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ABSTRACT

The numerical algorithms which we use to simulate the advection, diffusion, sedimentation, coagulation and
condensational growth of atmospheric aerosols are described. The model can be used in one, two, or three
spatial dimensions. We develop the continuity equation in a generalized horizontal and vertical coordinate
system which allows the model to be quickly adapted to a wide variety of dynamical models of global or regional
scale. Algorithms are developed to treat the various physical processes and the results of simulations are presented
which show the strengths and weaknesses of these algorithms. Although our emphasis is on the modeling of
aerosols, the work is also applicable to simulations of the transport of gases.

1. Introduction

The speed and memory of modern computers makes
it possible to perform coupled three-dimensional cal-
culations of dynamical fields with the physics and
chemistry of gases and aerosols. Numerous dynamical
models have been developed and thoroughly described
in the literature; however, very few physics and chem-
istry models suitable for multidimensional studies have
been described (Carmichael et al. 1986; Prather et al.
1987). We have designed a model of the physics and
chemistry of aerosols and gases for use in conjunction
with dynamical models which we believe has some ad-
vantages in flexibility, computational speed and ac-
curacy. Our model is currently used as an interactive
subroutine or as a parallel tracer model with the Penn-
sylvania State University/NCAR three-dimensional
(3-d) regional-scale dynamical model. The companion
paper to this article (Westphal et al. 1988) provides a
3-d example of the use of our code in conjunction with
this regional-scale model to transport wind-blown dust
and to study its microphysics. The model has also been
used for several simpler (one- and two-dimensional )
calculations (Westphal et al. 1987; Toon et al. 1982,
1987). Here we describe in detail those aspects of the
model which are unique and outline those which have
been used before by others. Our goal is to provide doc-
umentation of the model’s capabilities and liabilities
and to suggest some numerical procedures that may
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be useful to others designing models similar to our own.
We stress here numerical algorithms of the physical
processes that affect aerosols since little appears in the
literature concerning them, but many aspects of the
model are equally applicable to simulations of gas phase
chemistry. -

Dynamical models use a variety of vertical and hor-
izontal coordinate systems. In section 2 of this paper
we show that the three-dimensional tracer continuity
equation can be written in a general form which allows
the transfer between various vertical coordinates such
as physical height, pressure, or scaled pressure, as well
as the transfer between various horizontal coordinates
such as spherical, rectangular, Mercator, or polar ste-
reographic, by simple changes in a few scaling param-
eters and boundary conditions. The advantage of this
approach is that a single chemical~physical model can
be used with a variety of dynamical models, with ob-
served winds, or with idealized winds.

One difficulty with three-dimensional calculations
is that the uncertainties in the physics and chemistry
of gases and aerosols are so numerous that large num-
bers of sensitivity tests must be conducted to determine
the range of possible solutions. Performing large num-
bers of sensitivity tests in three dimensions can be pro-
hibitively expensive. Therefore, we have solved the
continuity equations using time splitting. This ap-
proach, which has been followed by many other mo-
delers, allows us first to perform one- or two-dimen-
sional calculations to determine the most important
parameters so that the number of three-dimensional
calculations can be limited to a practical amount with-
out neglecting important parameters or processes. We
describe the time-splitting scheme in section 3.
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In section 4 we describe the finite element algorithm
used to perform horizontal advection. The finite ele-
ment algorithm has the advantage of being relatively
accurate for advecting tracers with sharp gradients and
it lends itself to very efficient programming on parallel
processing computers. The finite element technique has
been discussed by several others, primarily in con-
junction with one-dimensional models of the atmo-
spheric boundary layer. We-expand upon this earlier
work by incorporating the atmospheric density in the
algorithm, illustrating how spherical and no:flux
boundary conditions may be applied, indicating how
to take advantage of the structure of the algorithm on
parallel processing machines, and discussing ways to
remove negative concentrations that are generated by
the algorithm. We also illustrate the accuracy of the
algorithm for several cases of practical interest.

In section 5 we discuss the algorithm used to perform
vertical advection and diffusion. The technique has the
advantage of never producing negative concentrations,
and preserving strong concentration gradients, but it
does have a small phase error.

In section 6 we describe the algorithms used to treat
aerosol microphysical processes, particularly coagula-
tion and condensational growth. Those algorithms are
related to ones developed by Turco et al. (1979a,b)
except that we have found some improvements, sim-
plifications and generalizations that make the algo-
rithms more suitable for multidimensional calcula-
tions.

2. The tracer continuity equation in generalized coor-
dinates

We write the flux form of the continuity equation
for the tracer concentration C, at time ¢, being advected
by scaled winds U, ¥ and W, mixed by scaled diffusion
coefficients K, K and K3, in an atmosphere with scaled
density p*, scaled coordinates X;, X, and X3, and with
production rates P and loss rates L as

9C  8UC  9VC  dWC _8p* . 9C/p*
o  dX, oX, d8X; aX, | aX,
_@:K 3C/ﬁ*_§p_*K aC/p*
X, 2 X, O0X; O aX,

Except for the terms Vm, Hm, and Hm,, this equa-
tion has the form of the tracer continuity equation in
rectangular, altitude coordinates. In fact, the extra pa-
rameters Vm, Hm, and Hm, are scaling factors which
also appear implicitly in the scaled velocities, diffusion
coefficients, density and concentration. Proper choices
of these scaling factors allow one to adapt quickly to
any of the coordinate systems in common use. Since
the basic form of this equation is so simple, there is
very little computational penalty for using the general
expression rather than any specific one. As discussed
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below, no approximations were made in deriving this
expression for any of the coordinate systems commonly
used in meteorology except for the standard “shallow-
ness” approximation of the primitive equations. Off-
diagonal diffusion terms have been neglected, but they
could be incorporated.

