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ABSTRACT

The linear baroclinic instability of three-dimensional basic flows on the Northern Hemisphere is examined
in terms of a simple two-level, quasi-geostrophic model. The basic flows considered comprise an observed six-
winter mean flow, as well as anomalous flows which represent episodes where large-scale persistent flow anomalies,
such as the Pacific/North American (PNA), East Atlantic (EA), or North Atlantic Oscillation (NAO) patterns
exhibit large amplitudes.

For the climatological basic state, the fastest-growing normal modes with periods of around 4 days consist
of regionally confined, synoptic-scale, baroclinic wave trains. These are considered as cyclogenesis modes, char-
acterizing the linear synoptic-scale eddy activity associated with a given basic flow. This eddy activity has a
pronounced maximum over the Pacific, close to the position of the observed Pacific storm track, but the second
maximum over the Atlantic, corresponding to the Atlantic storm track, is considerably underestimated. Nev-
ertheless, comparing the structure of the cyclogenesis modes with that of the leading complex EOFs of the
observed bandpass-filtered flow, a pattern correlation squared of up to 0.4 is obtained. Truncating the basic
state to comprise only the ultralong waves (zonal wavenumber m < 4) results in rather little change in the
cyclogenesis modes obtained.

Finally, the sensitivity of the cyclogenesis modes to the anomalous basic flows is investigated, using persistent
anomaly patterns (PNA, EA, NAO) obtained from a rotated principal component analysis of the observed
lowpass-filtered flow. The anomalous basic states are evaluated by adding or subtracting these patterns to/from
the winter climatological mean flow. It turns out that the normal-mode wave trains are significantly deflected
from their climatological positions, particularly in the EA and NAO cases. This model response is verified
against composite maps of observed bandpass variance, obtained for episodes of strong PNA, EA or NAO
anomalies respectively. It is found that, although the normal-mode wave trains are still relatively too weak over
the Atlantic (compared to the Pacific), the structural differences in the observed bandpass eddy activity between
positive and negative anomaly cases are captured quite well by the normal modes.

1. Introduction low-frequency variance maxima of a planetary-scale

barotropic model winter climatology compared quite
well with atmospheric observations, when the model
was forced with the vorticity flux convergences asso-
ciated with the observed synoptic-scale eddies. They
were able, in addition, to model the temporal variability
of this “synoptic-scale forcing” stochastically. It is nat-
ural to wonder if it would not be possible to close such
a model by parameterizing the synoptic-scale eddies in
terms of the model’s planetary waves.

The normal-mode approach to baroclinic instability
of three-dimensionally varying flows, pioneered by
Frederiksen (1978b), has been rather successful in ex-
plaining the basic features of regional cyclogenesis.
Frederiksen has found that the most-unstable normal
modes of a quasi-geostrophic two-level model are lo-
cally organized and reach their maximum amplitude
somewhat downstream of the regions of maximum
baroclinity. Since then, Frederiksen (1982) has con-
sidered the linear, zonally inhomogeneous baroclinic
stability problem associated with a northern hemi-

The importance of the synoptic-scale eddies in
maintaining the time-mean flow, and for the dynamics
of atmospheric low-frequency variability, has been a
focus of interest in recent years. In particular, it is be-
coming increasingly clear that eddy momentum fluxes
associated with the synoptic-scale eddies play an im-
portant role in maintaining large-scale persistent
anomalies such as blocks and cut-off lows (Illari and
Marshall 1983; Hoskins et al. 1985; Shutts 1986). This
makes the geographical distribution of cyclogenesis and
the storm tracks, as well as its variability, important
for the dynamics of atmospheric low-frequency flow.
Indeed, Vautard and Legras (1988) have shown that
persistent large-scale flow regimes may result from a
nonlinear equilibration of the synoptic-scale eddies
with the planetary-scale flow. Egger and Schilling
(1983, 1984) and Metz (1987) have found that the
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spheric winter climatological mean flow. The fastest-
growing mode is a cyclogenesis mode with its maxi-
mum amplitude in the regions of the observed storm
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tracks, although it is strong right across North America.
The mode has a growth rate of 0.43 day ', a period of
3.3 days, a dominant zonal wavenumber 9, tilts west-
. ward with height, and has a monopole structure which
is elongated in the meridional direction, making its
characteristics rather typical of observed synoptic-scale
eddies. Pierrehumbert (1986) has shown, also using a
two-level model, that such linear modes evolve along
an idealized storm track, from being shallow and highly
baroclinic, to becoming concentrated aloft and rather
barotropic. Thus linear modes arising from a zonally
asymmetric basic state possess many of the attributes
of observed synoptic-scale eddies. Additionally, al-
though the synoptic eddies interact strongly with the
planetary waves which have a large low-frequency
variability, the observed mean storm tracks appear to
be given surprisingly well in terms of a linear stability
analysis of the climatological stationary waves. -

It is well known (Blackmon and White 1982) that
filtering in time (at about 10 days), clearly separates
the high-frequency, synoptic-scale eddies, from the low-
frequency planetary-scale flow, whose variability dom-
inates the total atmospheric variability. This, together
with the,above results, raises the question as to whether
the normal-mode approach could be used to param-
eterize the synoptic eddies in a low-order model, along
the lines of Rheinhold and Pierrehumbert (1982), and,
in addition, whether it could also be applied to inves-
tigate regional cyclogenesis on intraseasonal time scales.

