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ABSTRACT

The effects of nonlinear drag on the motion and settling velocity of heavy particles in a turbulent atmosphere
are investigated. The authors approach the problem rather systematically by first considering the response of
particles to much simpler fluid motions that are subprocesses of the more complex turbulent field. The authors
first consider the motion and time response of particles falling under gravity in still fluid. Then the effects of a
sudden gust or step change in relative velocity between a falling particle and its surrounding fluid are investigated.
The authors demonstrate that horizontal relative motion produced by a sudden gust tends to reduce the settling
velocity of a particle. In simple oscillating fluids it is shown that the reduction of settling velocity increases with
increasing amplitude of finid oscillation. The authors also explore the effects of oscillation frequency on the
settling velocity and show that if the period of fluid oscillation is less than the particle response time, then the
settling velocity reduction becomes independent of oscillation frequency. Finally, the authors explore the motion
of heavy particles within simulated isotropic turbulence and show that the effect of nonlinear drag is to produce

a slowing of particle settling velocity.

1. Introduction

A heavy particle is one that has a larger density than
the surrounding fluid so that within a gravitational field
it is negatively buoyant. Both a large raindrop and a
small dust speck qualify as heavy particles, but their
behavior in turbulent flow can be quite different, Past
work has defined at least three fairly distinct regimes
of heavy particle motion that depend primarily on the
ratio of the velocity scale of the fluid o to the terminal
velocity of the particle Wr. The regimes are depicted
in Fig. 1.

If ¢/W, > 1, which corresponds to vigorous fluid
motions and small particles with little inertia, Stommel
(1949) and Manton (1974) have shown that particles
will often follow closed trajectories in idealized tur-
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bulent eddies and thereby remain suspended. In reality
smaller-scale turbulent fluctuations tend to reduce this
eddy-trapping effect, but the average settling velocity
of particles can be greatly reduced in this regime.

For o/W; = 1, which corresponds to somewhat
larger particles and less vigorous fluid motions, Maxey
and Corrsin (1986), Maxey (1987), and Wang and
Maxey (1993) have shown that particles with small to
moderate inertia tend to move outward from the center
of eddies and are often preferentially swept into regions
of downdrafts where they may actually settle out more
rapidly than in still fluid. In this regime a small net
increase in settling velocity has been observed in nu-
merical simulations, but this result has not been con-
firmed experimentally.

Finally for 0 < o/W, < 1, which corresponds to
large and heavy particles in relatively weak fluid mo-
tions, particles pass rapidly and quite vertically through
turbulent eddies, where they experience a series of fluid
gusts as they fall. For sufficiently large particles the
timescale of the fluid velocity fluctuations can be much
smaller than the response time of the particles, and the
net effect is a substantial amount of relative motion
between the particle and the fluid. For particles falling
in the nonlinear drag regime substantial relative motion
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FiG. 1. Three regimes of heavy particle motion.

can produce an appreciable upward force on each par-
ticle, thereby slowing the rate of descent. This nonlin-
ear drag effect has been observed in experiments of
particles falling through vertically oscillating fluids by
Tunstall and Houghton (1968) and Schéneborn
(1975). In addition, Laws (1941) has observed large
raindrops to fall more slowly in atmospheric turbulence
than in still air, perhaps due to this nonlinear drag ef-
fect.

The primary goal of this work is to explore the effect
of nonlinear drag on the motion of heavy particles fall-
ing through moving fluids, especially turbulent fluids,
by calculating the motion of individual particles. The
prediction of particle motion is based upon equations
that predict the natural reaction of particles to applied
fluid dynamic and gravitational forces. We begin our
investigation by first considering the response of par-
ticles to simple fluid motions that represent subpro-
cesses of the more complex turbulent flow. The sim-
plest case considered is a particle falling through a still
fluid. Then a sustained gust is introduced, and the tran-
sient response of the particle is computed. Next, the
response of a falling particle to sinusoidal fluid motions
is considered, and the effects of oscillation amplitude
and frequency are investigated. Finally, we explore the
motion and settling velocity of heavy particles falling
through a simulated field of isotropic turbulence.

2. Equations of particle motion

The horizontal, lateral, and vertical coordinates are
denoted (x, y, z) with unit vectors (i, j, k). The co-
ordinate system is oriented so that the gravitational vec-
tor acts parallel to the z-axis in the —k direction. The
particle velocity vector is V, = (u,, v,, w,), and the
fluid velocity at the position of the particle is V = (u,
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v, w). The relative velocity vectoris V,y = V — V,,
which is the fluid velocity as seen by an observer mov-
ing with the particle. The relative wind vector has com-
POﬂCﬂtS Vrel = (urciv Urets wrel)-

Drag of spherical particles

The drag of spherical particles has been studied ex-
tensively in the past. In its most general form the drag
force vector may be expressed as

wD?
8

where Cj, is the drag coefficient, D is the diameter of
the particle, p is the fluid density, and V,, is the mag-
nitude of the resultant relative velocity vector V,,,. The
drag coefficient Cp, is primarily a function of Reynolds
number, which may be expressed as

. ereID
# R

where p is the absolute viscosity of the fluid.