Neglecting off-diagonal, diffusion terms may cause
problems in two circumstances. First, even in rectan-
gular coordinates it is common practice to use a dif-
fusion tensor with off-axis terms to represent the dy-
namics of the atmosphere in two dimensions. Second,
in coordinates which follow the terrain, such as sigma
coordinates, the current set of expressions with diffu-
sion only along sigma surfaces will have a component
of diffusion perpendicular to constant Z surfaces. Off-
diagonal diffusion terms are required to eliminate this
“uphill” diffusion. Such diffusion is only likely to be
important in the presence of significant terrain and
normally can be neglected even in the mesoscale
(McRae et al. 1982). Moreover, it may be correct not
to introduce the off-diagonal diffusion terms since the
directions along which diffusion occurs will respond to
the slope of the bottom surface (Mellor and Blumberg
1985).

It is not difficult to derive the tracer continuity Eq.
(1) in generalized coordinates. The continuity equation
in rectangular coordinates is first transformed to gen-
eralized curvilinear orthogonal coordinates (Haltiner
and Williams 1980) and the shallowness approxima-
tion of the primitive equations is made (Kasahara
1977). Next, the equation is transformed to a gener-
alized vertical coordinate system. Kasahara (1974) in-
troduced such a general coordinate transform between
altitude and any vertical coordinate which can be re-
lated to altitude with a monotonic, single valued func-
tion.

Table 1 presents the values of the scaling factors for
several important coordinate systems. The only differ-
ence between using these new coordinates and the
original rectangular ones is that velocities, diffusion
coefficients, concentrations and densities must be
scaled. For example, the units of concentration have
been altered so that the new units are dX; ', dX,~},
and dX;~'. This concentration unit is very convenient
for computations in radiative transfer where column
abundances need to be calculated. It is also very con-
venient for determining the mass or any other inte-
grated property since distortions caused by use of a
nonrectangular coordinate system are automatically
accounted for. Here, V'm is essentially 87 /9 X; but the
definition involves an absolute value to avoid making
the scaled concentration negative. Since Vm appears
explicitly or implicitly in each term of Eq. (1), one can
simply multiply the negative sign through the equation.
The expression for dX; could also be negative for cer-
tain grid choices. We define it to be always positive to
simplify vertical mass calculations. The vertical ad-
vection term is the only one actually affected by the
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TABLE la. Conversion scaling factors for
various horizontal coordinate systems.

Coordinate
systems Hm, Hm, Hm, ds® ds,
Spherical siny® 1 R® dX° dy
S d
Mercator b ¢,
COSeho Hm, 1 dx dy
.1 +sing
Polar stereographic ———
grap 1 + singo Hm, 1 dx dy
Lambert (1 + sing \” cos¢o)"“
conformalf 1 + singo/ \ cos¢ Hm, 1 dx dy
Rectangular 1 1 1 dx dy
® 4 = colatitude.
® R = radius of earth.
¢ X\ = longitude.
9 ¢ = latitude. -
° ¢ = latitude at which projection is true.
‘n = In[cos(¢o)/cos(¢)))/In{tan[(x/4) — (¢o/2)}/tan((x/4)

— (¢1/2)]}; ¢1 = second latitude at which projection is true.
8 ds is the coordinate used in the coordinate system. x, y indicates
distance is used.

sign of dX;. One needs to be certain that the sign of
the vertical velocity is appropriate for the case being
investigated. In all cases, a positive W produces upward
motion. Finally, the horizontal metric terms are either
always positive or when multiplied together yield a
positive number. Hence their definitions do not pro-
duce negative concentrations.

In summary, to use Eq. (1), one first chooses the
vertical and horizontal coordinate systems of interest.
In the model, a new set of coordinates is generated
based upon time-independent transformations such as
those given in Table 1. The initial concentrations are
converted from cm ™ units to the model ones, using
Vm, Hm, and Hm,. The diffusion coefficients and ve-
locities are then scaled at each time step using the time-
dependent transformations discussed in Table 1. At
the end of the calculation the concentration can be
easily converted back to standard units, or integrated

TABLE 1b. Conversion scaling factors for
various vertical coordinate systems.

Coordinate system Vm dsy?
Altitude ) 1 dz
Pressure 1/pg" dp
Sigma o, = (P — Py,,)/P* P*/pg® de®
Log Pressure® T/T, dz

* g = gravity.

bp* =P, — Py; Py = surface pressure, Py, = pressure at top
of model.

¢ Z = HIn(P/Py); H = constant scale height of atmosphere.

4 ds; = vertical coordinate in system of interest.
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TABLE lc. Scalings applied to fundamental parameters.
Parameter Scaling
Velocities U= U,/Hm, V = V,/Hm; W = dss/dt
+ Veu*Vm™!
Diffusion K, = K,/Hm,? K; = K,/Hmy? K; = K,/Vm?
coefficients
Coordinates  dX, = Hmads, dX, = Hmyds, dX, = ds;
Density p* = pVmHm Hm, C = C,VmHmHm,

* Ve = particle fall velocity, which is generally negative.

in the model units to yield derived quantities. In prac-
tice these scalings add very little complexity or time-
consuming code to the numerical model.

