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ABSTRACT

Hurricane eyewalls are often observed to be nearly circular structures, but they are occasionally observed to
take on distinctly polygonal shapes. The shapes range from triangles to hexagons and, while they are often
incomplete, straight line segments can be identified. Other observations implicate the existence of intense
mesovortices within or near the eye region. Is there a relation between polygonal eyewalls and hurricane
mesovortices? Are these phenomena just curiosities of the hurricane’s inner-core circulation, or are they snapshots
of an intrinsic mixing process within or near the eye that serves to determine the circulation and thermal structure
of the eye?

As a first step toward understanding the asymmetric vorticity dynamics of the hurricane’s eye and eyewall
region, these issues are examined within the framework of an unforced barotropic nondivergent model. Polygonal
eyewalls are shown to form as a result of barotropic instability near the radius of maximum winds. After reviewing
linear theory, simulations with a high-resolution pseudospectral numerical model are presented to follow the
instabilities into their nonlinear regime. When the instabilities grow to finite amplitude, the vorticity of the
eyewall region pools into discrete areas, creating the appearance of polygonal eyewalls. The circulations as-
sociated with these pools of vorticity suggest a connection to hurricane mesovortices. At later times the vorticity
is ultimately rearranged into a nearly monopolar circular vortex. While the evolution of the finescale vorticity
field is sensitive to the initial condition, the macroscopic end-states are found to be similar. In fact, the gross
characteristics of the numerically simulated end-states are predicted analytically using a generalization of the
minimum enstrophy hypothesis. In an effort to remove some of the weaknesses of the minimum enstrophy
approach, a maximum entropy argument developed previously for rectilinear shear flows is extended to the
vortex problem, and end-state solutions in the limiting case of tertiary mixing are obtained.

Implications of these ideas for real hurricanes are discussed.

1. Introduction

For fully three-dimensional nonhydrostatic motions
with diabatic and frictional effects, the Rossby–Ertel
potential vorticity (PV) equation based on dry potential
temperature is

D
(az · =u) 5 az · =u̇ 1 a(= 3 F) · =u, (1.1)

Dt

where D/Dt is the material derivative, a the specific
volume, z 5 2V 1 = 3 u the absolute vorticity vector,
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u the three-dimensional velocity vector, u the potential
temperature, the diabatic heating rate, and F the fric-u̇
tional force per unit mass (for a succinct review of PV
ideas and their relevance to tropical cyclone dynamics,
see (McIntyre 1993). In a hurricane, the potential vor-
ticity az · =u is not materially conserved because of the
diabatic and frictional terms on the right-hand side of
(1.1). The diabatic term is particularly important and
can be written as where k 5 z /|z | is a unita|z |k · =u̇,
vector pointing along the vorticity vector and isk · =u̇
the derivative of diabatic heating along this unit vector.
In the intense convective region of a hurricane the ab-
solute vorticity vector tends to point upward and radially
outward. Since tends to be a maximum at midtropo-u̇
spheric levels, air parcels flowing inward at low levels
and spiraling upward in the convective eyewall expe-
rience a material increase in PV due to the term.az · =u̇
This material increase of PV can be especially rapid in
lower-tropospheric regions near the eyewall, where both
a|z | and are large. Although the termk · =u̇ az · =u̇
reverses sign at upper-tropospheric levels, large PV is
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often found there because the large lower-tropospheric
values of PV are carried upward into the upper tropo-
sphere. The resulting spatial structure of the PV field
might be expected to be a tower of high PV. Although
this conceptual model seems reasonably accurate, it
needs some refinement related to the eye region. Once
an eye has formed, there is no latent heat release in the
central region, and large values of PV would not tend
to occur there unless they were transported in from the
eyewall. The resulting spatial structure of the PV field
might then be expected to be a tower of high PV with
a hole in the center or, equivalently, an annular tower
of high PV with low PV in the central region. We shall
refer to such a structure as a hollow tower of PV. This
structure is nicely illustrated in the idealized axisym-
metric model results of Möller and Smith (1994). The
reversal of the radial PV gradient near the eyewall might
also be expected to set the stage for dynamic instability
(Montgomery and Shapiro 1995) and rearrangement of
the PV distribution. If, during the rearrangement pro-
cess, part of the low PV fluid in the eye is mixed into
the eyewall, asymmetric eye contraction can occur in
conjunction with a polygonal eyewall. While PV maps
of hurricanes are beginning to be constructed from var-
ious types of available data (Shapiro and Franklin 1995;
Shapiro 1996), we still need much more observational
evidence for the finescale PV mixing that is likely oc-
curring continuously in the inner core of hurricanes. A
tantalizing aspect of the polygonal eyewall phenomenon
is that it may be a small window on such PV mixing.

The two most complete observational studies of po-
lygonal eyewalls are those of Lewis and Hawkins (1982)
and Muramatsu (1986). Lewis and Hawkins examined
polygonal eyewalls using time-lapse plan position in-
dicator (PPI) film recordings of storms observed by
land-based radars (Hurricanes David 1979; Anita 1977;
Caroline 1975; Betsy 1965) and by airborne radars (Hur-
ricanes Debbie 1969; Anita 1977). Their photographic
analyses revealed that hurricane eyes can be in the
shapes of hexagons, pentagons, squares, and triangles.
Although the polygons were frequently incomplete, the
straight line configurations were easily discernible.
Lewis and Hawkins also noted that, while circular and
elliptical eyes were also observed in the film recordings,
they were seldom present for very long before straight
lines and angles would appear. In addition, by showing
that individual patterns could be simultaneously ob-
served with two different radar systems, they disproved
the possibility that polygonal shapes are artifacts of a
particular radar system. Finally, Lewis and Hawkins also
argued that polygonal eyes were not caused by topo-
graphic features near land-based radars, since polygonal
features were also observed from airborne radars hun-
dreds of kilometers from land.

At present, the most detailed radar observations of
polygonal eyes have been obtained from Typhoon
Wynne 1980, when it passed Japan’s Miyakojima radar
(Muramatsu 1986). Observations from this small, re-

mote island consisted of 15 h of PPI images showing
polygonal eye features. During this period Wynne’s cen-
tral surface pressure was between 920 and 935 mb. The
polygonal features varied between square, pentagonal,
and hexagonal, all of which rotated counterclockwise
around the center. The pentagonal (which occurred most
frequently) and hexagonal shapes had rotational periods
of approximately 42 min, while the square shape had a
rotational period of approximately 48 min. In addition,
by presenting other radar and satellite images, Mura-
matsu offered further evidence that polygonal eyewalls
are indeed real phenomena. Combining his observations
with those of Lewis and Hawkins, Muramatsu defined
some common characteristics of hurricanes exhibiting
polygonal eyewalls. His results indicated that polygonal
eyewalls were present in well-developed hurricanes hav-
ing concentric eyewalls. Central pressures ranged from
920 to 950 mb, square to hexagonal eyewalls were most
frequent, and the polygonal patterns tended to persist
for tens of minutes. Contrary to Lewis and Hawkins,
Muramatsu found no evidence of triangular patterns.