The aim of this work is to investigate the sensitivity
of the linear cyclogenesis modes to changes in the basic
state. We first consider the effect of truncating the basic
state to comprise only the largest planetary scales (zonal
wavenumber m < 4), in order to examine the possi-
bility of using a linear stability analysis in a low-order
climate model as part of a parameterization method

for the effects of the synoptic eddies on the large-scale |

flow. Second, we investigate the impact of anomalous

basic flows on the linear cyclogenesis modes. Coherent -

shifts in the storm tracks associated with the presence
of persistent large-scale anomalies have indeed been
found by Dole (1986) in a composite analysis of ob-
servational data. In particular we consider anomalous
basic states associated with situations where the large-
scale flow is significantly changed due to the presence
of persistent anomalies such as the Pacific/North
American (PNA) pattern, the East Atlantic pattern
(EA), and the North Atlantic Oscillation (NAO).
We employ a simple two-level quasi-geostrophic
framework for the stability analysis, which is described
in section 2. In order to examine the properties of the
stability analysis, we first consider (in section 3) a sim-
ple idealized basic state, made up of a zonally sym-
metric flow and simple local anomalies. In section 4,
we apply the analysis to a Northern Hemisphere winter
climatological flow and compare our results with those
of Frederiksen (1982). Here we investigate the effect
on the analysis of highly truncating the basic state, in-
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cluding Ekman pumping, as well as sensitivity to the
static stability parameter. In section 5, we apply the
linear stability analysis to anomalous low-frequency
flows, which are.obtained by superimposing selectecl
rotated real empirical orthogonal functions (EOFs)
derived from low-pass filtered winter data, onto our
climatology. A summary and conclusion follow in sec-
tion 6.

2. The linear stability analysis

a. The model

The model used is a quasi-geostrophic spectral two-
level model on the hemisphere, which corresponds to
the B-model of Frederiksen (1978b). The barotropi:
and baroclinic modes of the streamfunction are de-
fined, as usual, by

¥ = % (Y250 mb + ¥750 mb)

and

1
T=3 (Y250 mb — ¥750 mb)

respectively. Using the appropriate form of the thermal
wind equation (with f = f) the model equations ar:
written:

VA ot = —J(Y, VRY) — J(r, V?7)
—(29/a*)3Y/ON + KV + F, (1)

(V2 — A7} /0t = —J(Y, (V> = A7)

— J(7, V&) — (2Q/a?)d7 /N = KgV?, + F, (2)

where
) 1/2
A= (blcpz Aoo/fo2)

and b, = 0.124 (Lorenz 1960), a is the earth’s radius,
Q its angular velocity, f, the Coriolis parameter at 45°
latitude, X is longitude and p = sin(lat). The stream-
function at the ground surface, ¥, is taken as 1750 m»
= 1(¢ — 1), and K = (7 days) ™! is the coefficient of

-surface friction. The internal deformation radius, A, i3

a function of the static stability alone, which is given
by the mean shear in potential temperature between
the upper and lower levels (Af,). The effects of diabatic
heating, topography, and dissipation are representecl
by F, and F,.

The eigenvalue problem associated with this model
is explicit, and thus straightforward. Although the
model is very simple, we do not expect the results to
differ greatly from those of a multilevel model. Fred-
eriksen (1979b) has found that the effect of increasing
the number of levels is primarily to modify the vertical
structure of the eigenmodes, rather than to substantially
change their horizontal structure.
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b. Method of solution

Equations (1) and (2) are linearized about a time-
mean basic state (¥, 7), and the equations for the per-
turbations (' = ¢ — ¢, ¥ = 7 — 7) are then decom-
posed in terms of complex spherical harmonics by sub-
stituting for ¢/, ¢, 7' and 7, e.g.,

M N ]
2 2 OP (w)e™

m=-~M n=|m|

V(A u )= (3)

where (N, M) is the spectral truncation, ¢/, ™
= (¢,")* and ( )* denotes the complex conjugate.
Only hemispheric modes are retained, so that the sec-
ond sum is over components with (n — }m|) odd
only, yielding J = 121 complex coeficients for M = N
= 21. The resulting equations are then multiplied
through by (P,"e")*, and integrated over the hemi-
sphere, using the orthogonality properties of spherical
harmonics. This yields the following ordinary differ-
ential equations (dropping the indices m, n) for each
spherical harmonic coefficient j, of the perturbation:

d ! T ' N7
Z ;= =20 il(a¥i + i)
Kl
+ (Tert + 7)1 (v — i) — 2imy)
— Kevy5 (U= 7)) (4)
a (v;— A7}

= =2 it + ¥ir) Lin(vi — v — A7?)
I

— 2 T+ T Ly — v + A7)
il

) s A 1 ’ 7
— 2imr; + KB'YjE W=7 (5)

where v; = —nj(n; + 1), the Ly, are the interaction
coefficients given by Elsaesser (1966), and we have
nondimensionalized using length scale g, and time
scale 7!, The double summations in the Jacobian
terms are restrlcted to unique combinations of k and
{ only.