3. Time splitting

The three-dimensional tracer continuity [Eq. (1)] can
be solved numerically in a number of ways. We chose
to replace it with three equivalent one-dimensional
equations. The main advantage of this replacement is
that the numerical analogs of the one-dimensional
equations are much simpler than the numerical analogs
for the three-dimensional equations. Another signifi-
cant advantage is that the time split model can be run
as a one-, two- or three-dimensional model by simply
solving different sets of the one-dimensional equations
(Carmichael et al. 1986). We have not found any dis-
advantage to time splitting. We replace Eq. (1) with:

8C  9UC _ 3p* K, 9C/p* _

ot axl 6X1 8X1 0 (23)
aC OVC 8p*K, dC/p*
Rl - = 2
ot + X, X, X, 0 (2b)
%‘_{_ oWC dp*K; 3C/p*
ot 0X; 0X; 94X,

= (P~ LYYmHm Hm,. (2¢)

These equations are solved sequentially (2a), (2b),
(2¢), and then (2¢), (2b), (2a) to complete two time
steps.- Reversing the order of the solution after each
time step provides slightly greater accuracy. After (2a)
is solved over the time step, the new concentration is
used to solve (2b) and so forth. Also, if calculation of
Pand L dominate the computational expense, (2¢) can
be further split into

8_C+ OWC  3p*K; 9C/p* _
at 4X; aX; 94X,
aC
m = (P— L)YYmHm;Hm,.
Equation (2d) can then be solved over a double time
step potentially reducing the computational cost sub-
stantially. We generally prefer not to subdivide (2c¢),
because its complete form is that utilized in standard
one-dimensional models.

0 (2¢')

(2d)
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The time-splitting algorithm is very widely used and

discussed extensively by Yanenko (1971). Below, we
provide several illustrations of transport calculations
using the time-splitting technique.

4. Numerical analogs for horizontal advection
a. Basic analog

A tremendous amount of work has appeared in the
literature concerning the numerical solution of Egs.
(2a) and (2b) and many different techniques are avail-
‘able (Mahlman and Sinclair 1977; Chock and Dunker
1983; Pepper et al. 1979; Rood 1987). We chose to
use a Galerkin technique with chapeau functions as
finite elements, and a Crank-Nicolson time step (Pep-
per et al. 1979; Chock and Dunker 1983; Carmichael
et al. 1980, 1986). This choice offers several advantages
for aerosol and chemistry models. The tracer concen-
trations need to be retained only at one time step so
memory requirements are minimized. The one-di-
mensional discretized equations can be put into tri-
diagonal form which is computationally stable and very
fast. The transport coefficients are independent of con-
centration so that multiple species can be transported
using the same set of coefficients, which again saves
computer time. Irregular grid spacing can be accom-
modated. The code is semi-implicit so it is uncondi-
tionally stable. The numerics exactly conserve mass.
Finally, the numerics are quite accurate even when
sharp gradients are present. The main disadvantage of

A = (dXi/7) — pou;
Ei= (dXi/7)+ (1 — woy;

Here 7 is the time step and y is the Crank-Nicolson
parameter whose value is 2. The other coefficients are

o = (U + 2Uk-)
+ 3(pF Ki + pt-1 K1)/ (pE-1dXk)
Bx = (—Uk=1 + Upst) + 3[(p2-1 Kir + Kip ) dXic11
+ (pE Ki + p¥r1 Kir1 )Xk 1/ (p % AXidXi1)
Yi = (Ux + 2Up+1)
= 3(pEKi + ptr1 Kir1)/ (pEr1dXpr1).  (5)

Here Uy, p¥ and Kj are scaled velocities, densities, and
diffusion coefficients located at grid point k. These
equations differ from those of Pepper et al. (1979) by
including the density terms and by being in flux form.
The Uy, Ui, and U4, are interchanged in « and 8
between our equations and their equations.

b. Boundary conditions for horizontal advection

Several possible boundary conditions can be used in
our model. Since these are rarely discussed explicitly
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the scheme is that it generates small amounts of noise
when sharp gradients are present, and can produce
small negative mixing ratios. This defect requires the
use of a smoothing algorithm to remove the noise and
negative values.

In order to obtain a numerical form for the solution
of Egs. (2a) and (2b), we first expand the variables of
interest using a set of triangular basis functions that
extend over a single neighboring grid point (Fig. 1).
We expand C/p* and p* KX as single variables in order
to reduce the complexity of the final results. The al-
gorithm for diffusion conserves mass and does not
transport materials which are uniformly mixed. The
mass on the grid is found by integrating over the tri-
angular basis functions. For example, the mass con-
tained in grid interval dX; is dX(Cy + Ci-1)/2. Note
that dX; is the value of either dX, or dX; at grid point
k; for brevity we drop the symbols denoting the spatial
direction. Following this expansion we employ the
Galerkin technique and integrate the product of the
error in solving Eq. (2) and the basis functions over
the domain (Haltiner and Williams 1980). We then
set this integral to zero. Next we approximate thé time
derivatives using the Crank-Nicolson scheme. The ul-
timate result is the following equation:

ACEL + B G + D CREY

= ExCiy + FrC + GiCly. (3)
Here C)/ is the concentration at time step ¢ and grid
location k, while
Dy = (dXys1/7) + wyi ] ) @
Gr = (dXpe1/7) — (1 = ) ve

in the literature we explain the forms we use in some
detail. :

1) PERIODIC BOUNDARY CONDITIONS

The terms for periodic boundaries are identical to
those used at all other points [ Egs. (4) and (5)] except
that values of quantities at the 0 or N + 1 grids, which
are needed to compute the solutions for the first and
Nth grid points, are replaced by values at the Nth and
first points, respectively. We assume there are N total
grid points. We represent transport on a sphere as
transport on a grid which is periodic in both longitude
and latitude. The latitude points are taken to bracket
the pole so that the pole is not a grid point. In fact,
our continuity equation is not mathematically singular
at the pole; however, Hm, is zero so the concentration
in model units is not well defined in terms of the con-
centration in cm ~ units so we prefer that the pole not
be a grid point.