Lewis and Hawkins’ explanation for the existence of
polygonal eyewalls was based largely on the internal
gravity wave theories for spiral bands presented by Wil-
loughby (1978) and Kurihara (1976). The basic idea is
that gravity wave interference patterns due to the su-
perposition of differing wavenumbers and periods
would tend to produce polygonal bands. However, the
existence of spiral bands can be explained without the
use of transient gravity waves, but rather with PV dy-
namics and vortex Rossby waves (Guinn and Schubert
1993; Montgomery and Kallenbach 1997). According
to these PV arguments, the inner spiral bands of hur-
ricanes can form during the merger or axisymmetriza-
tion of asymmetric PV anomalies initiated internally by
moist convection or externally through environmental
forcing. It should also be mentioned that sharp bends
in spiral bands, such as observed by Lewis and Hawkins
for the case of Hurricane Caroline (1975), were ob-
served in the numerical integrations of Guinn and Schu-
bert (1993) whenever an existing vortex merged with
another region of relatively high PV. In the present paper
we shall explore the possibility that polygonal eyewalls
can also be explained using PV dynamics.

Although Muramatsu (1986) did not develop a formal
dynamical theory for the formation of polygonal eyes,
he did suggest the phenomenon was related to an in-
stability in the large shears of tangential wind near the
inner edge of the eyewall (barotropic instability). Of
special significance was the connection Muramatsu
made between the formation of polygonal eyewalls and
the formation of tornado suction vortices (Fujita et al.
1972). Although the two phenomena involve different
scales, Muramatsu conjectured that both are related to
barotropic instability. The barotropic instability of hur-
ricane-scale annular PV rings was first explored by
Guinn (1992) using a shallow water model.

With the exception of the recent work by Guinn
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(1992), the study of polygonal eyewalls has been given
little attention since their discovery, perhaps for two
reasons. First, some researchers simply do not believe
polygonal features actually exist; they believe such ‘‘ap-
parent features’’ are due to peculiarities in particular
radar observing systems. Second, though they accept
their existence, many researchers view polygonal eye-
walls as a curiosity having little bearing on fundamental
scientific questions such as hurricane motion, structure,
and intensity change. Here we shall argue that polygonal
eyes are more than just a curiosity and are of interest
because they are symptoms of finescale PV mixing pro-
cesses that are occurring continuously near the center
of a hurricane.

Questions regarding the development of large hori-
zontal shears, the possible barotropic instability of hur-
ricane flows, and the formation of eyewall mesovortices
are also of critical importance for the safe operation of
reconnaissance aircraft and for the prediction of surface
wind damage in landfalling storms (Wakimoto and
Black 1994; Willoughby and Black 1996). Black and
Marks (1991) have presented NOAA/P3 aircraft data
from the eyewall region of Hurricane Hugo (1989)
showing horizontal wind shears of 60 m s21 over less
than 1 km. They have also shown that such large hor-
izontal shears can be associated with mesovortices hav-
ing strong signatures in the vertical motion and radar
reflectivity fields. More recently, Hasler et al. (1997)
have used 1-min GOES-9 images and concurrent
NOAA/P3 radar observations to confirm the existence
of an eyewall mesovortex in Hurricane Luis (1995). The
mesovortex in Luis was apparently associated with hur-
ricane track oscillations that could be interpreted as a
series of eight cycloidal loops.

The outline of the present paper is as follows. In
section 2 we argue, through use of linear stability anal-
ysis, that polygonal eyewalls can form simply as a result
of barotropic instability. Although somewhat new to
tropical cyclones, this idea has been used previously to
examine the related subject of tornado suction vortices
(e.g., Snow 1978; Staley and Gall 1979, 1984; Rotunno
1982, 1984; Gall 1982, 1983; Steffens 1988; Lin 1992;
Finley 1997). Direct numerical simulations with the ful-
ly nonlinear equations, interpreted in terms of vorticity
dynamics, are presented in sections 3 and 4 in support
of our hypothesis. The method adopted here involves
numerical simulations with the simplest model—an un-
forced barotropic nondivergent model. We demonstrate
that the evolution of the PV field bears a striking re-
semblance to both radar and satellite images of eyewall
features. However, since our simple model is not capable
of predicting clouds and the observational data in hur-
ricanes is not yet of sufficient quality and quantity to
produce fine grain (Rossby–Ertel) PV maps, the con-
nection between the evolution of PV fields and the evo-
lution of convective fields is indirect but suggestive.
Analytical predictions of the ultimate end-state of the
mixing process based on minimum enstrophy and max-

imum entropy arguments are presented in sections 5 and
6, respectively. Section 7 concludes with a brief dis-
cussion of the relevance of the ideas developed here to
real hurricanes.

2. Linear stability analysis of an annular region of
vorticity

In a mature hurricane the frictional stress varies qua-
dratically with wind speed and consequently the vertical
velocity at the top of the boundary layer tends to be
maximized just inside the radius of maximum tangential
wind (Eliassen and Lystad 1977). Neglecting asym-
metric processes, the frictionally forced vertical velocity
organizes the convection into an annular ring near the
radius of maximum winds. The cyclonic shear zone on
the inner edge of the eyewall convection can be envis-
aged as an annular ring of uniformly high PV, with large
radial PV gradients on its edges. On the inner edge of
the annular ring the PV increases with radius, while on
the outer edge the PV decreases with radius. In terms
of PV (Rossby) wave theory, a PV wave on the inner
edge of the annular ring will propagate counterclock-
wise relative to the flow there, while a PV wave on the
outer edge will propagate clockwise relative to the flow
there. Thus, it is possible for these two counterpropa-
gating (relative to the tangential flow in their vicinity)
PV waves to have the same angular velocity relative to
the earth, that is, to be phase locked. If the locked phase
is favorable, each PV wave will make the other grow,
and exponential instability will result. This barotropic
idealization is one view of the origin of polygonal eye-
walls. In reality baroclinic and diabatic effects must also
be important (after all, the basic-state PV field results
from diabatic effects), but here we shall isolate the bar-
otropic processes in order to investigate the extent to
which they explain polygonal eyewall features.

