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ABSTRACT

In a validation experiment of a hybrid isentropic-sigma coordinate primitive equation model developed at
the University of Wisconsin (the UW #-¢ model), an initial value technique is used to investigate numerically
the normal-imode characteristics of baroclinically amplifying disturbances over a spectrum of meteorologically
significant wavelengths. The experiments are designed to determine the impact of coupling an isentropic-coordinate
free atmospheric domain to a sigma-coordinate planetary boundary layer (PBL) on the normal-mode charac-
teristics. The growth rate and phase speed spectra of the most unstable normal modes are obtained for an
analytically prescribed zonal flow field. The evolution and vertical structure of the kinetic energy, energy con-
versions, growth rates, and geopotential fields are investigated.

Several modifications have been made to earlier versions of the UW #- ¢ model to overcome noise introduced
by adjustments associated with emerging and submerging grid volumes at the sigma-isentropic interface. With
these modifications, the hybrid model accurately simulates the evolution and structure of normal-mode baroclinic
disturbances for all wavenumbers considered except for wavenumber two. The normal-mode growth rate and
phase speed spectra compare well with previous studies using standard sigma coordinate models. There is no
evidence of aliasing the baroclinic normal-mode characteristics due to the coupling of isentropic and sigma

domains.

1. Introduction

While the validity of atmospheric isentropic analysis
is recognized, the utility of isentropic coordinates in
numerical models has remained undetermined and
relatively unexplored. The use of isentropic coordinates
for prediction has several advantages (Arakawa and
Hsu 1988; Hsu 1988). With isentropic flow the vertical
coordinate surface becomes a material surface with the
result that prediction of three-dimensional transport
reduces to two spatial dimensions, and truncation er-
rors associated with the vertical transport of properties
are eliminated. Another advantage occurs in hyper-
baroclinic regions of strong vertical wind shear where
local increases in vertical resolution are obtained
(Shapiro and Hastings 1973; Dutton 1976). This
adaptive nature of the system suggests that the number
of computational levels required to accurately predict
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frontal processes will be reduced. These advantages,
plus the conditions that energy exchange is directly
linked with mass exchange (Johnson 1989) and the
relative ease numerically to ensure conservation of po-
tential vorticity { Arakawa and Hsu 1988), simplify
modeling of nonlinear processes and suggest that the
use of the isentropic coordinates for numerical predic-
tion should be studied.

In spite of these potential advantages and others (Hsu
1988), very few investigators have pursued isentropic
modeling. This lack of activity primarily stems from
the computational problems associated with the inter-
section of isentropic surfaces with the earth’s surface.
Weak static stabilities coupled with baroclinicity in the
planetary boundary layer (PBL) cause isentropic sur-
faces to become nearly vertical and intersect the ground
at steep angles with a degradation of the vertical res-
olution. In the extreme, with superadiabatic conditions
isentropic coordinates fail completely.

Coupling an isentropic coordinate model for the
“free atmosphere” with a sigma-coordinate model
(Phillips 1957) for the PBL has been used to overcome
these problems while retaining the advantages of is-
entropic coordinates in the free atmosphere (Deaven
1976; Gall 1972; Gall and Johnson 1977, Bleck 1978;
Uccellini et al. 1979; Black 1984, 1987). However, the
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coupling introduces an “interface” between the two
model domairs, the computatlonal complexity of
which may adversely impact the forecast.

A hybrid isentropic~sigma primitive equation model
has been developed at the University of Wlsconsm
(Gall 1972; Gall and Johnson 1977; Uccellini et al.
1979; Black 1984). In the initidl devélopment, Gall
studied jet streak frontal circulations in relation to la-
tent heating, but did not provide for transport of prop-
erties across the interface. Subsequently Uccellini et al.
(1979) resolved the exchange of mass and other prop-
erties across the interface under conditions of adiabatic
flow and studied the coupling of upper- and lower-
tropospheric jet streaks. Later, Black ( 1984) included
diabatic processes to study the effects of latent heat
release on jet streak circulations. The Black version of
the UW §-¢6 model has now been extended to a hemi-

spheric domain with improvements to be described
here.