Since terms such as 4, and Dy appear in Eqgs. (4)
and (5) for periodic boundaries, the equations are not -
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GRID VARIABLE LAYER BOUNDARY
SPACING LOCATION INDEX INDEX
dxabl dxai -1 { Wi' K3l ji-1
s g e pen) : j+1
axg+1{] “FPF | i+
dX3N j=N
o GROUND
(a) VERTICAL GRID
. VARIABLE
u K o C LOCATION
' CHAPEAU
FUNCTIONS
k-1 k k+1 YN-2 N-1 N GRID INDEX
e GRiD
k k+1 SPACING

{b) HORIZONTAL GRID

FIG. 1. (a) The vertical grid which may have nonuniform spacing,
dXs. The concentration, sources and sinks, and density are located
at the layer centers while velocities and diffusion coefficients are lo-
cated at the layer boundaries. (b) The horizontal grid, as well as the
chapeau basis functions at a normal grid point and at an outflow
boundary point where the chapeau functions are truncated. All model
variables are located at the grid centers. The basis functions need not
be symmetrical as drawn, because dX; may vary.

strictly tridiagonal so an alternate solver must be used.
Ahlberg et al. (1967) concisely describe efficient solvers
for both tridiagonal and periodic conditions.

2) BOUNDARY CONDITIONS ON AN OPEN DOMAIN

With a spatially limited domain it is useful to have
boundary conditions that may be controlled. The nor-
mal method of handling the transport at the grid
boundary is to truncate the last chapeau function as
illustrated in Fig. 1 (Long and Pepper 1981). Expand-
ing the Galerkin integral of the advection term by parts
reveals that the boundary flux is then

(U, + K1/dX,)(C' + C*') or
(Un + Kn/dXp)(CN + CN™Y). (6)

The results of the required integration give for the first
boundary:

A, =0, E =0, B, =2dX/r + uB;
F, =2dX;/7— (1 —u)B
G, =dX;/7— (1 — u)y

, (D
D, =dX;/1 + wy;
where

B=—4U + Uy + 3(ptK, + prZ)/(pfdxz)} ®
v=U, +2U; - 3(ptK; + p¥ K2)/(p} dX>)
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For the N boundary,
Ay =dXn/7 — pa; Ey=Xy/7+ (1 — p)a; )
By =2dXn/7 + pp
Fy=2dXn/7— (1 — u)B;
Dy=0; Gy=0
N MR 9

Q= UN + 2UN_|

+ 3(pX¥Kn + pX-1 Kn-1)/(p¥-1dXn)
B =4Uy— Uy

+ 3(pXKn + pX-1 Kn-1)/(p%dXn) J

If Egs. (7)-(9) are used in the form noted, then the
concentration will flow smoothly off or onto the grid
with the flux as specified in Eq. (6). It is often conve-
nient to have no flux enter wheh the wind blows into
the domain so that uncontrolled material does not enter
the domain. In that case we employ Egs. (7)-(9), but
we subtract the semi-implicit flux (6) whenever the
wind blows into the domain. Then no flux occurs across
the boundary. -

It 1s sometimes necessary, for example in two-di-
mensional models extending from pole to pole, to have
no flux exit from the outflow boundary. Again we em-
ploy Egs. (7)-(9) with the semi-implicit flux subtracted
when the wind blows either into or out of the grid. No-
flux boundary conditions can cause numerical oscil-
lations. No-flux boundary conditions can be derived
without using truncated chapeau functions, but these
also generate noise. Since we find the truncated chapeau
function to work best as an open boundary condition,
we have continued to use it for all boundary conditions
in order to insure that the expansion functions at all
boundaries are identical.

3) OTHER BOUNDARY CONDITIONS

Another possible choice for the boundary condition
is a constant concentration. Such a choice has no phys-
ical analog when used as an outflow boundary, but
may be useful for an inflow boundary. A constant con-
centration at the first boundary point is given by

A, =00, E =00, B, =10,

F,=10, D, =00, G;=00. (10)
A constant concentration at the Nth point is specified
by
AN = 00, EN = 00, BN = 1.0,

Fy=10, Dy=0.0, Gy=0.0. (11)

We have experimented with a variety of other
boundary conditions. For example, the concentration
at an inflow boundary can be made to decay with time.
Although this produces a smoother, numerically better
behaved solution than the no-flux boundary condition,
it does not conserve mass.

8QDXWKHQWLFDWHG

_ '"RZQORDGHG



2128
c. Negative-number elimination schemes

The chapeau algorithms, as well as the majority of
other numerical algorithms for advection, produce
computational noise which results in negative concen-
trations in the vicinity of strong concentration gra-
dients. Such negative values are physically unrealistic
and need to be eliminated. Several schemes have been
developed to solve this problem (Schneider 1984;
Mahiman and Sinclair 1977).

The fundamental reason that the chapeau function
scheme generates negative values in the presence of
strong spatial gradients is that it incorrectly resolves
waves whose lengths are twice the grid spacing. A va-
riety of damping schemes have been developed to sup-
press the waves (Pepper et al. 1979; Carmichael et al.
1986), but these do not guarantee the results will always
be positive. They also produce artificial dispersion.

We have developed an alternate scheme based largely
upon Mahlman and Sinclair (1977). This scheme con-
serves mass, eliminates negative numbers, and is com-
putationally very simple. The only disadvantage of the
scheme is that it cannot eliminate 2-dX waves propa-
gating on a nonzero background concentration. The
idea behind this scheme is that near a large concentra-
tion gradient, a series of 2-dX waves are generated
which have amplitudes that decay-away from the gra-
dient. Hence, if the first negative number encountered
is set to zero, and its (negative) mass is added to the
positive mass -at the next grid point, then the positive
mass will be reduced or even made slightly negative
depending upon whether the wave amplitude is in-
creasing or decreasing in the direction along which the
search for negative numbers is made. Hence, the ad-

dition of the negative value to the positive one reduces

the wave amplitude. We continue to borrow in a single
direction: Eventually a large enough positive value will
be found so that no further negatives are generated, or
the edge of the grid will be reached. If the edge of the
grid is reached and the grid point value is negative,
then all the grid values are multiplied by the ratio of
the mass on the entire one-dimensional grid to the sum
of the absolute value of mass of that negative grid point
and the mass on the grid so that mass is conserved and
all concentrations are positive when the final grid point
is set to zero. This final procedure is similar to one
suggested by Mahlman and Sinclair (1977 ) for spectral
transport schemes.