Consider a circular basic-state vortex whose tangen-
tial wind y (r) is a given function of radius r. Using
cylindrical coordinates (r, f ), assume that the small-
amplitude perturbations of the streamfunction,
c9(r, f, t), are governed by the linearized barotropic
nondivergent vorticity (Rossby wave) equation

] ] ]c9 dz
21 v ¹ c9 2 5 0, (2.1)1 2]t ]f r]f dr

where v(r) 5 y (r)/r is the basic-state angular velocity,
z(r) 5 d(ry )/rdr the basic-state relative vorticity, (u9,y9)
5 (2]c9/r]f, ]c9/]r) the perturbation radial and tan-
gential components of velocity, and ](ry 9)/r]r 2
]u9/r]f 5 ¹2c9 the perturbation vorticity.1 Searching

1 Throughout this paper the symbols u, y are used to denote radial
and tangential components of velocity when working in cylindrical
coordinates and eastward and northward components of velocity when
working in Cartesian coordinates.
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for modal solutions of the form c9(r, f, t) 5
, where m is the tangential wavenumber andi(mf2nt)ĉ(r)e

n the complex frequency, we obtain from (2.1) the radial
structure equation

d dĉ dz
2(n 2 mv ) r r 2 m ĉ 1 mr ĉ 5 0. (2.2)1 2[ ]dr dr dr

A useful stability model of an annular region of vor-
ticity that admits analytical solution is the piecewise
constant model studied by Michalke and Timme (1967),
Vladimirov and Tarasov (1980), and Dritschel (1989).
For the basic-state tangential wind defined by

2 2j r 1 j r 0 # r # r ,1 2 11
2 2ry (r) 5 j r 1 j r r # r # r , (2.3)1 1 2 1 22
2 2j r 1 j r r # r , `, 1 1 2 2 2

the corresponding basic-state relative vorticity is

j 1 j 0 , r , r ,1 2 1](ry )
z(r) 5 5 j r , r , r , (2.4)2 1 2r]r 
0 r , r , `, 2

where j1, j2, r1, and r2 are constants. The constants j1

and j2 are the vorticity jumps (as one moves inward)
at r1 and r2. The case in which we are most interested
has j1 , 0 and j2 . 0, that is, a ring of elevated vorticity.

Restricting study to the class of perturbations whose
disturbance vorticity arises solely through radial dis-
placement of the basic-state vorticity, then the pertur-
bation vorticity vanishes everywhere except near the
edges of the PV ring, that is, (2.1) reduces to ¹2c9 5
0 for r ± r1 and r ± r2, or equivalently, (2.2) reduces to

d dĉ
2r r 2 m ĉ 5 0 for r ± r , r . (2.5)1 21 2dr dr

The general solution of (2.5) in the three regions sep-
arated by the radii r1 and r2 can be constructed from
different linear combinations of rm and r2m in each re-
gion. This approach results in six undetermined con-
stants. Requiring boundedness of as r → 0 and rĉ(r)
→ `, and requiring continuity of at r 5 r1 and rĉ(r)
5 r2, reduces the number of undetermined constants to
two [see section 4b of Michalke and Timme (1967) for
details]. An alternative and more physically revealing
approach is to write the general solution of (2.5), valid
in any of the three regions, as a linear combination of
the basis functions (r) and (r), defined by(m) (m)B B1 2

m(r/r ) 0 # r # r ,1 1(m)B (r) 5 (2.6a)1 m5(r /r) r # r , `,1 1

m(r/r ) 0 # r # r ,2 2(m)B (r) 5 (2.6b)2 m5(r /r) r # r , `.2 2

The solution for is thenĉ(r)

5 C1 (r) 1 C2 (r),(m) (m)ĉ(r) B B1 2 (2.7)

where C1 and C2 are complex constants. Since /(m)dB1

dr is discontinuous at r 5 r1, the solution associated
with the constant C1 has vorticity anomalies concen-
trated at r 5 r1 and the corresponding streamfunction
decays away from r 5 r1. Similarly, since /dr is(m)dB2

discontinuous at r 5 r2, the solution associated with C2

has vorticity anomalies concentrated at r 5 r2 and the
corresponding streamfunction decays away from r 5 r2.

To relate C1 and C2, let us now integrate (2.2) over
the narrow radial intervals between r1 2 e and r1 1 e
and between r2 2 e and r2 1 e to obtain the jump
(pressure continuity) conditions

r 1e1dĉ
lim (n 2 mv )r 5 j mĉ(r ), (2.8a)1 1 1 15 6[ ]dre→0 r 2e1

r 1e2dĉ
lim (n 2 mv )r 5 j mĉ(r ), (2.8b)2 2 2 25 6[ ]dre→0 r 2e2

where v 1 5 v(r1) and v 2 5 v(r2), and where we have
assumed n ± mv 1 and n ± mv 2. Substituting the so-
lution (2.7) into the jump conditions (2.8) yields the
matrix eigenvalue problem

1 1 
mmv 2 j 2 j (r /r )1 1 1 1 2 2 2  C C1 15 n . (2.9) 1 2 1 21 1 C C2 2m 2 j (r /r ) mv 2 j2 1 2 2 22 2 

The eigenvalues of (2.9) are given by

1 1
2 2m 1/2n 5 (n 1 n ) 6 [(n 2 n ) 1 j j (r /r ) ] ,1 2 1 2 1 2 1 22 2

(2.10)

where n1 5 mv 1 2 j1 and n2 5 mv 2 2 j2 are the1 1
2 2

pure (noninteracting) discrete vortex Rossby wave fre-
quencies at the inner and outer interfaces. One can verify
from (2.10) that n must be real for m 5 1, 2. This implies
the vorticity field will remain stable to these disturbance
patterns. The remaining wavenumbers can, however,
produce frequencies with nonzero imaginary parts.2

If the basic-state vorticity jump at the outer interface
were removed, the lower-left matrix element in (2.9)
would disappear and the vortex Rossby wave on the
inner interface would propagate with angular velocity
n1/m. Similarly, if the basic-state vorticity jump at the
inner interface were removed, the upper-right matrix
element in (2.9) would disappear and the vortex Rossby
wave on the outer interface would propagate with an-
gular velocity n2/m. Thus, the system (2.9) can be re-

2 In the analogous problem possessing a continuous basic-state vor-
ticity profile, a) m 5 2 can become exponentially unstable and b) an
algebraic continuous-spectrum instability for m 5 1 also exists and
becomes nonlinear at large times even if the profile supports no ex-
ponential instabilities for m 5 2, 3, . . . (Smith and Rosenbluth 1990).
Whether a similar algebraic instability exists in the piecewise constant
model when sheared disturbances are allowed is an interesting, un-
resolved question.
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garded as a concise mathematical description of the in-
teraction of two discrete counterpropagating vortex
Rossby waves. The upper-right matrix element in (2.9)
gives the effect of the outer vorticity anomaly pattern
on the behavior of the inner interface, while the lower-
left matrix element in (2.9) gives the effect of the inner
vorticity anomaly pattern on the behavior of the outer
interface. Note that the effect of these interactions de-
cays with increasing wavenumber and decreasing values
of the ratio r1/r2. For j1 , 0 and j2 . 0, the inner PV
wave propagates counterclockwise relative to the basic-
state tangential flow at r 5 r1, while the outer PV wave
propagates clockwise relative to the basic-state tangen-
tial flow at r 5 r2.