The objective of this study is to demonstrate the
capability of a hybrid model to simulate baroclinic
processes over a spectrum of scales from planetary- to
cyclone—scale waves (wavenumbers 2 to 14). An initial
value technique (Brown 1969) is used to determine
the normal-mode growth rate and phase speed spectra
of the waves,. and the characteristics of the most un-
stable normal modes are investigated. A comparison
of the results from these experiments with Gall’s
(1976a,b) provides for validation of the UW 6-¢
model. ‘ _

Since the normal-mode simulations employ small
amplitude perturbations, the “signal-to-noise ratio” is
much smaller than during the simulation of finite am-
plitude waves. Small amplitude perturbations. origi-
nating from noise, however, are a potential source of
error that can contaminate the normal-mode charac-
teristics. These sources of error might also introduce
spurious condensation heating, a problem that imay
have been encountered by Black (1987) in experiments
with a hybrid model developed at the National Mete-
orological Center (NMC). Thus, these experiments in
the simulation of normal-mode baroclinic structure not
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only constitute a stringent test of the model’s interface
formulation, but they are also a forerunner to studies
of the inclusion of moist processes, as provided in Part
II of this paper.

The UW 6-¢ hybrid model is described in sectlon
2. The initial conditions and normal-mode experiments
are discussed in section 3. The evolution and vertical
structure of the growth rates and phase speeds of the
baroclinic disturbances, including a comparison with
Gall’s (1976a) results, are presented in section 4. Sec-
tion 5 provides an analysis of the evolution and vertical
structure of the energy conversions responsible for the
amplification of the disturbances, while section 6 pre-
sents a summary discussion.

2. Model description

The vertical structure of the UW 6-¢ model in Fig:
1 shows a stratosphere confined to one isentropic layer
extending from 355 K to the 475 K surface with a
uniform pressure of 50 mb. Below 355 K the isentropic
vertical fesolution is 10 K. The sigma-coordinate PBL
has three predictive layers with a fixed total pressure
depth of 100 mb. This resolution results in an average
of 10.5 computational levels (7.5 isentropic and 3
sigma). The horizontal resolution of the spherical co-
ordinates in the hemispheric domain is four degrees
both meridionally and longitudinally.

Boundary conditions are periodic longltudmally and
free-slip, zero-flux latitudinally (Gall 1972; Uccellini
et al. 1979). Within the hemispheric ‘domain, grid
points in the channel extend from 2° to 88°N, placing
the north “wall” of the domain at the pole and the
south wall at the equator.

a. Hybrid model equations

The form of the primitive equations in both model
domains provides for flux conservative exchange of at-
mospheric properties across the common boundary.
The isentropic prognostic equations for (u), (v) mo-
mentum, ( p.J,) mass, and (g) water vapor mixing ratio
are, respectively,

a—i(ngu) = —(a COS¢)—1[£\—0 (pJouu) + £; (pJsuv cosd>)] - % (pJbu)
e Pfo(fv 4 wtang ) — pIacos)™ o=+ pJiF,, (1)
‘ a g
3‘3—0 (pJsv) = —(a cos¢)"[ai>\6 (oJouv) + 3‘% (pJgwv cosqb)] - % (pJobv)
’ - PJo(fu + Lo ) — pJoa”! :Tt + odiFs (2)
22 () = —(a °°S"”"1[a_i,, (pJi) + 3= (00 cos¢>] =2 (odb), (3)
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0 _ dq
P (pJog) = —(acosgp)™'| — (pJauq) + (pJov cospg) |~ — (pJan) + pJoF, + pJy Z (4)

Here F, and F, are the frictional sinks of (), (v) momentum, F, the diffusion of water vapor, and J, the
Jacobian of the transformation [dz/ 60] (Johnson 1980) between height and potential temperature. Hydrostatically

the mass pJ; equals —g~'dp/d8 (an inverse static stability). The dry static energy and first law of thermodynamics
are expressed by

o=t [ wab (5)