For Re < 1, called the Stokes regime, C, = 24/Re,
and Eq. (1) reduces to linear form. In other words, the
fluid drag forces are linearly proportional to the relative
velocity between the particle and fluid. For a larger
Reynolds number, Re > 1, fluid drag is nonlinear. This
fundamental difference in the drag force has an impor-
tant effect on particle behavior in moving fluids, and it
is this nonlinear effect on particle motion that is of
interest here.

The drag of spherical particles has been measured
by numerous experimentalists, and a substantial portion
of these data have been summarized by Zahm (1926)
and Hoerner (1958). A plot of measured values of Cp,
as a function of Re from Zahm (1926) is shown in Fig.
2. Below the critical Reynolds number (Re < 10°), the
data points fall near a well-defined curve, called the
standard drag curve. The standard drag curve has been
tabulated by Clift et al. (1978). Numerous empirical
equations have been proposed to describe the standard
drag curve (e.g., Kladas and Georgiou 1993).

White (1974) proposed a simple empirical formula
for calculating the drag coefficient of a sphere over a
wide range of Reynolds number. The drag equation is
expressed as

F=0Cp Pleth ()

Re (2)

3

For Re < 5 X 10?, good agreement is found when c,
= 0.25 and ¢, = 6, as shown in Fig. 2.

Particles are assumed to be spherical with density
P, and we restrict our consideration to heavy particles
with p, > p. It is easily shown that for such heavy
particles terms involving the pressure gradient force,
the virtual mass force, and the Basset force can be ne-
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FiG. 2. Drag measurements compiled by Zahm (1926) compared with the empirical equation proposed by White (1974).

glected; and the equation governing particle motion re-

duces to the following form:
Pr— P

Pp

-8 k. (4)

The motion of each particle is calculated by an ex-
plicit scheme that is iterated over many small time steps
At (Stout et al. 1993). The particle velocity as a func-

tion of time is calculated as

—r

dy,
(Vp)'r+l = (Vp)‘r + ( dt )TAta

(5)
where the subscript 7 denotes the time step. Particles
are released with known initial velocity. The velocity
of the particle at time step 7 + 1 is computed from
values of particle velocity and particle acceleration at
time step 7. Particle acceleration is calculated from
Eq. (4) from known values of relative velocity at time
step 7.

An alternate form of the equation of motion is ob-
tained for the case of a still fluid or a steady and spa-
tially uniform flow. In this case the fluid velocity is
unchanged following the particle or dV/dt = 0, and the
equation of motion can be rewritten in terms of the
relative velocity instead of the particle velocity as

DN _ =Py 32

dt P» 4p, D

This equation is not valid for particles experiencing
unsteady flow.

Vrclvrel . ( 6 )

3. Vertical motion in a still fluid

Consider the motion of a particle released from rest
in a still fluid. In this case, u,y = v,y = 0, and Eq. (6)
reduces to

p 3pG

e _ p—p_3p
dt Pp 4p, D

The relative velocity as a function of time is calculated

as
) At.

The drag coefficient is adjusted at each time step using
White’s drag equation with ¢; = 0.25 and ¢, = 6.

(7

I Weel | Wrel -

dwrel

dt ®)

(Wrel)-r+l = (Wrel)-r + (

a. Terminal velocity

When released, particles naturally accelerate until
the gravitational force is balanced by drag, at which

6
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point the velocity of the particle relative to the fluid
becomes constant. The final steady value of w,, is
called the terminal velocity Wr. By setting Eq. (7)
equal to zero and solving for w,,, we obtain the defi-
nition of W, as

(4D p,—p 12
-8 o
Note that we designate Cpr as the drag coefficient of
the particle when falling at terminal velocity. Similarly,
we define the terminal Reynolds number Rer as the
Reynolds number of the particle when falling at ter-
minal velocity as

(10)

Model predictions of Rer, Cpr, and W; for falling
droplets are shown in Table 1 along with experimental
values from Gunn and Kinzer (1949). The rms error
is less than 3%. It is not surprising that there is good
agreement between the model and these experimental
values since the drag coefficient of spherical particles
was derived from similar experiments. The disagree-
ment at large D is mainly associated with the defor-
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cally (Fuchs 1964). The derivation is shown in the
appendix, and the final solution is

wrel(t) =1- e_'/”

W, (11)

where

_pD?