In using our scheme we do not pay attention to the
wind direction. Instead, we simply begin at one-edge
of our array and proceed across the array eliminating
the negative values as described above. On the next
time step we begin with the other edge of the grid and
proceed in the opposite direction. Using alternating
directions prevents a positive “wake” from developing
when the wind direction is consistently in a single di-
rection. Examples of the performance of this scheme
are illustrated in subsection 4d.
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d. Numerical tests of the horizontal advection equations

Numerical tests of the finite element scheme have
been presented by many authors. Carmichael et al.
(1980, 1986), and Chock and Dunker (1983 ) compared
the chapeau function scheme with a number of other
schemes for a peaked distribution moving around a
circle on a uniformly spaced grid. They found that the
scheme conserves mass on all grids and the second
moment of the mass on uniform grids, and it is pref-
erable to many other schemes because it is relatively
accurate even when large gradients occur. Numerically
stable, the scheme requires short to moderate execution

" times and needs only a small computer storage area.

Pepper et al. (1979), Long and Pepper (1981), and
Pepper and Baker (1979) performed similar tests with
similar conclusions, and they also studied the advection
of two peaks and advection on a nonuniform grid. They
found that the two peaks did not interact significantly,
but maintained their integrity. On a nonuniform grid
the chapeau function scheme may eject noise consisting
of small amplitude waves whose wavelength is typically
twice the grid spacing. v

Here, we examine some alternate features of the
chapeau function scheme. First, using one-dimensional
calculations, we consider the behavior of our negative-
number removal scheme, the effects of spatially vari-
able wind speeds on the accuracy of the advection
scheme, and the effects of sudden local changes in grid
spacing on noise generation. Next, we consider the
performance of our time-splitting scheme by conduct-
ing two-dimensional tests on a sphere. Finally, we dis-
cuss tests of the boundary conditions for nonperiodic
grids. In all cases we advect a relatively narrow peak
defined by

C = 100 exp(—0.5{ [(J = Jo)/B]?

— 2
+[(I - L)/A41?}), w2
B = 2.00,
A=141

where J is a latitude grid index, Jp an initial latitude
peak location, 7 a longitude grid index and , an initial
longitude peak location. This function causes the con-
centration to decline from its peak value by an order.
of magnitude over three to four grid points.

Figure 2 illustrates advection on a sphere in the
north~south direction in a spatially varying wind with
no diffusion. Although the spacing is nearly uniform
with the 40 Gauss points used, the grid points spanning
the two poles actually have twice the spacing as the
other points. The initial peak centered at grid point 10
was advected twice around the sphere with a one-half
hour time step. The velocity varied as ¥ = 2V max/
[cos(JdY /R) + 2}, where J is the latitude grid point
and R is the earth’s radius. ¥ max'is about 70 m s™!
so the mean Courant number was 0.25. The variable
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FIG. 2. The advection of a peak around the earth from pole to
pole in a spatially varying wind field. The 40 grid points are located
at Gauss points, with the spacing near both poles being twice as large
as elsewhere. The North Pole is at grid point 0 and the South Pole
between grid points 40 and 41. The plot is equally spaced in grid
point number, not physical distance. Higher wind speeds spread the
peak and lower ones narrow it. After one (long dashes) and two (plus
signs) complete revolutions the distribution closely resembles the
starting one (solid curve) as it should. A small wake occurs upstream
near the 0° latitude grid point. The dotted, dot-dashed and dashed
curves are for various times during the first revolution.

velocity causes the distribution to widen and then nar-
row as it is advected along; however, a perfect algorithm
should reproduce exactly the initial distribution when
the material returns to its starting location. As may be
seen, the algorithm does quite well, being within 10%
of the correct peak value even after two revolutions.
Also, no negative values or significant dispersion occur.
A detailed examination of this run shows small oscil-
lations of about 1% of the peak value, generated at the
sudden grid change at the poles, but localized to the
tail of the distribution where concentrations are typi-
cally 1% of the peak value. :

Figure 3 illustrates the evolution after 25 and 50
revolutions around the sphere. As can be seen, nu-
merical diffusion eventually broadens the peak and
there is a slight phase error. However, there is no am-
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FIG. 3. As in Fig. 2 except the dotted curve is after a time sufficient
for 25 revolutions and the dashed one is after a time sufficient for
50 revolutions.
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plification of the noise. Of course, in the atmosphere
any narrow distribution would be destroyed by shear
and by small-scale mixing processes within a single
revolution around the earth.

Figure 4a, b illustrates the interactions of two peaks
which are separated by different distances. As these are
advected around the sphere in a constant wind using
a Courant number of 0.25 with no explicit diffusion,
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F1G. 4. The advection of a double Gaussian peak around the earth
from pole to pole in a uniform wind field on the same grid as in Figs.
2 and 3. Figure 4a shows two widely separated peaks initially (solid
line), after 1 revolution (dotted curve), and after 2 revolutions (dashed
curve). Figure 4b shows the advection of two overlapping peaks.
Figure 4c, d are identical to 4a, b but the hole-filling scheme has been
turned off. Without the negative filling scheme, considerable noise
occurs, generated mainly by the sudden doubling in grid spacing at
the two poles (near grid points 0 and 40). However, the peaks of the
distributions resemble those in Fig. 4a, b.
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the 2-dX waves interact. When the peaks are very
close together some distortion occurs; when the peaks
are separated by more than their widths the distortion
is minimized. .

Figures 4c, d in comparison with 4a, 4b show that
the hole-filling algorithm efficiently acts to remove a
tonsiderable amount of noise without significantly af-
fecting the concentration values within the peaks
themstlves. When advection occurs on a positive
background, noise suppression from the hole-filling al-
gbrithm cannot occur. For such problems a filtering
scHeme must be employed to damp the waves (Pepper
et al. 1979; Carmichael et al. 1986).