6=7"'Q, (6)

where 7 = ¢,(p/poo)* is the Exner function, the dry static energy ¥ = 6 + gz is the Montgomery streamfunction,
and Q is the rate of specific heat addition. Since heat addition enters as a diabatic mass flux, isentropic primitive

equations do not include a separate prognostic energy equation.
The primitive equations for the (#) and (v) momenta, (#) potential temperature, and (g) water vapor mixing

ratio within the sigma domain are

) 695
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Here Fj, is the diffusion of potential temperature and
J,, is the Jacobian of the transformation [dz/ds] be-
tween height and sigma (Johnson 1980). The coor-
dinate ¢ for the PBL is

o =(p—pn/Ap, (11)

where Ap is the surface pressure ( p,) minus the interface
pressure (p;). Hydrostatically, the mass pJ, equals
g7 'Ap. Height and the vertical mass flux are given by

b= 6 (a= 1)—“” prda, (12)
pJ, 0 = —(acos¢)™!
“[d(pJou) | 3(pJsv cosg)
Xfl[ SRR ]da. (13)

In Egs. (7) and (8) ¢’, the geopotential departure from
a horizontally invariant, adiabatic reference atmo-
sphere, is given by

¢ = ¢ — c00(Po — PT— P")/Pbo, (14)
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d
(pJ,vg comb)] - (pJ 0q) + pJ.Fg+ pJ,— . (10)

where 6, is the potential temperature of the adiabatic
atmosphere (292.5 K), pr the pressure at the top of
the model is 50 mb, and pyo is 1000 mb. The form of
the pressure gradient force incorporating ¢, using
Phillips’ (1974) suggestion, follows Johnson and
Uccellini (1983).

The mass-continuity equation with a fixed PBL
pressure depth simplifies to a diagnostic equation. The
surface pressure tendency is determined by integrating
the isentropic and sigma-mass-continuity equations
over the depth of the domain. Equations (4) and (10)
for the water vapor transport (used only in Part IT but
included here for completeness) have terms for both
diffusion (pJ,F,) and sources (pJ,dg/dt).

Equations (1)-(4) and (7)-(10) are evaluated using
a second-order flux—conservative box method (Kuri-
hara and Holloway 1967) in both the horizontal and
vertical directions. A predictor—corrector time differ-
encing scheme (Matsuno 1966) is used to control
gravity waves with a time step of 7.5 minutes.
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FIG. 1. Schematic of the hybrid model’s vertical structure showing
the interface between the isentropic free atmosphere and sigma
boundary layer.

b. Numerical filtering

A 16th-order Shapiro filter in the longitudinal di-
rection (Shapiro 1970) and a 6th-order implicit, tan-
gent filter in the latitudinal direction (Raymond 1988)
are used in the UW 6-¢ model, to suppress nonlinear
computational instability. After each time step, the fil-
ters are applied to winds and pressure in the isentropic
domain, the interface pressure (p;), and winds and po-
tential temperature in the sigma domain. Linear com-
putational instability due to the reduction of longitu-
dinal grid spacing near the pole is controlled with a
longitudinal Fourier polar filter ( Takacs and Balgovind
1983); applied at both the Matsuno predictor and cor-
rector steps, it selectively dampens the » and v winds
north of 60°.

In order to maintain sixth-order filter characteristics
at all latitudes, information surfaces are defined quasi
horizontally over the entire model domain plus exterior
strips adjacent to the northern and southern bound-
aries. This definition is even carried out on the “un-
derground” portion- of isentropic surfaces; i.e., those
that intersect the earth’s surface within the channel.
Each strip extends four grid points meridionally. Values
of # and p on isentropic surfaces and u# and 6 on sigma
surfaces are set equal to values inside the channel using
U_; = u; and p_; = p;, where i = 1, 2, 3, 4 indicates
distance from the channel wall. For the u values, this
strip condition is equivalent to “free-slip” at the walls.
In order to ensure that no mass is transported across
the lateral boundaries, the meridional component in
the strip is set equal to the negative inside the model
domain; i.e., v_; = —v;.
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A concern existed that the # and p boundary con-
ditions within the strip might affect the results of the
normal-mode experiments. Consequently, a second
condition was tested: # and p in the strips were com-
puted by linear extrapolation from the two model grid
points closest to the walls. A 10-day integration for the
wavenumber 2 experiment was performed for both
strip boundary conditions. Differences between the re-
sults were insignificant.

A further condition applied is that the zonal com-
ponent just inside the boundary remains geostrophic.
This condition is used to compute the Montgomery
streamfunction and geopotential height just outside the
boundary for the isentropic and sigma domains, re-
spectively.