Ty = 185

As a large and heavy particle accelerates from rest,
the gravitational force is initially so much larger than
the drag force that the latter is negligible. Thus, during
the initial phases of acceleration, the drag term is rel-
atively small, and the proper value of Cp, is not critical.
If by the time the drag term becomes comparable to the
gravitational term the Reynolds number is in the range
102 < Re < 10*, then for all practical purposes the
value of C,, will have nearly reached its final value of
Cpr. Thus, for particles with terminal Reynolds number
within the range 10? < Rer < 10*, the approximation
Cp =~ Cpy may be sufficient. With such an assumption,
we can solve Eq. (7) for the time history of fall within
the nonlinear drag regime. The full derivation is shown
in the appendix, and the final solution is

wrel(t)

(12)

mation of the water drop from spherical shape (e.g., = tanh(?#/7,), (13)
Mason 1957). T
where
b. Time history of fall -
ry of f r=w,/gr—L. (14)
Properly simulating the terminal velocity is impor- Pr
tant, but the same value of terminal velocity can be The ratio of the timescales is
obtained from an improper simulation of the time his- Re,C,
tory of fall. For a particle falling within the Stokes re- Ts _ Rertor (15)
gime the time history of fall can be obtained analyti- Tp 24
TABLE 1. Model predictions of Rey, Cpr, and Wy for water droplets compared with experimentally measured values
from Gunn and Kinzer (1949).
Model Experiment®
D (pm) Rer Cor Wr(ms™") Rer Cor Wr(ms™) 75 (8)
100 1.7 17.3 0.25 1.8 14.8 0.27 0.028
200 9.5 424 0.71 9.6 4.18 0.72 0.073
300 239 2.28 1.19 234 2.37 1.17 0.119
400 44.1 1.58 1.66 43.1 1.65 1.62 0.165
500 69.6 1.24 2.09 68.6 1.28 2.06 0.210
600 100.0 1.04 2.50 98.7 1.06 247 0.252
700 1349 0.903 2.90 133.7 0.920 2.87 0.293
800 174.0 0.811 3.27 174.2 0.810 3.27 0.334
900 217.1 0.742 3.62 2199 0.723 3.67 0.375
1000 263.9 0.689 3.96 268.3 0.666 4.03 0.411
1200 367.8 0.613 4.60 370.7 0.603 4.64 0.474
1400 484.7 0.560 5.20 4819 0.567 5.17 0.528
1600 613.5 0.522 5.76 601.8 0.542 5.65 0.577
1800 753.4 0.493 6.29 729.8 0.525 6.09 0.622
2000 903.8 0.470 6.79 864.1 0.514 6.49 0.662

p=181Xx10"kgm™' s™', p = 1.205 kg m™* (air), and p, = 998.2 kg m™* (water).
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FiG. 3. Numerical and analytical predictions of the vertical relative
velocity of a particle falling through a still fluid.

If Re; < 1, then Cpr = 24/Re;, and we find that 7,
= 7,. On the other hand, if Re; > 1, then 7, and 7,
diverge significantly because 7, is not a valid timescale
within the nonlinear drag regime. Calculated 7, values
for various-diameter water drops based upon their ter-
minal fall velocity as measured by Gunn and Kinzer
(1949) are shown in the last column of Table 1.

A plot of Egs. (11) and (13), along with numerical
solutions for various values of Rer, are shown in Fig.
3. Equation (11) is the limiting case for small Re,, and
Eq. (13) appears to be the limiting case for large Re;.
These two analytical solutions form an envelope within
which all other time history curves fall.

For heavy particles with intermediate terminal Reyn-
olds number, say 1 < Re; < 10°, neither analytical
expression adequately describes the time history of fail.
To obtain a proper time history with a correct simula-
tion of Cp(Re), it is necessary to solve Eq. (7) nu-
merically. The numerical results are then compared
with experimentally measured data from Laws (1941).

Laws (1941) measured the fall velocity of water
drops as a function of height of fall. Running the model
for exactly the same conditions, a comparison is made
with these measurements. The results for 1.19- and
1.74-mm diameter water drops are compared with nu-
merical predictions in Fig. 4. Generally, the results
show good agreement, indicating that the model is ca-
pable of adequately simulating the time history of fall
in still fluid.

4. Response of a particle to a step change in relative
motion

In the previous section we investigated the motion
of particles falling with no horizontal relative motion.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 52, No. 22

A particle falling vertically through a still fluid or a
particle drifting along in a uniform and steady flow are
examples of such motion. In this section we consider
the response of a falling particle when subjected to a
step change in either horizontal or vertical relative mo-
tion. A particle subjected to a sudden fluid gust and a
particle released with an impulsive velocity in a still
fluid are dynamically equivalent. Both cases are con-
sidered simultaneously by solving for the relative ve-
locity instead of the particle velocity.

a. Nondimensional form of the equation of particle
motion

At this point it is more convenient to work with the
nondimensional form of the governing equation of mo-
tion. Selecting the particle time constant 7, as a time-
scale [see Eq. (14)] and the terminal velocity W as a
velocity scale [see Eq. (9)], the governing equation of
motion may be written in the following nondimensional
form:

avi

Co
=k —
dr*

Co,

Vavi, (16)

where asterisks denote a nondimensional variable. To
solve this equation, we need only specify the value of
one nondimensional constant, Re,. The value of Cpy is
determined from the value of Re; through White’s drag
equation [Eq. (3)]. We can also write Re in terms of