We split each spherical harmonic coefficient into its
real and imaginary parts, e.g., y; = 2~ '/2(%5 W),
where subscripts ¢ and s denote the cosine and sine
components, respectively. Then splitting (4) and (5)
into their real and imaginary parts and writing in matrix
form yields

d/dt(x') = A-x/, (6)

Where X= ('I/lo ¢ ) ‘P.Ic, \PIS’ MR ‘;&JS: Tiles * ° s Ties
Tis, * * *, Tss) |, and A = A(X, A2, Kjp) is the system
matrix.

Solutions to the real matrix equation (6) have the
normal mode form (dropping primes):
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x(1) = ke,

(7)

which, upon substitution into (6) yields the eigen-
problem

—iwk = A*X

(8)

with the generally complex angular frequency v = w,
+ iw;. The system matrix A is real, but, in general, not
symmetric so the resulting eigenvectors x %) are com-
plex (and in general not unitary) and generally come
in complex conjugate pairs, as do the eigenvalues,
—iw®, With »,® # 0, we have propagating distur-
bances with angular frequency | w,¥’ | and growth rate
w;®. The phase (w,¥t), and the amplitude
exp(w 1), of the eigenmodes depends on ¢ and are
thus arbitrary, and we consider the modal structure at
t = 0. The oscillatory part of the normal mode actually
consists of two patterns one-quarter period apart.
However, for the cyclogenesis-type modes considered
in the following, the quadrature phase is very similar
in structure to that at ¢ = 0, being simply shifted a
quarter wavelength eastward in space for w,¥ > 0,
indicating that the modes propagate eastward.

The matrix A has size 484 X 484 for a T21 truncation
[i.e., N= M = 21 in (3)], and the eigenproblem (8)
is solved using a NAG library routine. The surface fric-
tion terms are set to zero unless stated otherwise.

¢. The basic states

Six winters of Northern Hemisphere winter geopo-
tential height data from the European Centre for Me-
dium Range Weather Forecasts (ECMWF) for the pe-
riod 1979/80 to 1984 /85 were used to construct the
basic states. Each winter consists of 110 days of 0000
UTC daily analyses starting on 20 November. The
geostrophic streamfunction is derived from the geo-
potential height by solving the linear balance equation
(Metz 1986). We take the streamfunction at 850 mb
to be representative of the model’s lower layer, and
that at 300 mb of the upper layer, so as to include low-
level baroclinity to some extent. In general (unless
stated otherwise), we use a T21 truncation for both
the basic state and the perturbation. Following Fred-
eriksen (1982), we assume that the basic state is bal-
anced by F, and F,, and so consider it as a stationary
solution of (1) and (2).

The static stability parameter is chosen such that the
fastest growing modes are realistic. When the pertur-
bation is truncated at T21, A, = 30-36 K, which cor-
responds to an internal deformatlon radius of 419-459
km, is found to yield modes with growth rates, phase
speeds, and structures which compare reasonably with
observed extratropical cyclones. The required Af, is
truncation dependent: increasing the horizonatal res-
olution decreases the growth rates of the fastest growing
modes with attendant changes in phase speed and
modal structure, as also found by Frederiksen and Bell
(1987).
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3. Instability of idealized flows

Figure la illustrates an idealized basic state which
has two identical jets situated 180° apart. It consists
of the zonally averaged six-winter climatology plus two
identical nearly circular equivalent-barotropic stream-
function anomalies centered at 50°N, computed ac-
cording to the expression

¥\, ¢) = Bexp{—(x — x0)%/x3%}

X exp{—(y — ¥0)*/¥3}

where B = 30 X 10® m? s7!, ¢ is latitude, and x and
yare given by x(X, ¢) = A cos¢ and y(¢) = tan{ § (90°
~ ¢)}. The anomaly is centered at (xo, V), Where X
= 0 and yp = y(50°), and has Gaussian scales x,
= x(30°,45°)and y, = y(45°) — y(45° + 20°). The
amplitude of the 7-anomaly is two-thirds that of the
y-anomaly, whose amplitude is such as to produce a
trough comparable with those of the winter climatol-
ogy. The frictionless eigen-problem in section 2 is
solved for this basic state with A8, = 36 K; the pertur-
bation is truncated at T21 and the basic state at T15.

The eigenvalues of the ten fastest-growing modes
are given in Table 1. The modes have periods ranging
from about 2-7 days, which coincides approximately
with the bandpass filter window used by Blackmon
(1976) to identify extratropical cyclones in observa-
tional data. The growth rates of the first five modes are
rather bunched together, making it difficult to differ-
entiate the modes by growth rate. The last column in
Table 1 indicates the geographical distribution of modzl
activity. Mode 1, whose - and 7-streamfunctions are
illustrated in Figs. 1b and 1 ¢ respectively, is typical of
the “class A” modes, which are regional in nature and
have short periods, but are not necessarily the fastest
growing. Mode 1 reaches its maximum amplitude somz
20°-30° downstream of the trough axes, and by virtuz
of the symmetrical nature of the basic state, has almost
identical structure downstream of the two troughs. Th=
mode has dominant zonal wavenumber 7, maximum
amplitude at 40°-50°N, and is monopole with a
“beanlike” meridionally elongated structure. Ths
baroclinic streamfunction (Fig. 1¢) indicates that ths
mode has a westward tilt with height. These charac-
teristics of the fastest growing mode are in general
agreement with Frederiksen (1978b), who considers
the instability of various idealized zonally varying flows.
In particular, Frederiksen (1978b) finds that the max-