Figure 5 illustrates two-dimensional transport on a
sphere using time splitting. This calculation was per-
formed using 48 longitudinal grids equally spaced in

~ angle, and 40 latitudinal grids placed at Gauss points.
The time step was chosen to give a Courant number
in longitude of Y, yielding a step of about one-half
hour. The longitudinal wind speed was 50 m s~ de-
creasing as the cosine of the latitude. The latitudinal
wind speed varied as a cosine in time with a maximum
of 50 m s™! so that two complete north-south cycles
occurred during one revolution in longitude. After one
circumnavigation of the globe, the concentration
closely resembles its initial values. Some noise with
values less than 1% of the peak concentration occurs
but contours with these small values were not plotted.

Figure 6 illustrates the behavior of the outflow
boundary condition using a truncated chapeau func-
tion but without any hole filling. As may be seen, the
distribution crosses the boundary and disappears with-
out significant distortion or reflection. Use of the hole-
filling algorithm (not shown ) does not alter the behav-
ior of the peak but suppresses the small-scale noise.

We have performed a number of simulations using

H
(3]
I

LATITUDE, deg
C)
T

a5}

1 ] 1 1 1 1 ]

108 144 180 216 252 288 324
LONGITUDE, deg

-90 1

1
.0 3B 72

RG. 5. Two-dimensional advection of a Gaussian peak on a sphere
with two north-south oscillations in one complete east-west revo-
lution around the earth.
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FIG. 6. A peaked distribution which decreases in magnitude by a
factor of 10 over four grid points approaches an outflow boundary
and crosses it using a truncated chapeau function schéme. No
smoothing is done in order to illustrate that negligible noise is gen-
erated. The Courant number used was 0.25. The different curves
represent different times the peak crosses the boundary.

no-flux boundary conditions at an outflow boundary.
Without diffusion the distribution eventually accu-
mulates into the final grid point. This one-dimensional
simulation is a highly unrealistic test case because in
nature divergent flow at the boundary would remove
the material to grid points in another dimension. If no
smoothing is used, a reflected 2-dX wave of large
amplitude propagates upwind. This reflected wave
seems to be common to all the no-flux finite element
schemes without smoothing algorithms or diffusion;
however, when the wave is controlled by the smoother
the simulation seems to be excellent.

Figure 7 illustrates the results of using the no-flux
boundary condition without smoothing, but this time
diffusion occurs. When U, K and p* are constant, Egs.
(2a) or (2b) have solutions of the following form given

20T
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FIG. 7. An initial distribution generated from the analytic solution
of Eq. (13) (solid curve) is modified by advection and diffusion until
a steady state is reached. In this case, UdX /K equals 0.2, and the
Courant number is 0.12. The curves are the analytic solutions and
the dots are numerical solutions for various times. Steady state is
reached for the dashed curve.
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by Hidy and Brock (1970); we have corrected a misprint
in their equation:

C(t, x) = Co/[2(wKt)]{exp[—(X — Xo)*/(4K1)]
+ exp[—(X + Xo)2/(4K)]}
X exp[-U(X — Xo)/(2K) — U*/(4K)]
+ CoU exp(~UX/K)/(K /)

exp(—y*)dy. (13)

feo
(X +Xo-Ut)/ (2 {Kt})

Here

Xo+dX
Co = Limit f N(X, 0)dx
(dX—0) J Xo—dX
where the initial distribution is a delta function at X,.
Also it is assumed that the flux vanishes at X = 0. A
steady state is approached and the solution becomes

C = Co(U/K) exp(—UX/K). (14)

Figure 7 shows that the chapeau function scheme
treats advection and diffusion in a consistent manner
and that the no-flux boundary condition is treated

- without difficulty.

5. Numerical analogs for vertical transport
a. Basic analog

The requirements for the vertical transport scheme
are quite different from those for the horizontal trans-
port scheme. In contrast to horizontal transport, ver-
tical transport often is dominated by diffusive rather
than advective processes. Hence one wants to insure
that the coupled advective-diffusive equation is pre-
cisely solved. It is also desirable that very sharp gra-
dients be maintained for long periods of time. However,
the finite element scheme instantly ejects noise at the
1% level across the grid. We couple many of our chem-
ical and aerosol microphysical processes with our ver-
tical transport time step. We do not wish to have neg-
ative values develop during the time step which must
be corrected, as is the case with the finite element
scheme. For these reasons we use a different approach
in the vertical than we use in the horizontal. The
. scheme we use to achieve an accurate solution to the
advection—diffusion equation is similar to the one used
by Turco et al. (1979a,b) and by Fiadeiro and Veronis
(1977). Our scheme differs from these earlier ones by
allowing for nonuniform .vertical spacing, by treating
an arbitrary vertical coordinate, and by utilizing a more
accurate treatment of advection.

To solve Eq. (2c¢’), we first assume that the density
varies as an exponential in altitude with an altitude-
dependent scale height H,. The density term in the
diffusion equation can then be written as an advection
term with a velocity K/H,. Following Fiadeiro and
Veronis (1977 ) we write a numerical expression for the
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diffusive flux using a first-order difference which is
symmetric in the concentrations at adjacent grid points
and a numerical form for the advective flux using a
first-order difference of the weighted mean of the con-
centrations at adjacent grid points. We then determine
the weighting factor, o, by demanding that the steady-
state advection diffusion equation is satisfied exactly.
We then put the result into Crank-Nicolson form to
obtain

LC¥\ + MC;"*' + NC%

= OCi_, + PC} + QC'y;  (15)
where
L=pTj; M=—[p(Tjs + Sj) + dXs;/7]
N=uSjs; O=-L(1 —p)/w L 16)
Q=-N1—p)/u
P=[(1 — p){Tjm + 8;) — dXs;/7]
with .
T; = (W + In(p}/o} K/ dXsw)/ |
[exp(26;) — 1]
S; = T;exp(26;) 17

dXsp; = (dXz; + dXs;-1)/2
20; = WdXs/K + In(p7-1/p])

