergence D. This
can be easily inferred from the continuity equation (6),
- which can be written as

w* 1 9 o
a* (G- z0) 0 { [u(§ = 2)] + 5 06 = ZG)]} ’
3
or
ow*
o D ©)

Equation (9) can be integrated from the ground surface
(w¥ = 0) up to an arbitrary level z* to yield a diagnostic
equation for vertical velocity,

rad
[ pae
0

a. Divergence tendency equation

(10)

An equation of the form (2a)'can be derived from
the horizontal momentum equations (3) and (4) by
first multiplying through by (§ — z;), giving

% [u(5 — zg)]
- - onr _
= flv(§ — z6)] — 0u(5 — 2¢) ox + N5 — zg), (11)
2 - z0)

= —fTu(s — ZG)] = 0o(S — ZG) + NS = z6). (12)
An equation for D results from takmg the derivative
of (11) with respect to x, and subtracting the derivative
of (12) with respect to y, and then dividing the result
by (§ — zg). That process results in

D = ft — ;Y% + Np,
where several terms have been combined into Np, V?
is the horizontal Laplacian, and
1
¢ = Fwe-zo1-2 TG zalf . (19

5—zp) 0
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For convenience 6, can be inciuded inside the Lapla-
cian since it does not vary horizontally. Thus

D = ft — V¥(6or) + Np. (15)

b. Vorticity tendency equation

The equation for ¢ is solved for in a manner very
similar to (15), starting with (11) and (12). In this case
the x-derivative is applied to (12), and the y-derivative
of (11) is subtracted from it. The result is

§=—/D+N;.

¢. Pressure tendency equation

(16)

The discretized pressure tendency equation is ex-
pected to take the form (BM)

(Bom)=— 2 CinDp+ Ny,

n=1

where k represents a model level and KX is the number
of levels. In general C includes two parts. First, there
is a term for changes in pressure at a boundary z}.
The boundary is usually taken as the ground surface
(z¥ = 0), but another option is addressed below. Sec-
ond, there is a term to account for divergence between
the boundary and k. The form of the second term does
not depend on the choice of z}, so it will be concen-
trated on first.

The pressure (Exner function) at some given level
z* can be found by integrating the quantity dw/dz*
from z} to z*. Taking the local time derivative yields

. . * 9 (or

w() ~ (=) fzz a (az* )dz*’ (17
where z* and z¥ must be independent of time to allow
for bringing the time derivative inside the integral. An
expression for (9°n/dtdz*) in terms of D must be found
so that (17) can ultimately take the form of (2¢). A
rewarding approach is to start with the hydrostatic
equation (7), rewritten as

(18)

Taking the total derivative yields

5’_(1) 1 Lﬁ(af) _éili( )
dr\o 0*dt.  gSdt\oz*) Odz*gd

(19)
Rearranging (19) we can solve for df/dt, such that

de 2 d (or or 6% d (1

—=—= +—

dt gS dt (62*) oz* g dt( ) No, (20)
where the thermodynamic equation (5) has been in-
voked. Further manipulation yields
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d 61r)

= Nj, 21
2 () = i @
where the third and fourth terms of (20) have been
included in Nj. Expanding the total derivative and
rearranging gives

d [ or . J (011'4) (ar)
— e () vy 22
az(ar*) Wt o \ax) ~ VW g) T Ve G2

A more convenient expression for d(dw/dz*)/dz* can
be derived through taking the vertical derivative of the
hydrostatic equation and separating it into its domain
averaged (6p) and perturbation (8’) components so that

4 (o 1
A\ P8 o T o +6 2
az* (az*) & 0o + 0')23 ; (6 +0)  (23)
g 986y g 90’
0.2 2
S0022*+S00 az* (4)
)
d [dr ,
5?(5*_)“"’“’7- (25)

Here v, and ' are the mean and perturbation static
stabilities, respectively. Substituting (25) back into (22)
yields

L K V- ( )
6'[(62*) Whye—w ‘Y -V.V oz +Na (26)
(27)

where the rightmost terms have been included in N,.
Equation 10 can be substituted back into (27), and
the result then substituted into (17) to arrive at

= —W*'YO + N‘y»

w(2*) — 7(z}) =I f: [70 f ’ Ddz* + N.,:Idz*. (28)

To continue the derivation of the pressure tendency
equation we must deal with the boundary term. Three
types of boundary terms were considered. Case 1 is the
standard condition of the RAMMS, in which zf = §*
(=5) and =(5*) is constant in time. Such a condition
prevents gravity waves from propagating through level
5*. Therefore, there can be no external gravity mode
in case 1, although fast internal modes are still possible.
Cases 2 and 3 were both based on the condition that
m(s*) is constant. They allow external waves and pro-
vide for comparison with results of other studies. The
second and third cases differ in that for case 2, z£ = 0,
and for case 3, z} = §*.