FiG. 1. Linear stability analysis of zonally averaged winter climate,
to which two identical negative streamfunction anomalies (see text)
have been added at 0° and 180°W. (a) The basic state: contours of
¥ (thin contours) at intervals of 10 X 10° m?s™', and the 20 m s™!
isotach of the thermal wind (| v7|) calculated from  (thick contour).
(b) and (c) The spatial structure of the fastest-growing mode, ¥- and
r-streamfunction fields respectively (same contour interval). Mag-
nitudes arbitrary, negative contours dashed, zero contour omitted.
All maps are polar-stereographic projections as in Fig. 3.
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TABLE 1. The eigenvalues of the ten fastest-growing modes, ob-
tained for the idealized basic state in Fig. 1a. The last column gives
a subjective classification of the associated eigenmodes by structure.
Class A—regional mode, class B—hemispheric mode, class C—re-
gionally intensified hemispheric mode.

Angular
frequency Period, Growth rate,
Mode |, T w;

k (° day™) (days) (days™) Class
1 101 3.6 0.48 A
2 77 47 0.46 C
3 121 3.0 0.46 A
4 93 39 045 C
5 122 3.0 045 A
6 77 4.7 0.43 B
7 55 6.5 0.39 B
8 66 5.5 0.35 B
9 177 2.0 0.34 A

10 51 7.1 0.34 C

imum development occurs slightly downstream of the
positions where the “excess shear” is a maximum; the
excess shear being defined as the difference between
the actual vertical wind shear and that required by
Phillips’ (1954) criterion for incipient instability in the
two-level model.

In contrast to the class A modes, there are others
which have very little regional structure, and extend
right around the hemisphere with almost no longitu-
dinal modulation. These hemispheric modes are typical
of those which result from a zonally averaged basic
state; being a product of the instability of the zonally
symmetric component of the basic state. A third class
of modes has hemispheric extent, but are regionally
intensified downstream of the jet maxima.

Pierrehumbert (1984 ) discusses the concept of ““lo-
cal” and “global” linear modes in the context of the
stability characteristics of zonally varying flows. It is
proposed that “global”” modes, which are hemispheric
in extent, result from ‘“‘convective” instability, which
depends essentially on the zonally averaged baroclinity
and requires periodic recycling of energy around the
hemisphere for growth. In this case the group velocity
of a wave packet emanating from an initial disturbance
exceeds the spatial spreading (or dispersion) of the
packet, so that the mode dies out locally as it propagates
away from the initial disturbance. On the other hand,
‘““absolute” instability at any fixed point in longitude,
may give rise to dynamically “local” modes. In this
case, spatial spreading of the wave packet exceeds its
group velocity, and if in addition, the peak of the mode
dies out as it propagates out of the baroclinically un-
stable region, it may leave behind it an amplifying tail
which manifests itself as a local mode. Pierrehumbert
(1984) suggests that only such local modes are physi-
cally relevant to cyclogenesis, and that their growth
rate depends on the maximum baroclinity in the do-
main and depends inversely on the strength of the zonal
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flow. The degree of localization is governed by the zonal
baroclinity contrast.

The question arises as to whether our regional modes
are indeed “local” in this sense, or if periodic recycling
of energy is responsible for the growth. According to
Pierrehumbert’s (1984 ) analysis of a two-level model,
a guide to whether local modes can occur is given ap-
proximately by the ratio of maximum to minimum
wind shear around the hemisphere. Highly simplified
analysis suggests that this ratio must be greater than
1.38 for local modes to occur in the two-level model.
In our case (Fig. 1a) the ratio is about 1.64 at 35°N,
so that the regional modes may indeed be “local” in
this sense. Evidence that absolute instability and its
attendant local modes are not confined to the two-
level model is given by the multilevel stability analyses
of Frederiksen (1979b), which show the same kind of
horizontal structures as seen in the two-level model
results.

Further experiments have been carried out with
other idealized flows. When the basic state has only
one trough instead of two, the results are little changed;
there being now only a single modal storm track, al-
though there tend to be fewer regional modes and more
regionally intensified hemispheric modes. The main
effect of adding a ridge downstream of an isolated
trough (Fig. 2a) is to cause the modal storm track to
split around the positive streamfunction anomaly, as
illustrated by the fastest-growing mode in Fig. 2b. In
the above experiments, the growth rate of the fastest-
growing mode was not found to change greatly. How-
ever, when the zonally symmetric part of the basic state
is considered alone, the fastest growing mode has a
somewhat higher growth rate of 0.56 day ™!, indicating
that the equivalent barotropic anomalies have, in gen-
eral, a stabilizing effect.

4. Instability of a winter climatological flow

In this section we consider the three-dimensional
linear instability of the six-winter ECMWF climatology,
illustrated in Fig. 3a. The trough over the western Pa-
cific is stronger and larger scale than that over the east
coast of North America, and much more baroclinic.
Figure 3b illustrates the standard deviation of the
bandpass filtered y-streamfunction, where the filter
(Blackmon and Lau 1980) retains oscillations with pe-
riods between approximately 2% and 6 days. In contrast
to the relative weakness of the Atlantic jet, the bandpass
eddy activity over the northwest Atlantic is, if anything,
stronger than that over the central Pacific. Both storm
tracks lie downstream and slightly poleward of the cli-
matological jets.

a. Eigenmodes

The frictionless eigenvalue problem in section 2 was
solved for the above basic state, using Ay = 30 K, and
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FIG. 2. As Fig. la and 1b, but for idealized basic state consisting of a trough at 0°W and a ridge of equal magnitude at 90°E.

both basic state and perturbation truncated at T21.
The complete spectrum of eigenvalues is shown in Fig.
4a, where for each complex-conjugate eigenvalue pair,
only the member corresponding to nonnegative angular
frequency is plotted. Because the effect of friction has
been excluded, there are as many decaying as growing
modes, and the eigenvalues are distributed rather sym-
metrically with respect to the zero growth rate axis.
The majority of modes are concentrated about the or-
igin of Fig. 4a; having small growth rates and large
periods. Although the fastest-growing modes have sim-
ilar growth rates, they have a broad range of frequen-
cies.