Re; as follows:
Re = ReTV:ﬁ]. (17)

Thus, both Cp, and Cp; can be written as functions
of Rer.
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FiG. 4. Fall velocity of water droplets within still air as a function
of travel distance (Laws 1941) compared with the model.
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FiG. 5. Response of a particle to a step change
of horizontal relative motion.

b. Step change in horizontal relative motion

In the nonlinear drag regime the response of a falling
particle to a sudden and sustained horizontal gust is
quite interesting and complicated. For example, con-
sider a particle falling vertically through a fluid when
it suddenly encounters either a positive or negative hor-
izontal gust equal in magnitude to its terminal velocity.
The initial conditions are u,,./ Wy = *1, v,qo/Wr = 0,
and w,..,./Wr = 1. We calculate the response of the par-
ticle by solving Eq. (16) with Re; = 1, 10, 100, and
1000.

The resuits, plotted in Fig. 5, show that the particle
adjusts horizontally so as to reduce the initial horizontal
relative motion to zero. As the particle adjusts, the ver-
tical relative motion is momentarily reduced. The max-
imum reduction of w,, increases with increasing Re;.
After an elapsed time of approximately three particle
time constants, the vertical relative velocity has essen-
tially returned to the still air terminal velocity as the
particle now translates horizontally with the fluid.

To understand this lift effect caused by a horizontal
gust, it is useful to examine more closely the governing

3841

equation of motion. The vertical component of drag is
proportional to the product CpV,,w,. The magnitude
of the total relative velocity vector V., increases as a
sudden horizontal gust increases the component u.
This has the effect of increasing the vertical component
of drag. The reduction of Cp, with an increase of V
tends to counter this effect. For example, in the Stokes
regime Cj, is inversely proportional to V.., so that there
is no net increase in the vertical component of drag due
to a horizontal gust. But as the Reynolds number in-
creases, the variation of Cp, becomes less of a factor.
Thus, a horizontal gust can significantly increase the
net vertical force on a particle, slowing its downward
motion through the fluid.

c. Step change in vertical relative motion

In this case we calculate the response of a particle to
a step change in w,.;. We consider two cases: an upward
fluid gust that initially doubles w,, and a downward
gust that initially reduces w,,, to zero. We calculate the
response of the particle by solving Eq. (16). In this
case the horizontal relative velocity remains zero dur-
ing either gust. The results, plotted in Fig. 6, show that
regardless of the sign of the initial value of w,, the
particle naturally adjusts so that it eventually falls with
terminal velocity relative to the fluid after an elapsed
time of approximately three particle time constants.

There is noticeable asymmetry in this figure due to
the fact that the response of a particle to an upward gust
is not the same as that to a downward gust. For the sake
of argument, consider a particle falling with Re =~ 10*
50 that the variation of Cp, with V,,, is negligible. For
vertical motion only the vertical component of drag is
proportional to CpwZ,. For the case of an upward ver-
tical gust that doubles w,, the upward component of

2
18
L Re,= 1, 10, 100, 1000
16 . .
L increasing Re ;
14+
B upward gust
12t prarce
Wea i
w, 1
08 -
06 : downward gust
04 i increasing Re
02
1 A 1 1
00 1 2 3 4 5

t/iT,

FiG. 6. Response of a particle to a step change
of vertical relative motion.
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drag increases momentarily by a factor of 4. For the
opposite case of a downward vertical gust that reduces
Wy to zero, the upward component of drag reduces to
zero. Herein lies the asymmetry of the fluid forcing
when a particle is falling in the nonlinear drag regime.
From this simple example it is easily deduced that, after
a series of vertical gusts of both signs, the particle set-
tling velocity will be reduced.

d. Conclusions

As expected, the natural reaction of a particle to ei-
ther a vertical or a horizontal step change in relative
velocity is to adjust so that u,,/Wr— 0 and w,,/Wr —
1. The time of adjustment is roughly three particle time
constants. During the time of adjustment, a falling par-
ticle that encounters a horizontal gust will experience
an enhanced vertical drag that slows its descent. A par-
ticle that encounters an upward gust will experience a
larger net change in drag than a particle that encounters
a downward gust of similar magnitude. Within a tur-
bulent fluid, a particle will experience many gusts of
different magnitude and duration, each producing both
horizontal and vertical relative motion. Thus, one might
expect that the average settling velocity would be re-
duced due to such gusts.

5. Particle motion in an oscillating fluid

In the previous section we investigated the motion
of particles subjected to step changes in relative veloc-
ity. We found that, if given sufficient time, a particle
subjected to such a step change eventually adjusts to
follow the fluid horizontally and the settling velocity
naturally adjusts to fall vertically with terminal velocity
relative to the fluid. Now consider a fluid that contin-
uously changes with time, so that the particle is unable
to fully adjust to each fluid velocity fluctuation. We
consider the case of either horizontal or vertical sinu-
soidal fluid oscillations, and we look at the effect of
changing the amplitude or frequency of the fluid oscil-
lations on the average settling velocity of the particle.