To more easily interpret the eigenvalue relation
(2.10), it is convenient to minimize the number of ad-
justable parameters. To write (2.10) in a different form
we first define the average vorticity over the region 0
# r # r2 as zav 5 j1d2 1 j2, where d 5 r1/r2. Then,
defining g 5 (j1 1 j2)/zav as the ratio of the inner-
region vorticity to the average vorticity, we can express
j1 and j2 in terms of zav, d,g as j1 5 2zav(1 2 g)/(1
2 d2) and j2 5 zav(1 2 gd2)/(1 2 d2). Using these last
two relations, and noting that v 1 5 gzav and v 2 5 zav

1 1
2 2

we can rewrite (2.10) as

n 1
5 m 1 (m 2 1)g5z 4av

221 2 gd
6 m 2 (m 2 1)g 2 2

21 1 22[ 1 2 d

1/22 21 2 gd 1 2 gd
2m1 4 g 2 d .

2 21 21 2 6]1 2 d 1 2 d

(2.11)

Using (2.11) we can calculate the dimensionless com-
plex frequency n/zav as a function of the disturbance
tangential wavenumber m and the two basic-state flow
parameters d and g. The imaginary part of n/zav, denoted
by ni/zav, is a dimensionless measure of the growth rate.
Isolines of ni/zav as a function of d and g for m 5 3,
4, . . . , 8 are shown in Fig. 1. Note that all basic states
with g , 1 satisfy the Rayleigh necessary condition for
instability but that most of the region g , 1, d , ½ is
in fact stable. Clearly, thinner annular regions (larger
values of r1/r2) should produce the highest growth rates
but at much higher tangential wavenumbers. Note also
the overlap in the unstable regions of the g –d plane for
different tangential wavenumbers. For example, the
lower right area of the g –d plane is unstable to all the
tangential wavenumbers m 5 3, 4, . . . , 8. We can col-
lapse the six panels in Fig. 1 into a single diagram if,
for each point in the g –d plane, we choose the largest
growth rate of the six wavenumbers m 5 3, 4, . . . , 8.
This results in Fig. 2, which shows clearly the preference
for higher wavenumbers as the annular ring becomes
thinner.

Excluding values of d larger than 0.9, the lower-right

quarter of Fig. 2 contains isolines of the dimensionless
growth rate ni/zav between approximately 0.1 and 1.0,
so that the dimensional growth rate ni satisfies 0.1zav #
ni # zav. The average vorticity inside r2 can be expressed
as the circulation around r2 (2pr2y 2) divided by the
area inside r2 ( ), that is, zav 5 2y 2/r2. For a strong2pr2

hurricane we can choose y 2 5 50 m s21 at r2 5 50 km,
in which case zav 5 2 3 1023 s21. Then we have 2.0
3 1024 # ni # 2.0 3 1023 s21, or in terms of the e-
folding time t e 5 , 8.3 # t e # 83 min. Although21ni

consideration of tangential wavenumbers larger than 8
and values of d larger than 0.9 will yield even faster
growth rates, such rapid growth rates are probably not
realistic since they require very thin vorticity rings.
However, basic-state structures yielding instabilities
with 8–80 min e-folding times may be relevant to un-
derstanding hurricane structure.

3. Pseudospectral barotropic nondivergent model

Given a sign reversal in the radial PV gradient at
lower-tropospheric levels in the hurricane, one expects
the stage to be set for a convectively modified version
of combined barotropic–baroclinic instability and PV
redistribution. Since the PV field in the hurricane is
induced by both boundary layer and moist processes,
we generally expect these same processes, along with
barotropic and baroclinic instability effects, to play a
role in the evolution of asymmetric disturbances de-
veloping out of this background state. Regardless of the
importance of boundary layer and moist processes, it is
instructive to understand the conservative dynamics be-
fore nonconservative processes are included. With this
viewpoint in mind we examine first the conservative
(weakly dissipative) nonlinear vorticity dynamics using
an unforced barotropic nondivergent model. Future
work will investigate the implications of these prelim-
inary results in a divergent barotropic and three-dimen-
sional setting with and without nonconservative pro-
cesses.

Insight into the early time nonlinear evolution of an
annular vortex has been obtained by Dritschel (1986)
and Lin (1992) using the method of contour dynamics/
contour surgery (Zabusky et al. 1979; Zabusky and
Overman 1983; Dritschel 1988, 1989; Ritchie and Hol-
land 1993). This method is specifically designed for
piecewise-constant vorticity distributions such as the
one used in the three region model of section 2. In short,
the method predicts the position of the contours sepa-
rating the regions of constant vorticity. An initially un-
stable annulus of uniform vorticity with small undula-
tions on its inner and outer contours can distort and
evolve into a pattern in which the vorticity becomes
‘‘pooled’’ into rotating elliptical regions connected to
each other by filaments or strands of high vorticity fluid.
As the filaments become more and more intricately
stretched and folded, contour dynamics/contour surgery
adds more nodes to accurately follow the elongating
contours, but also surgically removes finescale features.
Surgical removal of vorticity during the simulation of
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FIG. 1. Isolines of the dimensionless growth rate ni/zav, computed from Eq. (2.11), as a function of d and g for
tangential wavenumbers m 5 3, 4, . . . , 8. The parameter g is the ratio of the inner region basic-state vorticity to the
average basic-state vorticity inside r2. Positive growth rates occur only in the shaded regions. The displayed isolines
are ni/zav 5 0.1, 0.2, 0.3, . . . with the largest growth rates occurring in the lower-right corner of each figure.

FIG. 2. Isolines of the maximum dimensionless growth rate ni/zav

among the tangential wavenumbers m 5 3, 4, . . . , 8. The displayed
isolines are the same as in Fig. 1, and again the largest growth rates
occur in the lower-right corner of the figure. Shading indicates the
wavenumber associated with the maximum dimensionless growth rate
at each point.

a vorticity mixing process generally implies noncon-
servation of net circulation around the mixing region.
As one of our goals is to characterize the ultimate end-
state of this process, we prefer a numerical method that
preserves exactly the net circulation. We consequently
employ a pseudospectral model with ordinary (¹2) dif-
fusion.

In Cartesian coordinates the equations for the f -plane
barotropic nondivergent model are

]u ]u ]u 1 ]p
21 u 1 y 2 fy 1 5 n¹ u, (3.1)

]t ]x ]y r ]x

]y ]y ]y 1 ]p
21 u 1 y 1 fu 1 5 n¹ y , (3.2)

]t ]x ]y r ]y

]u ]y
1 5 0, (3.3)

]x ]y

where u and y are the eastward and northward com-
ponents of velocity, p is the pressure, and r is the con-
stant density. Expressing the velocity components in
terms of the streamfunction by u 5 2]c/]y and y 5
]c/]x, we can write the vorticity equation, derived from
(3.1) to (3.3), as

]z ](c, z)
21 5 n¹ z, (3.4)

]t ](x, y)

Unauthenticated | Downloaded 09/22/21 03:43 PM UTC



1 MAY 1999 1203S C H U B E R T E T A L .

where z 5 ¹2c is the relative vorticity and ]( · , · )/
](x, y) is the Jacobian operator. Two quadratic integral
properties associated with (3.4) on a closed or periodic
domain are the energy and enstrophy relations

dE
5 22nZ, (3.5)

dt

dZ
5 22nP, (3.6)

dt

where E 5 ∫∫ =c · =c dx dy is the energy, Z 5 ∫∫ z21 1
2 2

dx dy is the enstrophy, and P 5 ∫∫ =z · =z dx dy is the1
2

palinstrophy. The diffusion term on the right-hand side
of (3.4) controls the spectral blocking associated with
the enstrophy cascade to higher wavenumbers.