As in the previous section, a subjective classification
of the spatial modal structures can be made, as illus-
trated in Fig. 4b, which shows the eigenvalues of tte
20 fastest-growing modes (growth rate vs period); ex-
cept mode 19 which has an infinite period. Here a pri-
mary distinction has been made between modes with
storm-track like structures-(synoptic scale, monopole
zonal midlatitude wavetrains), and those with larger
scale structures (““other modes” in Fig. 4b). The storin
track modes may be subdivided according to their spa-
tial scale and regionality, and in Fig. 4b we distinguish
between highly localized “Pacific” modes, “Pacific-
Atlantic” modes which extend over both oceans, and

FIG. 3. ECMWEF six-winter climatology (T21). (a) Time mean: contours of y (thin contours) at intervals of 10 X 10 m?s~!, and the
15 and 25 m s~! isotachs of |vz| (thick lines). Maxima of |vs| (m s~') are also shown. (b) Standard deviation of bandpass filtered y; units

106m?s™!,
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spatial structure, see text. Key to modal structure: (+) “Pacific” modes, () “Pacific-Atlantic modes, () less regionally confined storm-

track modes, and (O) other modes.

less longitudinally confined storm-track modes, which
have quasi-hemispheric extent. As can be seen from
Fig. 4b, the above classification is a strong function of
modal period, and modes with periods less than about
4 days tend to be those with a meaningfully regional
storm-track structure, which we refer to as cyclogenesis
modes (Frederiksen 1982). It is found that eigenmodes
with similar frequencies have structures which are quite
consistent with one another.

Figure 5 illustrates the horizontal structures of the
first six modes (classified by growth rate), with periods
less than or equal to 4 days. For comparison, the two
leading complex EOFs of the bandpass filtered
ECMWF winter data, which both have periods near 4
days (and account for 12.2% and 11.2% of the variance
respectively ), are illustrated in Fig. 6. As is the case
with the cyclogenesis-type eigenmodes, the quadrature
phase structure of the complex EOFs closely resembles
the one shown, being simply shifted a quarter wave-
length in space. Both EOFs have similar structures over
both Pacific and Atlantic, so that it is clear that they
may not be interpreted individually as physical modes.
Indeed, by evaluating the empirical standard errors of
the EOF eigenvalues, it is found that these two EOFs
are not distinct from one another (while being clearly
distinct from the remaining EOFs), and must be con-
sidered together in order to represent the observed syn-
optic-scale eddies over the Pacific or Atlantic.

Modes 2 and 12 (Figs. 5a, e; modes ordered by
growth rate, mode | being the fastest growing) have
the shortest periods (7 < 2 days), and are examples
of the “Pacific” modes. They have intense local activity
over the central Pacific in the region of the observed
Pacific storm track. These modes apparently resemble
the EOF:s quite closely over the Pacific, both in location
and structure, although they are slightly smaller in scale,
and situated a few degrees further south. Modes 4, 9
and 13 (panels b, ¢ and f in Fig. 5) are examples of
“Pacific-Atlantic” modes, which are somewhat less lo-

cally confined, having activity over the Atlantic and
North America as well. These somewhat slower-oscil-
lating modes have slightly larger spatial scales, more
in agreement with the EOFs, but are not so locally
confined over the Pacific or Atlantic. Mode 10 (Fig.
5d) is typical of those modes with periods between
about 4 and 5 days, which are still less longitudinally
confined, and have increasingly larger spatial scales.
It is noteworthy that there are no purely Atlantic
modes among the cyclogenesis modes, and indeed very
rarely does a mode have an Atlantic storm track which
is more pronounced than that over the Pacific. How-
ever, the basic state (Fig. 3a) does indeed have much
weaker baroclinity in the region of the Atlantic jet. A
similar study by Frederiksen (1982), which also in-
cludes some nongeostrophic effects (the so-called “P-
model’), is in general agreement with the above find-
ings. However, the fastest-growing mode is found not
only to be a cyclogenesis mode, but has maximum ac-
tivity over the Atlantic. Although Frederiksen (1982)
uses a somewhat higher spatial resolution for the per-
turbation, and a lower value of static stability (A, = 23
K), one wonders if these differences might be due to
differences between the B-model (used here), and
Frederiksen’s P-model, which allows the Coriolis pa-
rameter to vary in the divergence term in the thermal
vorticity equation, and in the thermal wind equation.
Frederiksen (1978b) has compared the Phillips ( 1954 )
instability criterion for both models. He concludes that
the B-model is increasingly more unstable than the P-
model equatorward of about 45°, and slightly more
stable than the P-model to the north. This probably
explains why our Pacific modes are situated slightly
too far south. Nevertheless it is puzzling, given the rel-
atively weak baroclinity in the Atlantic jet and the small
difference in latitude between the Pacific and Atlantic
jet axes, why Frederiksen’s Atlantic modal activity
should be so strong. One possibility is that the strong
baroclinic zone associated with the Pacific jet extends
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FIG. 5. The y-streamfunctions at time ¢ = 0 for the six fastest-growing modes with periods less than 4 days in Fig. 4. Modes ordered by
growth rate, modal period, in days, in brackets; (a) mode 2 (1.9), (b) mode 4 (3.2), (¢) mode 9 (2.3), (d) mode 10 (3.7), (e) mode 12

(1.5), (f) mode 13 (2.8). Otherwise as Fig. 1b.