Since the particle is now falling through a flow field
that varies with time following the particle (dV/dt
# 0), the nondimensional form of the equation of mo-
tion is

*
Ny ygvy -k

—_ 18
da* Cp (18)

.
a. Vertically oscillating fluid

In this case we set all horizontal fluid velocity com-
ponents to zero and allow the vertical component to
vary with time as

w = W, sin(2nnt), (19)

where n is the frequency of fluid oscillations and W, is
the amplitude.
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The response of a particle as it falls through such an
oscillating flow field is determined by solving Eq. (18).
The particle is released with no horizontal motion and
with a vertical velocity equal to the still air terminal
velocity. A typical time trace for Wo/W; = 0.5 and n7,
= 10 is shown in Fig. 7a. Note that the vertical velocity
of the particle quickly becomes independent of the ini-
tial condition. It adjusts until it reaches a stable oscil-
lation about a mean value that is less than unity. The
adjustment time is approximately two particle time
constants.

To determine the sensitivity of the settling velocity
to the amplitude of vertical oscillation, the model is run
for 0 < Wy/W, < 1. We limit our consideration to W,/
W less than or equal to unity so that the assumption
of heavy and large particles is not violated. The final
cycle-averaged settling velocity, denoted by a tilde, is
calculated by averaging the particle velocity over at
least one of the final cycles within the stable oscillation
regior. The results are shown in Fig. 8; each curve
represents a different value of Rey, which varies from
1 to 1000. As expected, the settling velocity decreases
with increasing Wy/W;, and for a fixed value of W,/Wr
the settling velocity decreases with increasing Rey.

vertical fluid oscillations  a)
1
W,/ W, =05
0.99 nr, =10
Re,= 100
0.98 '
Wl
W, 097r
0.96 |-
095 |-
1 . 1
0'940 1 2 3 4
horizontal fluid oscillations  b)
1
U,/ W, =05
099
0.98 -
% oot
0.96 -
095
1 1 1
0'940 1 2 3 4

t/my

FiG. 7. Motion of a particle released within (a) vertically and
(b) horizontally oscillating fluid.
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Fic. 8. Cycle-averaged settling velocity within a vertically oscillating
fluid as a function of scaled oscillation amplitude and Re;.

This is consistent with the fact that drag becomes in-
creasingly nonlinear with increasing Rer.

b. Horizontally oscillating fluid

In this case we set the vertical fluid velocity to zero
and allow the horizontal component to vary with time
as

u = U, sin(27nnt). (20)

A typical time trace for Uy/Wy = 0.5 and n7, = 10 is
shown in Fig. 7b. Again we see an adjustment to a
settling velocity that is less than the still air value, but
the horizontal fluid oscillations clearly have less effect
on the settling velocity than the same amplitude vertical
oscillations.

To determine the sensitivity of the settling velocity
to the amplitude of horizontal fluid oscillations, the
model was run for 0 < Uy/W; < 1, and the results are
shown in Fig. 9. As in the previous case, the magnitude
of the settling velocity decreases with increasing am-
plitude U,/W; and increasing Re;. However, the re-
duction of settling velocity due to horizontal fluid os-
cillations is significantly less than that for the same am-
plitude vertical fluid oscillations. Recall that the
vertical component of drag is proportional to CpV, Wi .
Note that u,.;, produced by horizontal oscillations, ap-
pears only in the term V,, whereas w,,, produced by
vertical oscillations, appears twice. Thus, one might ex-
pect that vertical oscillations will have a more signifi-
cant effect on vertical motion than will horizontal os-
cillations.

c. Effect of oscillation frequency

If the period of fluid velocity oscillation n =" is much
smaller than the particle response time 7,, then the par-
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FiG. 9. Cycle-averaged settling velocity within a horizontally
oscillating fluid as a function of scaled oscillation amplitude
and Re;.

ticle cannot fully react or adjust to each fluid oscilla-
tion. On the other hand, if the period of fluid oscillation
is much larger than the particle response time, then the
particle tends to more closely follow the fluid motions.
A measure of the relative timescales for the fluid and
particle is expressed by the product i 7,. The response
of particles to the relative frequency of fluid oscillations
was determined through a series of numerical experi-
ments in which the cycle-averaged settling velocity was
determined for Re; = 100 and either Uy/W; = 0.5 or
Wo/Wr = 0.5.