Case I:
2 =5% ") =0

Since 7(z}) = 0 for this case, there is no boundary
term. Also, the first limit of the outside mtegranon in
(28) is at the top of the model.

In discrete form (28) becomes
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M j
—2 [Yoj 2 Dudn; + Nyjldic — YourDa Az¥edrsk,
j=k n=1
(Il<sksM-1), (29)

where M denotes the model level corresponding to 5*.
The last term accounts for the divergence on §*, which
is constant throughout the model integration. In (29)
the vertical differencing factors are given by

Azy, Jj*FM
Bnj = : .
0, n>j or j=M

n<j,
for integration to level j from z* = 0, and

d -{0’
jk Az¥,

j<k
jzk

for integration from level k to §*. The values of Az¥
are vertical grid lengths centered on grid points i, except
at boundaries of integration, where they are half grid
lengths.

The nonlinear terms can be separated out as

M
7k = — 2 Noydix = Yo Das Az8ric
j=k
o ;
— 2 Yol 2 Dududid.  (30)
Jj=k n=1

This equation is still not satisfactory in this form, since
the goal was to arrive at an equation with D, as an
isolated multiplicative factor. This condition can be
remedied by noting that the definition of é allows the
summation over # to be carried from 1 to K (K > all
J) without altering the value of the interior summation.
For the quadrature used here 8, = 0 for n > M, so K
can be taken as M — 1, which is the highest compu-
tational level of the model. With the new limits on
summation (not a function of j), the interior sum-
mation can be moved to the outside, resulting in

z [Z Yoj njdjk]D

n=1 j=k

T = (31)
Here R is used as shorthand for the first two terms of
(30), with the superscript identifying case 1. For con-
sistency with (15) this should be multiplied through by
00k> }'ICldll'lg

(0o = Ok Riic— E [Box Z Yoid ;d,k]Dm

n=1

(32)
or

K
2 ClnDn,

n=1

(Oom) = Nl — (33)

which is the appropriate pressure tendency equation
for case 1.
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Case 2.
zZ2=0, w(s*) =0

The surface pressure tendency, 7(0), can be derived
by vertically integrating the hydrostatic equation over
the depth of the model atmosphere, and appropriately
defining a w-weighted average potential temperature
8, yielding

(0) = 7(s*) + S‘g;s*

Differentiation with respect to time and dropping terms
equal to zero results in

(34)

_ Sgos* _ Sgs* a0
M= T o T e | (35)
An expression for ds5*/d¢ is found by noting that
ds* das*
—_— = * = V K
p w o + V. Vs* (36)
Substituting (36) into (35) results in
. S;
#(0) = 75' w¥ + Ry, 37

where two terms have been included in R,. Application
of (10) yields
. Sg *
#(0) = — 735 f Ddz* + R,. (38)
0
Discretization of (28) can be carried out as for case 1,
but using (38) as the boundary term, and performing

all summations relative to the lower boundary. This
results in

K
Z CIZC'IDH,

n=1

(0:;7!’)]c =N k— (39)

where, as before, several nonlinear terms have been
included in N2, and

S

k
Clzm = 00k[7g Ong — 2 7015nj5jk] . (40)
j=1

Case 3:
zZ§ =5*% w(s*) =

The third case is essentially a hybrid of cases 1 and
2. Here w(z*) is computed relative to the condition on
w at §*, but 7(§*) # 0.

The equation for #(5*) is similar to (35), with the
alteration that the average on 4 is carried out over the
interval §* to s*, such that

i =E T -2,

where # is the new averaged 6. Equation 41 has an
advantage over (35) in that at initialization time s*
= §* so 6 = 6(5%), and

(41)
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Sg as*

0(5*)y ot~

Use of (42) as the boundary term results in a discretized
pressure tendency equation

w(§*) = (42)

K .
(om)c=N3— 2 CinDhn, (43)
n=1
with
Sg
C = o] —— — Spx + E 'Yoﬂsrud]k (44)
6(s™) ok

The equations (15), (16) and either (33), (39) or (43)
are a complete set with shallow water terms isolated,
and are coupled via the vertical structure matrices C!,
C? or C>. Decoupling is accomplished by first solving
the eigenvalue problem

K
2 CinE,j =

n=1

Ey); 45)

for the eigenvalues )\;, and for the eigenvectors com-
posing the matrix whose elements are Ej;, as was done
by BM. The quantities D, { and (fy7) can be expanded
in terms of their vertical modes D, £ and 2,

K K
Dk = z Ekjﬁj’ (k = 2 Ekjgj’ (aoﬂ)k - 2 Ekj s

J=1 _ j=1 j=
(46)

and the expansions substituted into'(15), (16) and (33),
(39) or (43). As in BM, left multiplication of the re-
sultant equations by (E™");, with summation over all
k produces the decoupled equations