Although the determination of the pressure field is
not required when the flow evolution is predicted by
(3.4), it is nevertheless useful for physical understanding
to periodically diagnose the pressure field. Forming the
divergence equation from (3.1) and (3.2) one obtains

22 2 21 ] c ] c ] c
2 2¹ p 5 f ¹ c 2 2 2 . (3.7)

2 21 2[ ]r ]x]y ]x ]y

On specifying the constants f and r, (3.7) can then be
used to determine p from c.

Section 4 presents a representative numerical inte-
gration of (3.4) that demonstrates the formation of po-
lygonal eyewalls, asymmetric eye contraction, and vor-
ticity mixing. The solutions of (3.4) to be presented were
obtained with a double Fourier pseudospectral code hav-
ing 512 3 512 equally spaced collocation points on a

doubly periodic domain of size 600 km 3 600 km. The
code was run with a dealiased calculation of the qua-
dratic advection terms in (3.4). This results in 170 3
170 Fourier modes. Although the collocation points are
only 1.17 km apart, a more realistic estimate of reso-
lution is the wavelength of the highest Fourier mode,
which is 3.53 km. While the gross features of the flow
evolution presented below have been confirmed using
lower spatial resolution and larger computational do-
mains, the current configuration of numerical parame-
ters yields a good compromise between computer speed
and memory limitations and the desire for an adequately
resolved inertial range. Other numerical details are as
follows. Time differencing was accomplished with a
standard fourth-order Runge–Kutta scheme using a 7.5-s
time step. The chosen value of n was 100 m2 s21, re-
sulting in a 1/e damping time of 53 min for all modes
having total wavenumber 170. This damping time
lengthens to 3.5 h for modes having total wavenumber
85.

4. Redistribution of PV for initially hollow
PV structures

a. Initial condition

In real hurricanes we expect the instability to develop
from a wide spectrum of naturally occuring background
noise. Consequently, the initial condition for (3.4) con-
sists of an azimuthally broadbanded perturbation to a
circular vorticity distribution, that is,

z , 0 # r # r 2 d1 1 1

z S((r 2 r 1 d )/2d ) 1 z S((r 1 d 2 r)/2d ), r 2 d # r # r 1 d1 1 1 1 2 1 1 1 1 1 1 1
z(r, f, 0) 5 z , r 1 d # r # r 2 d2 1 1 2 2

z S((r 2 r 1 d )/2d ) 1 z S((r 1 d 2 r)/2d ), r 2 d # r # r 1 d2 2 2 2 3 2 2 2 2 2 2 2
z , r 1 d # r , ` 3 2 2

0, 0 # r # r 2 d1 1

S((r 1 d 2 r)/2d ), r 2 d # r # r 1 d1 1 1 1 1 1 18 
1 z cos(mf) 1, r 1 d # r # r 2 d (4.1)Oamp 1 1 2 2

m51
S((r 2 r 1 d )/2d ), r 2 d # r # r 1 d2 2 2 2 2 2 2
0, r 1 d # r , `, 2 2

where r1, r2, d1, d2, z1 2 z3, z2 2 z3, and zamp are
independently specified quantities, and the constant z3

is determined in order to make the domain average of
z(r, f, 0) vanish. Here S(s) 5 1 2 3s2 1 2s3 is the
basic cubic Hermite shape function satisfying S(0) 5
1, S(1) 5 0, and S9(0) 5 S9(1) 5 0. Sensitivity tests
using other broadbanded initial asymmetries yield qual-
itatively similar results provided the perturbation excites

a nontrivial azimuthal wavenumber one component (ei-
ther initially or through wave–wave interaction).3

For the representative numerical experiment we set
the initial condition parameters to be r1 5 37.5 km, d1

3 For exceptional initial conditions (i.e., those that do not contain
an azimuthal wavenumber 1 contribution nor excite wavenumber 1
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5 7.5 km, r2 5 57.5 km, d2 5 7.5 km, z1 2 z3 5 4.1825
3 1024 s21, z2 2 z3 5 3.3460 3 1023 s21, and zamp 5
1.0 3 1025 s21 ø 0.003z2. To make the domain average
vorticity vanish we must choose z3 5 26.0653 3 1025

s21. The symmetric part of the initial vorticity, tangential
wind, and angular velocity fields are shown by the solid
lines in Fig. 4 (the other lines in this figure will be
discussed later). The vorticity of the ring is approxi-
mately nine times the vorticity of the central region.
The initial tangential wind is weak inside 35 km but
increases rapidly between 40 km and 50 km, where the
vorticity is large. Note that the maximum tangential
wind is approximately 54 m s21 and lies on the outer
edge of the vorticity ring near 60-km radius. The initial
angular velocity v is a maximum at approximately 57
km, where the vortex turnaround time, 2p/ v , is ap-
proximately 1.9 h. The ‘‘differential’’ rotation is cy-
clonic inside 57 km and anticyclonic outside 57 km. A
stability analysis (not shown) of this continuous vortic-
ity distribution establishes that wavenumber 4 is the
most unstable and has an e-folding time of 57.5 min.
An approximate interpretation of this continuous vor-
ticity distribution in terms of the three-region model
yields a point in Fig. 2 near the transition between wav-
enumbers 4 and 3 along the line g ø 0.20, which also
predicts en e-folding time just under 60 min. A detailed
analysis of the direct numerical integration (Fig. 3) at
early times also yields a dominant mode-4 disturbance
with a consistent e-folding time of approximately 60
min.

b. Redistribution into a monopole

The results of the experiment are shown in the form
of vorticity maps in Fig. 3 (every 2 h until t 5 24 h
and every 6 h thereafter). Near the beginning of the
experiment the vorticity wave on the inner edge of the
ring (30 # r # 45 km) is embedded in weak cyclonic
flow of approximately 9 m s21 (v ø 0.25 3 10 23 s21

or 7 h circuit time) and is propagating cyclonically rel-
ative to this flow. The vorticity wave on the outer edge
of the ring (50 # r # 65 km) is embedded in strong
cyclonic flow of approximately 54 m s21 (v ø 0.92 3
1023 s21 or 1.9 h turnaround time) and is propagating
anticyclonically relative to this flow. As the two vor-
ticity waves phase lock and help each other grow, the

through nonlinear interaction) the macroscopic results (not shown)
are observed to be qualitatively much different. In such cases the
vorticity ring never mixes completely into a monopole whose largest
vorticity resides at the center. For example, if the initial perturbation
is in mode 4 only, then the nonlinear interactions excite modes 8,
12, 16, . . . . The high vorticity in the ring thus never gets advected
to the storm center due to the absence of a wavenumber 1 wind
component. [The relative contribution from the mode 1 algebraic
instability (see footnote 1) to the vorticity mixing process reported
here for the general case of a broadbanded initial disturbance has not
yet been determined.] For such exceptional initial conditions the
mathematical theory developed in sections 5 and 6 is no longer ap-
plicable as it implicitly assumes no mixing barriers.