For underground isentropic surfaces, downward
extrapolation of u, v, and p provides the complete fields
required for filtering. The extrapolation of p onto is-
entropic surfaces assumes linear variation of pressure
with respect to potential temperature, where the ap-
propriate values of p and # are determined from the
two lowest sigma surfaces. To ensure consistency, a
nine-point average of dp/a0 including the central point
and surrounding eight points is used for the downward
extrapolation of the central grid point. Velocity is then
linearly extrapolated with respect to potential temper-
ature. Since extrapolation requires that potential tem-
perature vary monotonically with pressure, slightly
stable lapse rates are maintained with a dry convective
adjustment of potential temperature when the lapse
rate becomes superadiabatic within the sigma domain.

¢. Interface formulation

Interaction between the isentropic and sigma do-
mains occurs through exchange of properties across
the common interface. The vertically integrated hori-
zontal mass convergence within the PBL determines
the vertical mass flux pJ,o through the interface. The
vertical flux of any other specific property f through
the interface is given by pJ,af, where fon the interface
is interpolated between the nearest isentropic and
sigma-gridpoint values. In this manner conservation
is satisfied with respect to transport throughout both
model domains.

The lowest computational volume element in the
isentropic domain is referred to as a “truncated” grid
volume since it is bounded by an isentropic surface
above and the interface below. Isentropic information
surfaces within truncated grid volumes can emerge
from or submerge into the sigma domain in response
to horizontal and vertical fluxes of mass. An indepth
description of the interface formulation and the treat-
ment of emerging and submerging grid volumes is pro-
vided by Uccellini et al. (1979).

Several modifications have been made that signifi-
cantly reduce noise. When grid volumes submerge
(emerge), data in the truncated volumes of the isen-
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tropic domain are lost (must be specified). Although
the computations involving the partition or combi-
nation of grid volumes locally conserve mass, momen-
tum, energy, and moisture with respect to transport,
spatial and temporal perturbations are introduced into
the hydrostatic pressure gradient. These perturbations
of the Montgomery streamfunction result from the
computation of a mean pressure for the “new” trun-
cated grid volume that is not dynamically consistent
with the pressure for the “old” truncated grid volume;
i.e., the isentropic volume adjacent to the interface be-
fore a box emerged or submerged. If these perturbations
are excessive and not damped, resultant numerical
noise contaminates the predicted normal-mode struc-
ture for slowly amplifying planetary waves after several
days of integration.

In the hybrid model developed by Uccellini et al.
(1979), a new truncated grid volume emerges when
the potential temperature increment ( A7) of the old
truncated grid volume is greater than (3A6/2); an old
volume submerges when Af7is less than (A8/2), where
A is the constant potential temperature increment of
the isentropic layers. Ideally, a truncated grid volume
emerges or submerges and remains in its new state for
a period dictated by the evolution of the horizontal
and vertical mass transport. However, in some in-
stances grid volumes emerge and submerge repeatedly
with a period of two time steps. Black (1984) sup-
pressed this “fluttering”™ by introducing a small differ-
ence between the potential temperature for which a
grid volume submerges from that for which a grid vol-
ume emerges. The method described here to eliminate
the noise from the 2A¢ fluttering is a modification of
Black’s method. A small increment in potential tem-
perature 66, (86,) is added to (subtracted from) the
potential temperature increment of the emerging (sub-
merging ) grid volumes. By this convention a new trun-
cated grid volume emerges when

(A0T)e>%A0+ 50, (15)

and an old truncated grid volume submerges when
(Af7)s <

Af — 60;. (16)

N -

The potential temperature increment for emerging grid
volumes (66,) is defined as (A#/20). The potential
temperature increment for submerging grid volumes
(66;) is set equal to (66, ) or one-fourth of the potential
temperature difference between the interface and first

sigma level, whichever of the two values is smaller.

With the present vertical resolution, these increments
result in a 0.5 K (0.5 K or less) threshold for emerging
(submerging ) grid volumes. These thresholds eliminate
flutter, thereby sharply reducing high-frequency noise
at the interface.

An additional modification of Uccellini’s et al.
(1979) formulation has been incorporated for sub-
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merging volumes. When an isentropic grid volume
submerges, the vertical resolution is locally reduced as
a new truncated grid volume is formed by combining
the old truncated grid volume and the old complete
grid volume above it. This reduction in vertical reso-
lution introduces a shock in the pressure gradient force
that stems from the calculation of the mean pressure
for the new truncated grid volume and a resulting hy-
drostatic determination of the Montgomery stream-
function through the column that is not consistent with
the old. In order to reduce the shock, the mean pressure
for the new truncated grid volume is determined by
exponentially nudging the mean pressure from the old
complete grid volume to the value for the new trun-
cated volume with an e-folding time of 30 time steps,
thereby allowing the pressure gradient force to evolve
gradually.