When the velocity is zero the result reduces to a
simple symmetric difference equation for diffusion
which is accurate even when the air density appears as
a variable in the diffusion equatiori. The boundary
fluxes are S}, which is the upward flux into level j — 1
from level j, and T; which is the downward flux into
level j from j — 1. In these flux terms the velocities and
diffusion coefficients are to be evaluated at the bound-
aries between layers (Fig. 1). )

Here, S and T are always positive quantities. If u
= | (the implicit limit), then C**' will always be pos-
itive if C' is positive. If u is less than 1, negative values
of C**! might occur if P is negative. On a uniform grid
without diffusion this constraint is simply that the
Courant number 7W/dX is greater than unity. We
generally use an explicit time step (1 = 0) because it
is very difficult to control numerical diffusion with an
implicit time step. However, at each time step we check
for negative values of P at any level. If P is negative at
any level, we automatically switch to an implicit time
step for that vertical column to prevent negative num-
bers and to maintain numerical stability.

The solution to Eq. (15) reduces to upwind advection
when K = 0. It is well known that this solution, though
numerically stable, has significant numerical diffusion’
associated with it. The equivalent diffusion coefficient
is proportional to the velocity (Molenkamp 1968;
Smolarkicwicz 1983) as Kjumerica = 0.5(| W |dX;
— 7W?). Waves, which may not cause significant net

7
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transport, can result in large velocity fluctuations su-
perimposed upon a small mean vertical velocity. The
numerical diffusion associated with these large oscil-
latory vertical velocities can be a significant numerical
problem. Therefore, both to treat advection accurately
and to prevent large artificial diffusion due to fluc-
tuating vertical velocities, it is important to remove the
numerical diffusion from the upstream advection
equation.

The essential requirement to decrease numerical dif-
fusion is to gain information about the dependence of
concentration on altitude. We assume that the con-
centration varies exponentially between adjacent grid
points. The flux crossing the boundary between layers
can then be accurately calculated by analytically in-
tegrating the concentration in an interval DX; = W7
. from the boundary. Forcing the concentration crossing
the boundary to equal all of the material in the bin if
DX; = dX; and obtaining symmetry with respect to
the sign of W fixes the scale height of the concentration
variation to be H, = dX3;,/In(C;-,/C;). The flux for
a downward velocity across level j — 1/2 is found to
be )

¢ j-172 = Cj-\Wj_1,2(dX35/ DX3))
" X [exp(—DX;3;/H.) — 11/[(C;-1/Cj) — 1]. (18)

We can now relate this flux expression back to Eq.
(17), recognizing that we have one accurate expression
for the advective flux when only advection occurs and
another when advection is comparable with diffusion.
In the derivation of Eq. (15), we found that the pa-
rameter that adjusts the weighting terms for the ad-
vection when diffusion occurs is ¢ = coth(8) — 1/6
(Fiadeiro and Veronis 1977). When advection is much
more important than diffusion, § becomes large and ¢
approaches unity. Otherwise ¢ is close to zero. Hence
we are motivated to replace W with W' in Eq. (17) for
T and S (but not in 8) where

W= \w
W <0; A= [dXs,/DX;;]{exp(—DXs;/H.,) — 11/
[1-Cja/Ci1}
W>0; \=[dXsy;/DX3;]{{exp(—DX3;/H.) — 1]/
[Ci/Cjr = 11} (19)

We are not aware of any theoretical justification for

. this replacement, but consider it to be justified by the

excellent performance that it shows in the numerical
“tests discussed below.

As a practical matter we limit the ratio C;_,/C; or
its inverse to be in the range 0.1 to 10. This limitation
is only of significance when zero concentrations occur
on the grid. Since we use exponentials to interpolate
between grid levels, overdamping of the fluxes can oc-
cur if zero concentrations are imposed externally, as
for example with the finite element smoothing scheme.
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The advantages of this scheme, as we will demon-
strate in the following subsection, are that advection
is treated very accurately even when sharp gradients
occur, diffusion is treated accurately, and advective-
diffusive equilibrium is treated without error. The
expressions exactly conserve mass and the fluxes are
easily identified for diagnostic purposes. Because T
and §; are always positive, and an implicit step can be
taken if needed, negative concentrations can never oc-
cur. Numerical stability is guaranteed, and since Egs.
(15) are tridiagonal, their solution is computationally
fast.

b. Boundary conditions for vertical transport

The vertical boundary conditions are simple because
the upward and downward fluxes appear explicitly in
the algorithm. For example, no-flux boundary condi-
tions utilize ;= T;=0forj=1,0r S;51 = Tjx1 =0
for j = N. A constant flux into the grid can be added
by including constant terms of the form T,Cq or Sy+:1Co
on the right-hand side of Eq. (15), where the fluxes
contain specified rather than the undefined concentra-
tions. An outward flux due to dry deposition would
appear as Ty = VA /Vm where the deposition velocity
isin cm s™!. We scale the deposition velocity using Eq.
(19) with A determined using concentrations from the
top of layer N. It is often desirable in chemical calcu-
lations to hold the concentration fixed at a boundary.
It is not possible to do this directly through the S and
T functions without also affecting the fluxes from layers
adjacent to the boundary. Instead, one sets M = P
=1,L=N=0=Q=0inEq. (15) for either the top
or bottom layer. Once the time step has been advanced,
the implied flux that was required to keep the concen-
tration constant can be calculated.

¢. Numerical tests of the algorithm

Here we illustrate several properties of our numerical
solution. First, we show that the coupled vertical and
horizontal transport code works well. Then we dem-
onstrate the time-dependent behavior of the algorithm
when vertical diffusion and vertical advection both oc-
cur. Finally, we discuss the time-dependent behavior
of the algorithm when only vertical advection occurs.