wave on the inner edge of the high vorticity ring is the
first to reach the wave-breaking stage. During the break-
ing stage, interior particles with low and intermediate
vorticity are drawn out into the high vorticity ring. This
low and intermediate vorticity fluid spirals cyclonically
into and carves up the high vorticity fluid in the original
annular ring. This stretching and folding process turns
the original high vorticity ring into an area of active
enstrophy cascade. Two consequences of the withdrawal
of intermediate and low PV fluid are a dramatic tight-
ening of the PV gradient on the inside edge of the vor-
ticity ring and a significant decrease in the area of the
inner, low vorticity region. For example, the area of the
inner, square-shaped, dark blue region at t 5 8 h is
approximately 60% of the dark blue inner area at t 5
0 h. In other words, 40% of the low vorticity inner fluid
has been mixed into the high vorticity ring. Thus, the
annular ring shrinks inward and, through mixing, be-
comes broader and less intense. At t 5 6 h the vorticity
wave on the outer edge of the ring has increased enough
in amplitude so that its four tips are in regions where
the differential rotation is anticyclonic. In a period of
2 h, spiral bands form and, as vorticity is stripped off
the outer edge of the high vorticity ring, the vorticity
gradient is significantly tightened there also. Between
10 and 12 h the central region of low vorticity (dark
blue) is knocked off-center and a long filament of it is
withdrawn just to the south and east of the center of
the domain. The remaining patch of low vorticity now
begins to circle the vortex approximately every 2 h. For
example, at 24 h it lies west-southwest of the center
between r 5 35 and 55 km. At these radii, the tangential
wind is approximately 40 m s21, the orbital time is
approximately 2 h, and there is weak anticyclonic dif-
ferential rotation (see bottom two panels of Fig. 4).

In terms of the integral quantities enstrophy and pal-
instrophy, the period between 6 and 16 h is remarkable.
During this period there is a large pulse of palinstrophy
(5 times its initial value) and an associated [see Eq.
(3.6)] rapid decay of enstrophy (as shown in Fig. 8).
During these 10 h, approximately 32% of the original
enstrophy is sent to small scales, where it is dissipated.
In contrast, the angular momentum and kinetic energy
are nearly conserved. For example, at t 5 24 h, the
angular momentum, kinetic energy, and enstropy are
99.9%, 99.2%, and 59.5% of their respective initial val-
ues.

Between 24 and 48 h the patch of low vorticity circles
the vortex 10 times while the patch of high vorticity
(located 30 km east-southeast of the domain center at
t 5 24 h) settles into the vortex center, accompanied by
its associated trailing spiral bands of vorticity. At 48 h
the nearly circular vorticity contour at the vortex center
is 0.0025 s21 and the central vorticity maximum is
0.0026 s21, which is 79% of the initial vorticity value
in the annular ring. Thus, the fluid in the center of the
vortex at 48 h should not be considered as a large patch
that has been simply moved from the original vortex
ring to the center under the constraint of material con-
servation of vorticity. Rather, the fluid in the vortex
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center at 48 h can be considered a mixture of some fluid
which was initially in the high vorticity annular ring,
some fluid which was inside this ring, and some fluid
which was outside this ring. This interpretation will be
further discussed in section 6, where the fractional con-
tributions of fluid from each of the three regions will
be determined via the maximum entropy hypothesis.

The symmetric (azimuthal mean) parts of the vorticity
and tangential wind fields at selected times during the
evolution are shown in Fig. 4. For this calculation, we
take the vortex center as being the center of the domain.4

Early on (t 5 4 h) a slight inward flux of mean vorticity
on the interior side of the vorticity ring and a slight
outward flux of vorticity on the exterior side of the ring
is evident. Then there is a rather sudden transition to
more extensive lateral mixing. Eventually, the lateral
mixing process terminates and the mean vorticity profile
assumes an almost monopolar structure except for a
weak sign reversal in the radial vorticity gradient near
r 5 30 km. The mean tangential winds undergo a sig-
nificant structure change as well. Corresponding to the
vorticity transport to the center of the vortex, the mean
tangential winds in the ‘‘eye’’ region increase substan-
tially, while the overall tangential wind maximum de-
creases.

As one means of assessing whether the model reso-
lution is adequate, we show the kinetic energy and en-
strophy spectra in Fig. 5 at selected times through the
violent mixing phase (0 # t # 16 h). An extensive
enstrophy cascade is evident around t 5 8 h. Subse-
quently, the small-scale energy increases somewhat but
diffusion ultimately prevents the energy from piling up
near the wavenumber cutoff.

It is interesting to speculate as to the possible physical
effect of such a mesoscale mixing process on the ther-
modynamic structure of the hurricane eye region and
vortex intensity. We generally think of the hurricane eye
as being so dry that mixing of air from the eye into the
eyewall cloud would be detrimental to convection.
However, in addition to being dry, the air in the eye is
also warm, so warm in fact that the air in the eye can
often have an equivalent potential temperature higher
than the air in the eyewall cloud (e.g., as shown below
700 mb in Fig. 16 of Hawkins and Imbembo 1976). In
such a circumstance the mixing of air from the eye into
the eyewall cloud as idealized here may actually be
beneficial to convection. Emanuel (1997) goes a step
further by arguing that the mechanical spinup of the eye
region by vorticity mixing is critical for a hurricane to
achieve its maximum intensity.

c. Particle trajectories

To better understand the initial stages of the mixing
process, let us now consider the stability of Lagrangian
particle trajectories within the nondivergent velocity

4 Since the model is on an f plane, the centroid of vorticity is
invariant and always remains at the domain center.

field. The trajectory [X(t), Y(t)] of a single particle is
calculated from Ẋ 5 2cy(X, Y) and Ẏ 5 cx(X, Y). A
small perturbation of the trajectory (dX, dY) evolves
according to the linear system

d dX 2c 2c dXxy yy5 . (4.2)1 2 1 21 2dt dY c c dYxx xy

Searching for solutions of (4.2) of the form elt, we find
that l 5 6 Q where Q 5 2 cxxcyy. In regions2cÏ xy

where Q , 0, two neighboring particles do not separate
exponentially in time. Defining the two components of
strain by S1 5 ux 2 y y 5 22cxy and S2 5 y x 1 uy 5
cxx 2 cyy, we can interpret Q as a measure of the relative
magnitudes of strain and vorticity, that is, Q 5 11 2(S4 1

2 z2). The coherent monopolar vortices that emerge2S 2

during the evolution of decaying two-dimensional tur-
bulence (McWilliams 1984; Benzi et al. 1988) have cen-
tral regions with strongly negative Q surrounded by re-
gions of weakly positive Q.