8QDXWKHQWLFDWHG _ 'RZQORDGHG



15 SEPTEMBER 1989

ANDREW W, ROBERTSON AND WERNER METZ

2791

FIG. 6. The two leading complex EOFs of six-winter bandpass y (T21) at arbitrary time. Contour interval 0.5 X 10° m? s~!, negative
dashed, zero contour omitted. Mode 1 (a) explains 12.2% of the variance and has a period of about 4.0 days. The figures for mode 2 (b)

are 11.2% and 3.9 days, respectively.

appreciably southward of the jet axis, and may thus
have an exaggerated influence on instability in the B-
model.

b. Pattern correlation

In order to quantify the extent to which the spatial
structures of fastest-growing modes resemble those of
extratropical cyclones, the skill with which the first two
complex bandpass EOFs (Fig. 6) taken together ac-
count for the spatial variance of each of the leading 20
eigenmodes has been computed. Because the EOFs are
orthogonal by definition, the skill is simply given by

5@ =10 ®, e + | C(x P, e @),
where
k —
C(x( )’ e(l)) = (x(k).e(l)*)/(lx(k)IZ!e(!)!Z)I/Z

I=1,2

is the complex pattern correlation between the V-
streamfunction vector of eigenmode k, x %), and that
of EOF /, eV. By performing the pattern correlations
in spectral space, the arbitrary phases of the EOFs and
eigenmodes are of no concern. With 121 spatial degrees
of freedom, a one-tailed test of the pattern correlation
suggests skill scores of >0.15 to be statistically highly
significant (99.9% level).

Figure 7 illustrates the skills S*) for the 20 fastest-
growing modes (again mode 19 omitted), together with
the subjective mode classification of Fig. 4b and the
mode index. The skill is clearly a function of model
period, as was our subjective classification. However,
the skill peaks at about 4 days, and the modes with the
highest skills are those with quite extensive storm-
tracklike structures, whose spatial scale and latitude

compare well with the EOFs. The very localized Pacific
maodes are too small scale, and are situated too far south
to correlate well with the EOFs. Nevertheless, the skill
scores generally support our selection by frequency of
the cyclogenesis modes.

c¢. Static stability parameter

In order to investigate the effect of changing the static
stability parameter, the above analysis was repeated
with A, = 24 and 36 K. Figure 8 illustrates the eigen-
values of the 20 fastest-growing modes, together with
approximate values of §® for each mode for the three
cases Afy = 24, 30 and 36 K (modes with periods > 20
days have again been omitted). While the most obvious

50.
40.
| 4
X
—~ 30 -
5 '3\3
S ¥y
> 20. DE
v Pt '?g)
10. ?
0 i 1 (53“ 18 !l !gl
0. 4. 8. 12. 16. 20.

Period (days)

FIG. 7. The skill with which the EOFs in Fig. 6 account for the -
streamfunction fields of the eigenmodes whose eigenvalues are plotted
in Fig. 4b. The eigenmode index of each mode is also plotted; symbols
as in Fig. 4b.,
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65 [ o 0 _ ques with very short periods and small spatial scales,

: | ¥, 2 a which correlate poorly with the leading bandpass fil-
® 55 | o tered EOFs. Increasing the static stability so that A6,
z L 1 39 2, = 36 K has the opposite effect, making the high-fre-
= 45 ¢ 1 0 . quency cyclogenesis modes rarer among the fastest-
° i 0 © growing modes, which are now rather slow growing.
E 35 i ! : Fewer very high frequency modes are present, so that
o 25 L highly localized Pacific modes are less common. For
T | . the purposes of producing cyclogenesis modes which
S 15 can be best identified with the observations, and in
© r order to obtain growth rates comparable with multilevel

.05 o ; ;3 ' 1'2 ' 116 ", model results (Simons and Hoskins 1976), a static sta-

bility parameter corresponding to about A6, = 30 K

Period (days) (Fig. 8b) is required.