3. Normal-mode experiments

These experiments using the initial value technique
outlined by Brown (1969) provide a stringent test of
model sensitivity to coupling isentropic and sigma
model domains. The amplitude of the initial wave per-
turbation is comparable to the amplitude of the noise
associated with emerging and submerging grid volumes
(see Fig. 14 of Uccellini et al. 1979). However, Brown’s
(1969) initial value technique often has poor conver-
gence characteristics for slowly growing modes. A total
of seven 10-day adiabatic simulations without diffusion
were performed to determine the normal-mode char-
acteristics for even zonal wavenumbers between 2
and 14.

a. Initial conditions

The analytic initial conditions for each normal-mode
experiment are composed of the sum of a prescribed
zonal flow plus a small amplitude wave perturbation.
The method for obtaining the initial conditions here,
and for the finite amplitude simulations presented in
Part 1II of these papers, follows Eliassen and Raustein
(1968) and Raustein and Eliassen (1970). A complete
description of the method is presented in appendix A;
only a brief overview is provided here. The procedure
begins with a specification of surface pressure, potential
temperature, and height. Three mean lapse rates are
used to define the thermal structure aloft, one each for
the lower, middle, and upper troposphere. An addi-
tional parameter for each of the layers controls the me-
ridional variation of the lapse rate. The pressure gra-
dient is then determined from the hydrostatic thermal
structure from which geostrophic zonal winds are cal-
culated.

A small amplitude barotropic wavenumber (n) per-
turbation is added to the zonal winds by introducing
an analytic surface pressure perturbation with an am-
plitude of 1 mb. This introduces a vertically uniform
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perturbation from which geostrophic perturbation ve-
locities on the order of 1 m s™! for all wavenumbers
are determined. Table 1 in appendix A presents the
parameter values used for initial conditions.

Figure 2a shows the initial meridional distribution
of geostrophic zonal winds and potential temperature.
The distribution of the spherical Richardson number
(Gall 1976a)

—lég 2
. (a() apf
R“( au 2tan¢6U)2 (17)
e
ap a OJp

is presented in Fig. 2b. This number, a measure of the
stability of the zonal flow, reflects the combined desta-
bilizing effects of stronger vertical wind shear and
weaker static stability. Gall (1976a) considered the lin-
ear stability of two zonal basic states: the first, in Figs.
3a,b, was determined from a general circulation model
(hereafter “GCM?” zonal flow); the second, Figs. 4a,b,
was determined from the observed zonal flow in the
Northern Hemisphere winter (hereafter ‘“‘observed”
zonal flow).
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A comparison of Figs. 2a, 3a, and 4a shows that
mean observed tropospheric zonal winds are reasonably
represented by the analytic zonal flow field of the pres-
ent experiment. However, the analytically prescribed
zonal flow has a narrower meridional extent than either
the GCM or observed zonal flow considered by Gall,
and the latitude of maximum zonal winds is positioned
about 10° north of the observed zonal flow maximum.
All three zonal flows have weak low-level static stability
and relatively strong vertical wind shear beneath the
tropospheric jet core, the combination of which results
in low spherical Richardson numbers (less than 20) in
the lower troposphere (Figs. 2b, 3b and 4b). The ver-
tical extent of the low, spherical Richardson numbers
is deeper in the analytic zonal flow, while the GCM
zonal flow shows a strong local maximum at low levels
not present in the observed case.

b. The experiments

As part of the validation of the UW 6-¢ model to
simulate baroclinic processes, the normal-mode char-
acteristics as documented will establish that errors
stemming from interactions between the initial per-
turbation and computational noise associated with the
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FIG. 3. Reproduction of Gall’s (1976a) (a) GCM zonal mean wind (m s~') and (b) spherical Richardson number.

interface are minimal. For this test, nonlinearity must
be retained to properly determine the impact of the
interface on the normal modes of the primitive equa-
tion system. However, the normal-mode structure can
still be determined provided that the initial perturba-
tion is small and that a criterion for normal-mode
growth is established, as will be discussed in section 4.
Comparisons are with Gall’s (1976a) results in which
linear normal-mode characteristics were determined
by restricting the tendencies of the prognostic variables
to a particular wavenumber. This removes the nonlin-
ear wave-wave and wave-mean flow interactions.
Gall’s (1976b) simulations included wave-mean flow
interactions to assess the mechanisms for the eventual
decay of finite amplitude disturbances.