An alternate interpretation of the Q field can be ob-
tained by taking the x and y derivatives of (3.4). Ne-
glecting diffusion one obtains without any approxima-
tion

D z c 2 c zx xy xx x5 , (4.3)1 2 1 21 2Dt z c 2 c zy yy xy y

which leads to the same eigenvalues discussed above.
The time evolution of the Q field for the numerical

experiment is shown in Fig. 6. For the first 4 h the Q
field remains negative everywhere within the radius of
maximum wind, with a thin ring of positive values just
outside the radius of maximum wind. As the wave num-
ber 4 disturbance develops, four regions of positive Q
appear near r 5 40 km, where the intermediate and low
vorticity fluid is being mixed into the high vorticity ring.
At t 5 8 h, the value of Q in these four regions is
approximately 1 3 1026 s22, which corresponds to an
e-folding time for particle separation, Q21/2, of approx-
imately 17 min.

There is an active enstrophy cascade occurring within
the ring of high vorticity. Low vorticity fluid from the
interior region is drawn out into the ring in four places
and subjected to continual stretching and folding. This
asymmetric eye contraction mechanism is physically
quite different from the symmetric eye contraction
mechanism proposed by Shapiro and Willoughby (1982)
and Willoughby et al. (1982). The relative importance
of these symmetric and asymmetric mechanisms in ac-
tual hurricanes remains an open question.

d. A flawed heuristic argument

To emphasize the erroneous nature of simple argu-
ments based on vorticity rearrangement without mixing,
consider the situation illustrated in the upper row of Fig.
7, that is, the case of constant vorticity within the an-
nular region r1 , r , r2. The vorticity is zero inside
r1 and outside r2. Now imagine that all of the vorticity
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FIG. 3. Vorticity contour plots for the representative numerical experiment. The model domain is 600 km 3 600 km,
but only the inner 200 km 3 200 km is shown. The contours begin at 0.0005 s21 and are incremented by 0.0005 s21.
Low vorticity values are shaded blue and high vorticity values are shaded red. (a) Vorticity from t 5 0 h to 8 h.
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FIG. 3. (Continued ) (b) Vorticity from t 5 10 h to 20 h.
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Fig. 3. (Continued ) (c) Vorticity from t 5 22 h to 48 h with the time interval switched to 6 h after t 5 24 h.
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FIG. 4. Azimuthal mean vorticity (z), tangential velocity (y ), and angular velocity (v ) for the
experiment shown in Fig. 3 at the selected times t 5 0 (solid), 4 h (dotted), 8 h (dashed), 12 h
(dash–dot), 24 h (dash–dot–dot–dot), 48 h (long dashes). The scale on the right of the bottom
panel is for 2p/v , the orbital time of fluid particles (minor tick marks are for values halfway
between the labeled major tick marks).

becomes redistributed, without any mixing, into a cir-
cular patch of uniform vorticity centered at r 5 0. Let
r1, r2, ymax denote the inner radius, outer radius, and
maximum tangential wind at the initial time. Let R2,
Vmax denote the corresponding values at the final time
once the redistribution is complete. It is then easy to
show that upon preserving the net circulation

r2
V 5 y . y .max max max2 2 1/2(r 2 r )2 1

However, this hypothetical final flow, illustrated in the
lower row of Fig. 7, has larger kinetic energy and an-
gular momentum than the initial flow. For the redistri-
bution process to also conserve angular momentum and/
or kinetic energy, it must be accompanied by vorticity
mixing and some vorticity must be thrown outward (or
left behind) in filaments that orbit the vortex core. This
is clearly evident in the numerical solution.

5. Analytical prediction of the equilibrated end
state via the minimum enstrophy hypothesis

Two approaches have been proposed in the literature
that allow one to predict the equilibrated end state with-
out explicitly simulating the details of the time-depen-
dent nonlinear evolution of the flow. In this section we
consider the minimum enstrophy approach and in sec-
tion 6 we consider the maximum entropy approach.
These approaches rest on different assumptions and lead
to somewhat different solutions; we discuss these dif-
ferences at the end of section 6.

a. The selective decay hypothesis

An improvement to the flawed argument of section
4d that is more consistent with the nonlinear evolution
shown in Fig. 3 invokes the selective decay hypothesis
(e.g., Matthaeus and Montgomery 1980), which says
that the barotropic instability process leads to an active
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FIG. 5. Kinetic energy (E(k)) and enstrophy (Z(k)) spectra during the extensive mixing phase
(0 # t # 16 h) for the experiment shown in Fig. 3 at the selected times t 5 0 (solid), 4 h (dotted),
8 h (dashed), 12 h (dash–dot), and 16 h (dash–dot–dot–dot). Spectra are obtained in the usual
way by binning into rings of radius k centered at the origin in Cartesian wavenumber space. The
k23 (energy) and k21 (enstrophy) spectra, as expected for the enstrophy cascade from two-di-
mensional turbulence theory (neglecting logarithmic corrections), are shown for comparison.

cascade of the spectral distribution of enstrophy to high
wavenumbers, where dissipation operates to decrease
the enstrophy. By contrast, the area-integrated kinetic
energy and angular momentum tend to be rugged in-
tegrals that are essentially unchanged.

Figure 8 shows a time series of the area-integrated
kinetic energy, angular momentum, enstrophy, and pal-
instrophy for the numerical experiment shown in Fig.
3. Noteworthy features are the approximate invariance
of the kinetic energy and angular momentum (1.4% re-
duction in kinetic energy and 0.1% reduction in angular
momentum) over the duration of the mixing process.
The enstrophy on the other hand is reduced substantially
(47.4% overall), beginning near t 5 8 h. The increase
in the palinstrophy is consistent with the enstrophy de-
crease as must be the case from (3.6). A theory pre-
dicting the end-state of this mixing process in a dissi-
pative (though nearly inviscid) evolution should be con-
sistent with these properties.

Let a denote the outer edge of the vorticity mixing
region. Following Leith (1984) we first hypothesize that,
out of the family of vortices that have the same inte-
grated angular momentum inside r 5 a and the same
tangential wind at each radius outside r 5 a, the vortex
with minimum integrated enstrophy inside r 5 a is the

one toward which the flow actually evolves. This vortex
is derived in section 5b and is called MinEV-M, that is,
the minimum enstrophy vortex with constrained circu-
lation and angular momentum. As a second hypothesis
we argue that, out of the family of vortices that have
the same integrated energy inside r 5 b and the same
tangential wind at each radius outside r 5 b, the vortex
with minimum integrated enstrophy inside r 5 b is the
one toward which the flow actually evolves. This vortex
is called MinEV-E, that is, the minimum enstrophy vor-
tex with constrained circulation and energy, and is pre-
sented in section 5c.

b. Minimum enstrophy vortex with constrained
circulation and angular momentum (MinEV-M)

To begin the MinEV-M argument, we first note that,
for the final vortex, the integrated angular momentum
inside the mixing radius r 5 a is given by 2p ryr dr.a∫0

Because this angular momentum integral may be un-
bounded as a → `, it is convenient to work with the
angular momentum deficit with respect to the initial
vortex. Thus, for a vortex with initial and final tangential
wind profiles y 0(r) and y(r), let us define the angular
momentum deficit with respect to the angular momen-
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FIG. 6. Contour plots of the Q field (Q 5 2 cxxcyy) at selected times for the experiment shown in Fig. 3. The2cxy

contour interval is 0.5 3 1026 s22, with the zero isoline omitted for clarity (to suppress the effect of small oscillations
about zero). The shading (where Q $ 0.5 3 1026 s22) corresponds to regions of particle separation.
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FIG. 7. Schematic of an initial vorticity distribution and the cor-
responding hypothesized end-state after a redistribution without mix-
ing. The redistribution argument illustrated here is flawed because it
violates kinetic energy and angular momentum invariance. This points
out the necessity of vorticity mixing during the redistribution process.