d. Surface friction
. 68 - b In the above it has been assumed that the effect of
B .55 1 " dissipation, and in particular surface friction, on the
Z 13 g - perturbation is negligible.- It can be shown that the effect
o 45 2 4 10 0 of uniform linear dissipation in the B-model is simply
8 a5 | %8 2 0 0 to shift the modal growth rates by an amount equal to
g I 12 0 o the damping time scale, while leaving the frequencies
g 25 0 and structures of the modes unchanged. Thus uniforrn
E Rayleigh drag and Newtonian cooling with 10 day
ST damping time scales would result only in a decrease of
05‘ [ ) , L 0.1 day ! in the growth rates, so that we do not expect
o, 4. 8. 12. 18. o0. surface friction to radically change the results. The sta-
Period (days) bility analysis was repeated with Ekman damping in-
' cluded (damping time scale 7 days), as described in
section 2. Figure 9 shows the eigenvalues of the 20
85 C fastest-growing modes together with approximate val-
— ' ues of S%}. The growth rates are only about 0.1 day !
E‘ 55 . less than in the frictionless case (Fig. 8b), so that ir-
~ I 1 cluding an Ekman layer does not drastically damp the
— .45 I X
~ i o o fastest-growing modes. Furthermore, the spectrum of
S 35 | o3 3 "o modal structures, as indicated by the S*) values, is
g 31 0 also not essentially different from the frictionless case.
g .25 3 3 , ° In the following, we will restrict our discussion to the
E T o 0 0 frictionless case.
& .15 F
o r
.05 1 L . . -
0. 4. 8. 12. 16. 20.
Period (days) 85 L
'FIG. 8. The result of changing A#f, in the stability analysis (winter = 55 _
climate, T21). (a) Afy = ;4 K, (b) A6, = 30 Kz and (c).Aﬂo =36 ,g ' |
K. Each panel shows the eigenvalues, together with the skill class of ~
S associated with the modes, for the 20 fastest growing modes for o 45 o
each case (modes with periods greater than 20 days are excluded). o r
Key to skill classes: (0), [0.0, 0.1); (1), [0.1, 0.2);(2), [0.2,03); & -35 | 4, 1 0
(3),10.3,0.4);(4),[0.4,0.5). = [ 2 4
4 .25 | ®, - 1 g 0
'; 0 2 00 V] :
S .15 |
effect of decreasing the static stability is to increase the © I ) . .
growth rates of the modes, the frequencies of the fastest- 05 0. 4 8 12 ; 6 ' 20
growing modes also show a marked increase, so that " Period ( days). ' ’

with Afy = 24 K, the cyclogenesis class of mode are
now, in general, the fastest growing (though with very  gyg. 9. Effect of Ekman pumping with 7-day damping time scalc.
large growth rates). However, there are now more Otherwise as in Fig. 8b.
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e. Spatial scale separation

From the point of view of low-order models, it would
be useful to know if the basic-state planetary waves
alone contain enough information for the stability
analysis. We have thus truncated the six-winter basic
state rhomboidally at zonal wavenumber 4 (R4), and
also restricted the perturbation to the synoptic-scale
regime corresponding to the subset T21 minus R4. The
effect of excluding the synoptic scales from the basic
state is to weaken the Pacific trough and downstream
ridge a little. The effect is more marked in terms of the
thermal wind whose maximum over Japan is reduced
to only 22.3 m s, while that over the east coast of
North America is strengthened slightly (17.0 m s™!),
so that the strengths of the two maxima become more
comparable.

With the perturbation restricted to T21-R4, there
are 80 fewer degrees of freedom and many of the lower-
frequency modes, which are generally planetary-scale,
no longer appear. The eigenvalues of the 20 fastest
growing modes together with their skill classes are il-
lustrated in Fig. 10. In comparison with Fig. 8b, there
is more differentiation in growth rate between the
modes, fewer very high-frequency modes, and a ten-
dency for the fastest-growing modes to be cyclogenesis
modes with the highest skills. The modal structures
(not shown) are rather similar to their T2 1-basic-state
counterparts, and there is little tendency for cyclonic
activity to be relatively stronger over the Atlantic,
though the very high frequency, highly localized Pacific
modes are now largely absent. The above experiment
was repeated with the R4 components retained in the
perturbation, with indistinguishable results for the
modes with periods less than about 4'2 days; i.e., the
cyclogenesis modes.

f. Random phase ensemble averages (RPEAs)

For the purpose of a convenient comparison of the
spatial distribution of the temporal variance that is as-

65

45 3

3 + ? o

15

Growth rate (1/day)

'05 1 1 n I 1
0. 4. 8 12. 16.

Period (days)

20.

- FI1G. 10. Effect of spatial scale separation: basic state R4,
perturbation T21 — R4, Otherwise as Fig. 8b.

ANDREW W. ROBERTSON AND WERNER METZ

FIG. 11. Composite of the RPEA standard deviations of the six
y-streamfunction modes in Fig. 5. Magnitudes arbitrary.

sociated with a particular normal mode, we adopt the
RPEA method of Frederiksen (1982). The ensemble,
over which we average, is taken to consist of all phases
of the eigenmode with equal probability. Writing the
zonal asymmetric part of the real eigenmode -
streamfunction structure, with arbitrary phase o as

YN, ) = Pt + Preie
where

V=2 2 ¥ e P (p).
Then the RPEA variance is defined as
O -
(W) =5 ) () de = 21917,
T JO

Figure 11 shows the result of calculating the square
root of the RPEA variance for each of the y-stream-
function modes in Fig. 5, and then averaging the six
envelopes together, giving each mode equal weight. Al-
though the amplitude of the resulting composite or
“linear storm track” is arbitrary, we see that taking the
leading cyclogenesis modes together captures the ob-
served Pacific storm track (Fig. 3b) quite well, except
that it is situated somewhat too far southeastward.
However, as we saw from the individual modes in the
composite, the Atlantic storm track is too weak relative
to that over the Pacific, and has no separate maximum.
The resulting linear storm tracks are not found to be
very sensitive to the particular selection of the modes
in the composite, though selecting modes with shorter
periods leads to a stronger, more highly localized Pacific
storm track, at the expense of the Atlantic track, and
vice versa.
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5. Instability of anomalous basic flows
a. The basic flows

The anomalous basic states considered in this section
consist of the six-winter climatology of section 4 to
which certain observed low-frequency anomalies have
been added. We use a rotated principal component
analysis (RPCA) of the low-pass filtered six-winter da-
taset to obtain the anomalies. Horel (1981) and Barns-
ton and Livezey (1987) have demonstrated the ability
of RPCA to yield robust patterns similar to the tele-
connection patterns of Wallace and Gutzler (1981),
and the persistent anomaly composites of Dole (1986).