The vertical structure and evolution of the meridi-
onally averaged perturbation kinetic energy serves as
an indicator of the disturbance growth. In the present
simulations, the perturbation kinetic energy data are
obtained by interpolating the hybrid model data onto
isobaric surfaces at 50 mb increments. The zonal and
meridional velocities are spectrally filtered on each
surface and in each latitude band to isolate the kinetic
energy of the perturbation under consideration. The
squares of the resulting spectral amplitudes are then
integrated meridionally giving the total perturbation
kinetic energy K,, on each isobaric surface.

Figures 5a-c show the perturbation kinetic energy
distribution as a function of pressure and time for
wavenumbers 4, 8, and 12 (values are scaled against

8QDXWKHQWLFDWHG _

'RZQORDGHG



2012

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 48, No. 18

PRESSURE (mb)

315 4

500 -1

685
835

HEIGHT (Km)

T
50

LN

-
40 35

LATITUDE

(OBSERVED)
\\\\\
65 N5
\
10 -4

190

PRESSURE (mb)

¥

Y ¥ U
50 45 40 35 30 25 20 15 10 5 o

- 30

|25

00

o
HEIGHT {Km)

LATITUDE
FI1G. 4. Reproduction of Gall’s (1976a) (2) observed zonal mean wind (m s™') and (b) spherical Richardson number.

the maximum value for each wavenumber). Wave-
number 8 and 12 disturbances initially amplify rapidly
and then begin to decay by days 7 and 6, respectively.
The wavenumber 4 disturbance amplifies throughout
the entire 10-day simulation. The wavenumber 12 ki-
netic energy maximum remains in the low troposphere,
while the wavenumber 8 kinetic energy initially in-
creases in the low troposphere and then develops a
secondary maximum near 400 mb as finite amplitude
is reached. During the final two days of the simulation,
the wavenumber 4 disturbance, which ceases to amplify
below 700 mb, develops a strong maximum in kinetic
energy near the tropopause.

The hybrid model simulation of the structural
changes of the wavenumber 8 and 12 kinetic energy is

consistent with Gall’s (1976b) analysis of growing
baroclinic waves. Gall attributed the development of
a maximum in intermediate-scale kinetic energy at
upper levels to wave-induced changes in the low-level
zonal temperature structure. From an increase of the
static stability, he concluded that shorter wavelengths
extract available potential energy from the low-level
thermal structure of the zonal flow. The longer wave-
lengths, such as 4, initially amplify by the same mech-
anisms. However, because they are deeper disturbances,
these wavelengths are able to extract available potential
energy from midlevel zonal baroclinicity once finite
amplitude is obtained; the changes in the vertical
structure of the wavenumber 8 disturbance likely occur
via similar processes.
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4. Normal-mode characteristics of the hybrid model
simulations

Since linearity is not imposed, the linear growth rates
and phase speeds cannot be obtained by indefinite
model integration. Instead, the vertical structure of the
perturbation growth rate and phase speeds are moni-
tored to determine the period of normal-mode growth;
i.e., when growth rate and phase speed are constant.

a. Period of normal-mode growth

Following Gall (1976a), the evolution of a particular
zonal wavenumber’s linear normal mode is assumed
to be of the form

S = So explin(A — ct)], (18)

where the complex phase speed (¢ = ¢, + ic;) and am-
plitude (S, = S, — iS;) are constant for each wave-
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number (7). The real and imaginary parts (subscripts
r, i) are the phase speed and growth rate, respectively.
As discussed in section 3 the growth rate is defined by