The results, shown in Fig. 10, reveal thatif n1, > 1,
the cycle-averaged settling velocity is nearly indepen-
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Fic. 10. Cycle-averaged settling velocity within either a horizon-
tally or vertically oscillating fluid as a function of scaled oscillation
frequency nr,.
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dent of oscillation frequency for either horizontal or
vertical fluid oscillations. For such high relative fre-
quencies there is a lack of coincidence between the
motion of the particle and fluid. As a result, the settling
velocity depends only on the amplitude of the oscilla-
tions. As the oscillation frequency is reduced such that
nT, < 1, the settling velocity slowly returns to the still
air value. At such low relative frequencies the particle
tends to simply drift with the fluid, and relative velocity
perturbations are reduced. The nonlinear drag effect ap-
pears to virtually vanish for n7, < 0.01.

d. Conclusions

In conclusion we can state that the greater the mag-
nitude of fluid velocity oscillation, the greater is the
reduction of settling velocity. For the same amplitude
of oscillations (U, = W,), a larger settling velocity
reduction occurs if the fluid oscillates vertically as op-
posed to horizontally. For n7, > 1 the cycle-averaged
settling velocity becomes independent of fluid oscilla-
tion frequency. For n7, < 1, the nonlinear drag effect
decreases with decreasing frequency and, for practical
purposes, vanishes at n7, < 0.01.

Within a turbulent flow a particle experiences many
fluid velocity fluctuations of differing frequency, mag-
nitude, direction, and duration. Thus, a fluid oscillating
in only one direction is a fairly crude model of turbu-
lence. Nevertheless, it does provide interesting insight
into the mechanisms involved in modification of par-
ticle settling velocity.

6. Isotropic turbulence

Within a turbulent flow prediction of particle motion
is limited by our incomplete knowledge of the time
history of fluid motions. Often turbulence statistics are
known, from which one must attempt to extract a rea-
sonable simulation of the time history of fluid velocity
fluctuations. Past attempts at simulating turbulence in-
volve techniques such as direct numerical simulation
(Ueda et al. 1983), large eddy simulation (Deardorff
1972; Yeh and Lei 1991), random Fourier modes
(Fung et al. 1992), and Markov chain methods (Smith
1968; Ley 1982).

There is no perfect technique for simulating turbu-
lence; each method has advantages as well as major
shortcomings. Direct numerical simulation is limited to
low Reynolds number flows. Large eddy simulation
can adequately describe the large-scale features of the
flow field but cannot resolve small eddies. Stochastic
models based upon the random Fourier modes tech-
nique or the Markov chain technique do not suffer this
limitation but they cannot accurately describe large-
scale coherent structures.

Stochastic models of turbulence are computation-
ally efficient when used to simulate the motion of
particles since they can provide the fluid velocity at
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the position of a particle. Turbulence obtained from
either the large eddy simulation or the direct numer-
ical simulation require interpolation between grid
points to determine the velocity at the position of a
particle. The Markov chain technique is perhaps the
simplest stochastic technique and it provides a rea-
sonable simulation of turbulence that corresponds to
prescribed turbulence statistics. The simplicity of the
model and the resulting high speed of computation
allow many cases to be run within a short time pe-
riod. This practical advantage is important since it
allows for a detailed series of numerical experiments.

In this paper, we apply a three-dimensional Markov
chain model for predicting fluid velocities in isotropic
turbulence. The fluid velocity is predicted at successive
positions along the particle path. The particle response
is obtained by numerically integrating the equation of
motion as expressed in Eq. (18).

a. Fluid velocity equations

The instantaneous fluid velocity vector is a sum of
mean flow and turbulent fluctuations,

V=V +yv, (21)

where the turbulent fluctuation vector has components
v = (u,v, w).

The fluid velocity at the current position of the
particle is assumed to be correlated to the fluid ve-
locity at the previous position plus a random fluc-
tuation due to turbulence. Following Smith (1968),
we write each fluid velocity component as a Markov
chain:

U = Ruuu‘r + 6‘r+]a'(1 - Rzu)lnv (22)
Urp1 = Rvuv‘r + 0T+IU(1 - REU)IIZ, (23)
Wrpr = waw'r + n‘r+lU(1 - R‘va)llz’ (24)

where the subscripts 7 and 7 + 1 denote time steps
along the particle pathline and the autocorrelation co-
efficients R,,, R,,, and R,,, are functions of the time
step At.

The random components ¢, §, and 7 are generated in
a two-step process by first generating a uniform deviate
between 0 and 1 using a modulo technique discussed
by Hamming (1962), then transforming the uniform
distribution to a Gaussian distribution using a technique
developed by Box and Muller (1958). In isotropic tur-
bulence there is a zero-mean fluid velocity, constant
standard deviation o, and a zero cross-correlation; thus,
the random components must have zero-mean unit
standard deviation, and the random values must be in-
dependently generated.