The low-pass filtered (Blackmon and Lau 1980; os-
cillations with periods greater than approximately 10
days retained ) daily streamfunctions from our six-win-
ter dataset (6 X 92 days) were used in the analysis.
The mean seasonal cycle is removed but interannual
variability is retained. The spectral fields of the stream-
functions ¢ and 7 (as defined in section 2) were trans-
formed to an approximately equal-area grid similar to
that used by Barnston and Livezey (1987). The grid
extends from 20°-85°N with a 5° spacing in latitude.
There are 36 points per latitude circle from 20° to
55°N, 24 points at 60° and 65°N, 18 points at 70°
and 75°N, and 9 at 80° and 85°N. The daily data
vector x(¢), from which the covariance matrix was
constructed, was made up of the grid point values for
¥ and 7 together. The resulting normalized EOFs were
scaled by the square root of the corresponding eigen-
value, and the first 20 rotated using an IMSL Varimax
library routine. This cutoff point accounts for 86% of
the total temporal variance, and was found to yield
patterns most resembling those of Dole (1986) and
Barnston and Livezey (1987).

Two of the resulting rotated patterns were selected
for their likeness to the composite 500 mb height per-
sistent anomalies of Dole (1986 ). Rotated EOF 2 (Figs.
12a, b) accounts for 6.5% of the low-pass filtered tem-
poral variance, and has a Pacific/North American
(PNA )-like structure, which is similar to Dole’s Pacific
positive composite. Figure 14a, b illustrates rotated
EOF 13, (3.5% variance ) which is very similar to Dole’s
Atlantic pattern [ Barnston and Livezey’s EA pattern].
In addition, a NAO pattern (rotated EOF 5, 5.9% vari-
ance; Figs. 16a, b) was also selected in order to inves-
tigate the effect of low-frequency variability in the At-
_ lantic jet exit region. All three patterns have equivalent
barotropic structures and are quite robust. Very similar
patterns were obtained using 11 winters of German
Weather Service data (1967/68-1977/78), and also
by an oblique rotation, as well as when only 10 EOFs
are rotated. Thus although six winters is an undesirably
short period for a low-pass filtered EOF analysis, and
the patterns may not be statistically significant, their
robustness, as well as their similarity with patterns
found in other studies, is evidence of their physical
relevance.
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Six anomalous basic states are obtained by adding
each of the above rotated EOFs (scaling to an ampli-
tude of two standard deviations), with a positive and
a negative sign to the climatological basic flow. They
are illustrated in panels (c) (positive phase anomalies),
and (d) (negative phase anomalies) of Figs. 12, 14 and
16 respectively. In each panel, the Y-component of the
basic flow is illustrated together with the 15 and 25
s~! isotachs of the associated thermal wind between
850 and 300 mb.

b. Linear stability analysis

The stability analysis was performed using Af, = 30
K, and with both the basic state and the perturbation
truncated at T21. The eigenvalue of the fastest-growing
mode for each of the six cases is given in Table 2. The
superposition of low-frequency anomalies generally
results in small increases in the growth rates of the
fastest-growing modes. As in the previous section,
RPEA variances of the leading cyclogenesis mode -
streamfunctions have been constructed. For each case,
we calculate the square root of the RPEA variance for
each of the leading cyclogenesis modes, and average
them together to produce a composite or linear storra
track for each anomalous basic flow. Here, the six fasi-
est-growing modes with periods between 2 and 44 days
are taken to define the leading cyclogenesis modes
which make up the composites. Thus, the very short-
period highly localized Pacific modes are neglected|,
while some of the less regionally confined slower modes
with higher Atlantic activity are included. This some-
what accentuates the Atlantic storm track.

1) PACIFIC/NORTH AMERICAN CASE (PNA)

Figure 12 illustrates the PNA case. The main differ-
ence between the basic states associated with the pos-
itive phase (Fig. 12¢; rotated EOF 2 added), and th:
negative phase (Fig. 12d; EOF subtracted) of the pat-
tern is the anomalous trough /ridge over the east Pacific;
though in the negative phase the jet over the east coast

TABLE 2. Eigenvalue of the fastest-growing mode for the six anom-
alous basic states (section 5), and for the winter climatological basi:
state (CLIMATE).

Angular freq. Period, Growth rate,
| wrl T Wi
Experiment (° day™) (days) (days™)
CLIMATE 77 4.7 0.54
+ PNA 82 44 0.54
- PNA 71 5.1 0.59
+ EA 85 4.2 0.63
— EA 84 4.3 0.58
+ NAO 123 2.9 0.58
— NAO 88 4.1 0.64
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