1 dK,
ne; _ZK,, 7 (19)
while the phase speed is computed from (Gall 1976a):
_ 1 ds; ds,
= R(SE+ S [ &S ] (20)

where S, and S; are the spectral coeflicients of the per-
turbation temperature fields. The quantities are com-
puted as a function of pressure and time for each nor-
mal-mode experiment. The growth rates ¢; are com-
puted from the same data used to produce Fig. 6. The
phase speeds ¢, were computed for each meridional
zone at each pressure level. To minimize the effect of
rapidly propagating inertial gravity waves (allowed by
the primitive equations), an amplitude-weighted lati-
tudinal-average phase speed was computed by

f {S?+ S7?}%c,do

¢ = . (21)
f{Si2+Sr2}1/2d¢

Figures 6a-f show the computed growth rate and
phase speed for the wavenumber 4, 8 and 12 experi-
ments, respectively. Rapid changes during the early
part of the experiments are associated with the initial
adjustment prior to baroclinic amplification. During
decay, the wavenumber 8 disturbance (Fig. 6¢) has
nearly constant decay rates above 800 mb, while the
wavenumber 12 disturbance (Fig. 6e) decays most
rapidly above 500 mb. The wavenumber 4 growth rate
distribution (Fig. 6a), which reflects the larger scale
heights and longer time scales of the planetary-scale
normal modes, is both spatially and temporally
smoother than that of the higher wavenumbers, There
is no evidence of any aliasing of the initial adjustment,
amplification, or decay of the disturbances due to the
model interface in either the disturbance growth rate
or phase speed for any of the wavenumbers.

Determination of the period of normal-mode growth
requires four steps. First, every 12 h the amplitude of

the complex phase speed
le| =(c?+cH)'? (22)

was computed at each isobaric level. Second, the am-
plitude of the change of complex phase speed with
dc

pressure,
2 \271/2
de| _[(de , ()]
dp dp dp

was computed at each isobaric level. (For the top and
bottom isobaric layers, single-sided computations of
dc/dp were performed, so there were as many values

(23)
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of dc/dp as of ¢.) Third, the sum of both dc/dp and
of ¢ were computed over all pressure levels. The ratio
of these sums, expressed as a percentage, is plotted in
Fig. 7 for all wavenumber experiments during the entire
10-day integration. A period of initial adjustment of
at least 48 h occurs for all wavenumbers, with smaller
changes and longer adjustment periods being prevalent
for the larger scale waves. Since true normal-mode
growth would be characterized by a zero in the data of
Fig. 7, the fourth and final step in selecting the time
of normal-mode growth was to find the minimum for
each wavenumber. The large dots in Fig. 7 show the

times selected. -

b. Growth rate and phase speed spectra

At the times determined as being normal-mode
growth, the vertical mean of the growth rates and phase
speeds were computed. These results, shown in Figs.
8a,b, include estimates of uncertainty, indicated by the
vertical error bars, obtained from the standard devia-
tion of the growth rates and phase speeds for isobaric
levels from the mean. Comparable results obtained by
Gall (1976a) for the observed and GCM zonal flow
are also shown. The UW 6#-¢ model growth rates are
consistently greater than the growth rates of either the
observed or GMC zonal flows considered by Gall,
probably resulting from the greater depth of the low
Richardson numbers in these experiments over Gall’s.

The growth rate spectrum shows smaller values for
the slowly growing planetary waves (wavenumbers 2
and 4) compared to rapidly growing synoptic-scale
waves (wavenumbers 6 to 14). Gall’s spectra show a
similar transition, although not as pronounced. These
differences likely result from differences in the energy
balance responsible for amplification of the planetary-
and synoptic-scale waves. Gall (1976a) classified plan-
etary-scale normal modes as mixed baroclinic-baro-
tropic modes since perturbation energy is extracted
from the zonal basic state through both baroclinic and
barotropic energy conversions. Conversely, synoptic-
scale normal modes were classified as baroclinic modes
since they extract energy through baroclinic conver-
sions and are barotropically damped.