The autocorrelations of fluid velocities between
successive positions are functions of both the mean
distance and elapsed time between particle posi-
tions. We adopt the formulation of Csanady (1963)
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for the correlation functions for falling heavy par-
ticles

R..(At) = R, (A1) = (1 - %%%)e'A’”, (25)
and

R, (A1) = e 2T, (26)
where

-1 (27

VT AN
(=
e

Note that as the ratio /W, > o then T~ T;.

b. Frequency spectrum

In the previous section we consider a fluid oscillating
at a single frequency, so that the frequency spectrum
consists of a single Dirac delta function. In turbulence
the fluid oscillations are distributed over a broad range
of frequencies. The frequency spectrum of fluid mo-
tions is obtained by taking the Fourier transform of the
autocorrelation function as follows:

S(n)y=14 j: R(t/T,) cos(2mwnt)dt. (28)

The frequency spectrum as seen by a falling particle,
S,(n), is obtained by substituting Eq. (26) into Eq.
(28). Integration yields S,(#), which can be written in
nondimensional form as

2\ 172
47rnTL(1 + LV-—})
mnS,(n) g

2 W2
1+ —F + 4n2n°T2
0_2

(29)

o

In turn S,(n) reduces to the Lagrangian fluid velocity
spectrum S(n) as the terminal velocity approaches zero
or as o/Wr— o where S(n) is
mnS(n) 47nT,
o2 1+ 4nn’T%"
In this paper we are considering the case of large and
heavy particles where o/W; < 1, so this simplification
is not possible. A plot of the Lagrangian frequency
spectrum S(n) is shown in Fig. 11 with S,(n) calcu-
lated for o/Wr = 0.1 and 0.5. Clearly a falling particle
will experience a frequency spectrum shifted toward
higher frequencies.
The spectral peak of S,(n) is denoted n,,, and may

be expressed as
W2 1/2
(1 + ——J)
g

= — 1
mp 2T, (3D

(30)
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FiG. 11. Lagrangian spectrum compared with the
shifted spectrum of a falling particle.

If the particle is not falling through the turbulent field,
that is, W, = 0, then we have a Lagrangian particle,
and the peak in the Lagrangian velocity spectrum #,,,.
is

1
=— 32
AL 27TTL ( )
The ratio of the spectral peaks n,,,/n,,. is thus
2\ 172
Zop (1 + W{) . (33)
n,.. g

As shown in Fig. 11, for o/Wy = 0.1 the peak in the
spectrum is shifted by one full decade, whereas for o/
Wr = 0.5 the frequency shift is significantly less.

¢. Numerical simulations of settling velocity

Generally, the motion of a particle depends upon
three independent dimensionless parameters: Rer, o/
Wr, and T,/7,. The last two parameters are used to
obtain the frequency spectrum as seen by a falling par-
ticle S,(n).

Each particle is released with no horizontal motion
and with a vertical velocity equal to the still air terminal
velocity. The motion of each particle is obtained by
numerically solving the equations of motion as ex-
pressed in Eq. (18), with the fluid velocity calculated
from the stochastic velocity equations. The final set-
tling velocity is defined as the ensemble average ve-
locity for 1000 particles. The particles are allowed to
fall for a time of at least five particle time constants to
allow sufficient time for their motion to become inde-
pendent of the initial conditions and so that they have
time to adjust fully to the simulated field of turbulence.

The time step for computation is constrained by sep-
arate, and sometimes conflicting, criteria. First, it is
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FiG. 12. Ensemble-averaged settling velocity within simulated
isotropic turbulence as a function of the scaled spectral peak fre-
quency.

necessary to maintain the ratio of the time step to the
Lagrangian integral timescale at a value less than unity
At/T, < 1 (Wilson and Zhuang 1989). For the particle
dynamics model to perform properly the time step
should be less than the particle time constant At/7,
< 1. On the other hand, the exponential form of the
autocorrelation function is not strictly valid for A¢/T,
< 0.01. Thus, the time step is constrained by 0.01
< At/T, < 1. For very low frequencies (where T} is
large) both criteria cannot be satisfied simultaneously.
When possible, we maintained a constant At/T; = 0.1
and always maintained At/7, < 1.

d. Sensitivity of settling velocity to n,,,

We intend here to ascertain the effects of frequency
-on the settling velocity of a particle in simulated iso-
tropic turbulence. As discussed earlier, the spectrum of
fluid velocity fluctuations following the particle motion
is defined by o, T,, and W;. All three parameters de-
termine the spectrum peak frequency n,,,. For this se-
ries of numerical experiments we vary n,,, by system-
atically varying T, while maintaining a fixed value of
o/Wr = 0.354 (the same value used for the sinusoidally
oscillating fluid ). The only other dimensionless param-
eter required to run the model is the terminal Reynolds
number, which for this set of calculations is held con-
stant at Rer = 100.

The results, plotted in Fig. 12, show the effect of
varying n,,, on the resulting ensemble-averaged settling
velocity. Similar to the previous case of the oscillating
fluid, we find that the average settling velocity in iso-
tropic turbulence is less than that in still fluid. For n,,,, 7,
> 1, the average settling velocity becomes independent
of frequency, since the particle is not given sufficient
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time to respond to the series of turbulent gusts that it
encounters. In this regime the average settling velocity
is only a function of o/W; and Rer. On the other hand,
for n,,,7, < 1, the reduction of settling velocity grad-
ually decreases with decreasing frequency until it van-
ishes somewhere near n,,,7, < 0.01.