Di = No; + f& = V’P, 47
= Ny — fD; (48)
7’.‘ = Np; ~ ND;. (49)

3. Vertical modes

An important result of the formulation of (33), (39)
and (43) is that the vertical structure matrices C are
dependent on the ground height z; via the boundary
term and the static stability term +¢, which includes S
[S = (5§ — z5)/5]. That dependence implies that C varies
in horizontal space within the model domain. The spa-
tial dependence manifested in the term S is just a mul-
tiplicative factor in all terms and elements of C. The
term S can be factored out such that

K
S Z C;annj =

n=1

Eg\;, (50)

or

(51)

M =

C;annj = Ekj)‘;'a

3
I
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TABLE 1. Heights and potential temperatures used in computing

‘vertical modes.

z* . 6 z* 6o

Level (m) (K) Level (m)~ (K)
1 10 303.9 14 2750 317.5
2 20 304.0 15 3250 318.8
3 30 3041 ' 16 3750 320.0
4 50 304.2 17 4250 321.2
5 90 304.3 18 4750 322.5
6 150 - 3046 19 5500 325.2
7 250 305.0 20 6 500 328.4
8 500 306.1 21 7500 331.0
9 750 307.8 22 8 500 3349
10 1 000 309.5. 23 9 500 338.7
11 1350 311.8 24 10 500 342.5
12 1750 314.2 25 . 11 500 345.7
13 2250 316.4 26 (5) 13 500 356.0

.where
Cin = SCin and \; = SN, (52)

According to (51) the eigenvectors do not vary in space,
but the eigenvalues do- vary by the factor S. In the
practice of VMI it would be necessary to compute \;
.and E,; for the case zg = 0 (S = 1), and then compute
A; at each grid point from (52).

The other dependence on zg is found in C? and not
in C! or C*. That dependence resides in § which is an
integral quantity. At all z* levels below §*, 8 varies
systematically with zg since the surfaces of constant z*
follow the terrain slope. The spatial dependence of c?
on 8 cannot be as easily evaded as that on S since 8 is
not a simple multiplicative factor. Therefore, in the
practice of VMI using (39), it would be necessary to
compute E and its inverse at every grid point in the
horizontal. :

Eigenvectors and eigenvalues were computed for a
26-level version of the RAMMS using the values of z*
and 6, given in Table 1, with zg = 0. The profile of 6,
was derived from a July sounding at Denver, Colorado.
The version of the RAMMS reported in Mahrer and
Pielke (1977) has been initialized under the assumption
that the lowest layer of the model is neutrally stratified.
This condition is not suited to VMI because neutral

~ stratification gives rise to vertical modes that do not
correspond to propagating gravity waves. Accordingly,
all layers were made stable for this experiment.

TABLE 2. Equivalent depths and phase speéds of vertical modes.

Case 1 Case 2 Case 3
) H c H c H (4
Mode (m) @ms') (m) (ms") (m) (ms™)
1 796 88 12176 345 12223 346
2 86 29 159 39 151 38
3 33 18 4 20 41 20
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FIG. 1. The first three normal modes of the standard formulation
of RAMMS, case 1.

The eigenvalues \; can be interpreted as gH;, where
H; is the equivalent depth of the mode i. The phase
speed ¢; is given by ¢; = Va = Vx Values of H; and
¢; for the first three modes are given in Table 2.

The first three vertical modes for case 1 are shown
in Fig. 1, and for case 3 in Fig,. 2 (those for case 2 were
very similar to those for case 3). In case 1, the constraint
that 7(§*) = 0 require that all modes go to zero at §*.

14
+-——t——s
12
\
io4 2 \ s
~ \\ -
£ o [
Z AN
5 P\
w ©7 5 \
¥ 3%, \
| \
4 \‘
2-
-
0 ‘l
04 -02 00 02 04

EIGENVECTOR MAGNITUDE

FIG. 2. The first three normal modes of the model formulation
given in case 3.
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4. Conclusions

A version of the Colorado State Regional Atmo-
spheric Mesoscale Modeling System formulation has
been adapted to a representation suitable for carrying
out vertical mode initialization. The vertical modes of
the standard formulation (case 1) show a fastest mode
with a speed of about 90 m s~*.

Results of this study indicate that it would be feasible
to apply the BM version of VMI to a mesoscale model
such as RAMMS using either 7(s*) = 0 or #(s*) = 0
as the top boundary condition on pressure. However,
the feasibility of the #(s*) = 0 case depends strongly
on the particular formulation used in the vertical
structure equation. For both boundary conditions the
phase speed of every mode will vary with surface ele-
vation. ,
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