Figure 8 illustrates a comparison of our model with
a standard analytic test case (Wengle and Seinfeld
1978). Vertical diffusion and horizontal advection both
act to distribute material originating from a point
source. The vertical diffusion coefficient has a maxi-
mum of 5 X 10° cm? s™! and varies linearly with Z
while the horizontal wind has a vertical shear and varies
as Z%? from its maximum of 5 m s~!. The spacing
used in the simulation was 25 km in the horizontal
and 0.5 km in the vertical. As can be seen, the model
reproduces the analytic solution quite well. The ac-
curacy is comparable to that shown by Wengle and
Seinfeld (1978 ) using a pseudospectral technique. The
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Fi1G. 8. Steady state analytic solutions for the advection of a tracer
(solid line) are compared with numerical solutions at various hori-
zontal positions. A point source is located at X = 0, Z = 2.0 km. A
wind with vertical shear blows horizontally and diffusion occurs in
the vertical.

accuracy becomes poorer as one moves closer to the
source since the grid cannot resolve a delta function
source. However, at X = 100, which is only four grids
from the source, the solution is accurate to within a
few percent.

Tests of the pure diffusion aspects of the algorithm
are shown in Fig. 9. We have compared our numerical
solution with the analytic solutions given by Eq. (13).
The analytic solution assumes that the density is in-
dependent of altitude. However, when the vertical
variation of density is of the form p* = py exp(—Z/
H,) where H, is constant, the analytic solution is iden-
tical to that of Eq. (13) with Ureplaced by K/H,. This
simulation shows that the model reproduces diffusive
transport very accurately.

Figure 10 compares numerical and analytical solu-
tions when advection and diffusion both occur. The
analytic solution is given by Eq. (13) with U replaced
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by W + K/H,. We have done cases which span the
range of 6 including 0.15, 0.6, 1.1 and 5.1 [note In(p;_ /
p;) =~ 0.1] which corresponds to o of about 5 X 1072,
0.15, 0.3 and 0.8. In all cases, the code reproduces the
analytic results to the accuracy of the computer after
enough time has passed for steady state to be reached.
At earlier times the numerical results closely approx-
imate the analytic ones with the largest error occurring
for cases in which the diffusion is least.

Since pure advection is the most difficult process to
simulate we have considered a large number of test
cases for pure advection, some of which are presented
in Fig. 11. In this figure two cases of advection upward
and downward across a vertical grid are shown to result
in very little distortion of the shape of the peak, but
about a 5% to 10% phase error in the position of the
peak. The downward moving peak approaches an open
boundary which it crosses without noticeable distor-
tion. The upward propagating peak rises into a bound-
ary across which no flux is allowed to occur. It is found
(not shown) that the concentration piles up into the
last grid point without generating reflected waves that
are troublesome in the finite element scheme. Also, an
oscillating velocity is shown in Fig. 11 to produce little
distortion. Clearly, the technique is able to suppress
numerical diffusion very successfully.

We performed similar advection tests using the
scheme proposed by Smolarkiewicz (1983) who at-
tempted to reduce numerical diffusion in upwind
schemes by using a multiple time step in which the
numerical diffusion is removed using a second time
step with an equivalent “negative diffusion.” Whereas
our scheme reduced peak values to 95% (Fig. 11) his
reduced the peak value to 47%. Both schemes had sim-
ilar phase errors.
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O NUMERICAL RESULTS
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FIG. 9. Diffusion of a passive tracer as determined analytically
(solid line) and with the numerical model (symbols) for various
times. The diffusion coefficient is 5 X 10° cm? s~*. Since the density
varies exponentially with altitude, the concentration eventually varies
exponentially with altitude so that the mixing ratio is constant.
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FIG. 10. Analytical solutions (solid lines) of the advection-diffusion equation are compared with numerical solutions (symbols) for a
vertical velocity of | cm s~ and diffusion coefficients of (a) 10°, (b) 10°, (c) 5 X 104, and (d) 10* cm? s~!, The Courant number was
chosen to be 0.1 and the time step 10* s. The diffusion coefficients produce a range of # values which cause ¢ to vary from nearly 0 to nearly
1. The numerical results closely approach the analytic ones. In each part of the figure, the distribution at the earliest time given is the initial

condition for the numerical model.

We do not judge a 5% or 10% phase error for steep
distributions to be a significant problem because ve-
locities are seldom known to this accuracy. However,
we did wish to know the origin of this error. The only
way to reduce the phase error is to increase the spatial
resolution of the grid. Imagine that a step function is
being propagated across the grid. Our scheme of fitting
exponentials assumes a very steep gradient occurs
within the grid box containing the step function. Hence,
we will not allow the step to move within the grid box
and so we will underestimate the flux and retard the
propagation of the step. As implied by Fig. 11, however,
the error is only significant for extremely large gra-
dients. ’

Figure 12 provides two cases which can be compared
with the finite element method cases illustrated in Figs.
4a and 4b. The exponential fitting technique can re-
solve two close but separate peaks, but the finite ele-
ment method does much better at resolving a double

peak. The exponential fitting technique runs the two
peaks together to create a single peak because the up-
ward peak suffers less phase lag than the downward
peak. The magnitude is propagated just as well by the
exponential scheme as by the finite element scheme,
but the phase error is greater with the exponential
scheme. On the other hand, the exponential scheme
shows no tendency to produce noise on the grid or an
upstream wake. Indeed, the exponential concentration
may drop many tens of orders of magnitude across the
grid, while the finite element scheme propagates un-
resolvable noise across the grid at about 1% of the peak
value.

Figure 13 also provides a case similar to one per-
formed with the finite element scheme in Fig. 2. In
this case, a Gaussian peak is transported by a spatially
varying wind field. The exponential scheme behaves
as well as the finite element scheme and propagates
the expanding and compressing peak without signifi-
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