In the oscillating fluid case the contribution to the
variance is contained in a single frequency and this
nondimensional frequency nr, is either greater than or
less than unity. In isotropic turbulence the spectrum, as
depicted in Fig. 11, spans a range of frequencies. When
n.pT, iS near unity, a part of the contribution to the
variance is contained in frequencies greater than unity
and the remaining part is contained in frequencies less
than unity. The part of the spectrum with n7, < 1 con-
tributes considerably less to the slowing of particle set-
tling velocity than does the part of the spectrum where
nt, > 1.

e. Sensitivity of settling velocity to o/Wr

For n,,,7, > 1, the average settling velocity becomes
virtually independent of T,/7, and so depends only
upon Rer and o/Wr. In the next series of experiments
we varied o/W; from 0.0 to 0.8 for several values of
Re; and n,,,7, = 10. The results, plotted in Fig. 13,
show separate curves for Re; = 1, 10, 100, and 1000.
The results reveal tuat the settling velocity tends to de-
crease with increasing o/Wr. A reduction greater than
35% is found for o /W, = 0.8 and Re; = 1000. The rate
of settling velocity reduction decreases with decreasing
Rer, as drag nonlinearity decreases, and it vanishes
within the Stokes regime.

Compared with the simple oscillating fluid, the ve-
locity reduction in isotropic turbulence is somewhat
greater. Perhaps this is because in isotropic turbulence

/ Stokes regime (linear drag)
19
ass -
09+
0.85 k isotropic turbulence
(Wp> ®» Re,=1
W 08f + Rey=10
| o Re;=100
075 s Re;=1000
07+ 1,7 = 10
0.65 -
3
0.6 1 1 1 | 1 1

1
0 0.1 0.2 0.3 04 05 0.6 0.7 08
o
Wr

Fic. 13. Ensemble-averaged settling velocity within simulated
isotropic turbulence as a function of o/W; and Re;.
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we have both horizontal and vertical components of
relative velocity simultaneously contributing to the
nonlinear drag effect, whereas for the oscillating fluid
case we considered horizontal and vertical oscillations
separately.

J. Conclusions

We conclude that there is a significant reduction of
the average settling velocity for particles experiencing
nonlinear drag while falling through isotropic turbu-
lence. Settling velocity reduction generally depends
upon three independent dimensionless parameters: Rey,
o/Wr, and T,/7,. For a constant value of Re; and o/
Wr, the average settling velocity becom=s independent
of frequency when n,,,7, > 1. When n,,,7, < 1, the
nonlinear drag effect gradually decreases with decreas-
ing frequency until it is negligible below n,,,7, = 0.01.
In the region of frequency independence the settling
velocity tends to decrease with increasing /Wy as well
as with increasing Rey.
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APPENDIX
Time History of Fall
a. Overview

In this section formulas are derived for the prediction
of the time history of particle velocity when falling
through still fluid. In section b we review the well-
known formula for a particle undergoing linear drag
forces within the Stokes regime (Fuchs 1964). In sec-
tion ¢ we consider a particle in the nonlinear drag re-
gime.

Consider the motion of a particle released with no
horizontal relative motion within a steady and homo-
geneous fluid. In this case u,; = v, = 0 and the equa-
tion of particle motion reduces to

aw,. Pr— P
___l=g_r’~_______

1
dt Py 4p, D (AD

It is more convenient to work with the nondimensional
form of the governing equation of motion. Selecting
the particle time constant 7, = W;/[g(p, — p)/p,] as
a timescale and the terminal velocity W, as a velocity
scale, we define the following scaled variables:

t Wre)
t* =", w:‘él =15

. A
Tp Wiy (A2)

STOUT ET AL.

3847

The equation of motion may be rewritten in the follow-
ing nondimensional form:

dw il
dt*

C
=1- =2 |wk|wk.

o (A3)

b. Solution for the Stokes regime (linear drag)

Within the Stokes drag regime Cp/Cpr = |wi |~
and the equation of particle motion reduces to

(A4)

Integration of this equation from an initial value of
wk,, yields the solution

wh(t*) = 1+ (who — 1)e™". (AS)

This equation is valid for both positive and negative
initial values of w¥, . If the particle is released with no
initial relative motion, then Eq. (AS5) reduces to the
well-known equation (e.g., Fuchs 1964 ):
wh(*)=1—e"".

(A6)

c. Solution for nonlinear drag

Ignoring the variation of the drag coefficient as the
particle accelerates by making the approximation Cp
= Cpr, We get

dw,"él
dr*

For heavy particles released with a positive initial value
of the vertical relative velocity w¥,, = 0, we need only
consider positive value of w; thus,

=1- Iw:t.l'w:t:l- (A7)

awi,
dr*

= 1 - W;‘;E.

(A8)

Integration of this equation from a positive initial
value of w,, yields the solution

e,* _ 1 - Wr*::lo e_,*
1+ wk,
wk(t*) = .
! ) e + 1 —wk, —r*
1+ W;gb

(A9)

If the particle is released with no initial relative motion,
then this equation reduces to

wk (#*) = tanh(z*). (A10)
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