The phase speeds in Fig. 8 show much less wave-
number dependence than the growth rate spectra. The
estimated error in the wavenumber 2 phase speed (not
shown by error bar) is significantly larger than its mag-
nitude. This and the fact that the vertical variation of
the wavenumber 2 complex phase speed is primarily
associated with the real part (c,) of the complex phase
speed (not shown ) indicates that the initial value tech-
nique was not successful in obtaining a true normal-
mode solution for this longer wavelength. Gall (1976a)
briefly calls attention to difficulties in the determination
of phase speed for the longest wavelengths and does
not report phase speeds for wavenumber 1 for either
the GCM or observed flows.
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c. Vertical structure of the hybrid model normal modes

Figure 9 shows meridional cross sections of the rms
geopotential amplitude for wavenumbers 4, 8, and 12
during the period of normal-mode growth. Figure 10
shows the rms geopotential amplitude for the wave-
numbers 5, 7, and 15 normal modes obtained by Gall
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for the GCM zonal flow. Following Gall, the ampli-

tudes have been scaled such that the maximum for

8QODXWKHQWLFDWHG

each wavenumber is 10 units. The UW 6-¢ model re-
sults show a primary maximum at the surface for all
wavelengths. The wavenumber 4 and 8 disturbances
show a secondary maximum at 150 mb and 300 mb,
respectively, while the wavenumber 12 geopotential
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perturbation is restricted to below 600 mb, similar to
the vertical structure of the wavenumber 5, 7, and 15
perturbations obtained by Gall. The wavenumber 4,
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8, and 12 normal-mode geopotential obtains maximum  (see Fig. 3b).
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_amplitude between 42° and 46°N in the region of
smallest spherical Richardson number (see Fig. 2b),
also similar to Gall’s results for the GCM zonal flow
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Differences between the UW model normal-mode
structure and the structure obtained by Gall are largest
for the planetary-scale unstable modes. The UW model
wavenumber 4 normal mode has a pronounced min-
imum between the surface maximum and the upper
tropospheric secondary maximum. This minimum is
much less pronounced in Gall’s wavenumber 5 unsta-
ble mode, which shows more uniform amplitude in
the middle and upper troposphere. In section 5 we will
show that these differences can be attributed to the
presence of a barotropically amplifying component in
Gall’s planetary-scale unstable modes, which is not
present in the UW model’s planetary-scale normal
modes.

The primary source of kinetic energy from conver-
sion of available potential energy for a wavenumber
(n) is (V,-V¢,). Therefore, an accurate hydrostatic
geopotential distribution is fundamental for the ac-
curate simulation of the evolution of disturbances. The
similarities in the vertical distributions of disturbance
geopotential heights between the hybrid model and of

Gall’s resuits show that the coupling of isentropic and
sigma domains does not adversely affect normal-mode
characteristics in spite of the fact that the primary per-
turbation geopotential maximum of all the UW 6-¢
model normal modes extends through the interface.

5. Energetics

Processes responsible for the growth of the initial
perturbations and final decay of the finite amplitude
disturbances are determined by computing the spectral
kinetic energy budgets for the wavenumber 4, 8 and
12 normal-mode simulations. The inviscid spectral ki-
netic energy equation for a wavenumber (#) pertur-
bation is (Gall 1976b):

0K,

at = (K, Ko + (K, Kp)v — <wnan>m

(24)

In (24) (K, K,,)y is the barotropic kinetic energy con-
version between the mean zonal flow and the wave-
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number (7) perturbation due to the mean horizontal
shear:

m

av

: au "
(K2 Kp)u = —(u,,v,,) m - <U,,U,,> E

tan(4)

a

(25)

Uunvny + t_a_r%b_) V Uty

Here (K, K,,)v denotes barotropic conversions due to
the mean vertical shear,

m m
aUu v
(K, Ka)v = _<unwn> —(9; <vnwn> 3; , (26)

—_—m
and {(wya,y denotes baroclinic conversions between
the wavenumber 7 available potential energy and ki-
netic energy. In these expressions ( m) denotes in-
tegration over the depth of the atmosphere, while (4B

denotes the spectral covariance between quantities A
and B, defined as

(ABY = VA,B, + 4,B,, (27)

where the subscripts r and i denote the real and imag-
inary Fourier coefficients.

The computation of the baroclinic conversion term
is accomplished by determining w via integration of
the horizontal velocity divergence on isobaric surfaces
from the surface to 100 mb in 50 mb increments. The
net vertically integrated divergence is subtracted from
the divergence at each isobaric level in order to remove
any systematic errors stemming from the interpolation
of the hybrid model data to isobaric levels. This cor-
rection, which assumes the vertical velocity to be iden-
tically zero at 100 mb, tends to underestimate the mag-
nitude of the vertical velocity throughout the column,
but removes spurious diagnostic estimates that stem
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