FIG. 8. Time series of kinetic energy (E ), angular momentum (M ),
enstrophy (Z ), and palinstrophy (P), all of which are integrated over
the model domain for the numerical experiment shown in Fig. 3.

tum of the initial vortex as 2p r(y 0 2 y)r dr 5 pa∫0

r2(z 2 z0)r dr, where z 5 d(ry)/r dr and where thea∫0

second form of the angular momentum deficit follows
from an integration by parts. For the special case where
the initial tangential wind y 0(r) is the corresponding
tangential flow associated with a point vortex having
the same circulation as the final flow, the angular mo-
mentum deficit is proportional to the total moment,
about the origin, of the force impulse required to gen-
erate the difference motion (y 2 y 0) from rest (Batchelor
1967, section 7c). In a similar fashion, noting that all

the enstrophy deficit is contained within r 5 a, we can
write the enstrophy deficit of the hypothesized final axi-
symmetric flow as p ( 2 z2)r dr.a 2∫ z0 0

We now vary the radius a, the tangential wind profile
y(r), and the associated vorticity profile z(r) in search
of that vortex that has maximum enstrophy deficit (i.e.,
minimum enstrophy) for fixed circulation and angular
momentum.5 The constancy of circulation at r 5 a re-
quires y(a) 5 y 0(a). Since the mixing radius a is un-
known, its first variation is related to the first variation
in y at that point by dy(a) 5 [y90(a) 2 y9(a)]da 5
[z0(a) 2 z(a)]da (e.g., Fox 1987). Using these results,
introducing the Lagrange multiplier g, and recalling
Leibniz’s rule, the variational problem then becomes

a

2 20 5 d [z 2 z 1 2gr(y 2 y)]r drE 0 0

0

a

2 25 2 (2zdz 2 grdy)r dr 1 [z (a) 2 z (a)]a daE 0

0

a dz
5 2 2 gr dy r dr 2 2az(a)dy(a)E 1 2dr0

2 21 [z (a) 2 z (a)]a da0

a dz
25 2 2 gr dy r dr 1 [z (a) 2 z(a)] a da,E 01 2dr0

(5.1)

where the third line follows from an integration by parts,
along with the relation dz 5 d(rdy)/rdr. For the inde-
pendent variation da, we obtain the transversality con-
dition

z(a) 5 z0(a). (5.2)

For the independent variation dy , we obtain the Euler–
Lagrange equation

dz
5 gr for 0 # r # a. (5.3)

dr

Integration of (5.3) yields z(r) 5 d(ry)/rdr 5 z0(a) 2
(1⁄2)g(a2 2 r2) for 0 # r # a, where the constant of
integration has been chosen such that (5.2) is satisfied.
One further integration of this last relation for d(ry)/rdr
yields y(r) 5 (1⁄2)rz0(a) 2 (1⁄8)ga2r[2 2 (r/a)2] for 0 #
r # a. The condition that the final and initial tangential
winds are equal at r 5 a, that is, y(a) 5 y 0(a), yields

4
g 5 2 [z (a) 2 z (a)], (5.4)0 02a

5 The variational formulation developed here and in the sequel is
a slight generalization of Leith’s (1984) formulation since it does not
require the flow to be irrotational outside the mixing region and
obtains the edge of the mixing region in terms of the initial vortex.
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where z 0(r) 5 2y 0(r)/r is the initial average vortic-
ity inside r. Remembering that the flow is unchanged

for r $ a, we can write the solution for the tangential
wind as

 1
2 2y (a)(r/a)[2 2 (r/a) ] 2 az (a)(r/a)[1 2 (r/a) ] if 0 # r # a0 0y(r) 5 2 (5.5)


y (r) if a # r , `, 0

for the vorticity as

2 2[4y (a)/a][1 2 (r/a) ] 1 z (a)[2(r/a) 2 1] if 0 # r # a0 0z(r) 5 (5.6)5z (r) if a # r , `,0

and for the angular velocity as


1

2v (a) 1 v (a) 2 z (a) [1 2 (r/a) ] if 0 # r # a0 0 0v(r) 5 [ ] 2 (5.7)
v (r) if a # r , `. 0

It is interesting to note that the solutions (5.5)–(5.7)
take a particularly simple form in the special case z0(a)
5 0. In that case it is readily shown that the radius of
maximum wind is r 5 (2⁄3)1/2a ø 0.8165a, the maximum
wind is y 5 (4 6/9)y 0(a) ø 1.089y 0(a), the peak vor-Ï
ticity is twice the average vorticity inside r 5 a [i.e.,
z(0) 5 4y 0(a)/a], and the peak angular velocity is twice
the angular velocity at r 5 a [i.e., v(0) 5 2v0(a)].

The radius a remains to be determined. If (5.5) is
substituted into the angular momentum constraint

ry 0r dr 5 ryr dr, and the integral on the right-handa a∫ ∫0 0

side is evaluated, we obtain
a 1 1

3 4ry r dr 5 a y (a) 2 a z (a). (5.8)E 0 0 03 240

Since the functions y 0(r) and z0(r) are given by the
initial condition, (5.8) determines a. We can summarize
the predictions of the MinEV-M argument as follows.
Given an initial circular vortex with tangential wind
y 0(r) and associated vorticity z0(r), first determine a
from (5.8). If multiple roots exist, choose that root that
maximizes the enstrophy deficit.6 The final adjusted tan-

6 In general, conservation of angular momentum and circulation
are not sufficient to guarantee a unique solution to (5.8). For the
initial vortex discussed above one finds an infinite number of roots
inside the high vorticity region (a # 46 km) and a distinct root outside
(a ø 82 km). The root yielding the maximum enstrophy deficit (the
distinct root) is deemed the solution to the MinEV-M problem. Al-
though in principle it is possible that the nonlinear evolution could
become frozen in one of these local enstrophy minima (see, e.g.,
Butler 1991), in practice we do not observe such behavior in the
direct numerical simulations that relax rapidly to an equilibrium that
is well described by the MinEV-M solution.

gential wind profile y(r), vorticity profile z(r), and an-
gular velocity v(r) are then given by (5.5), (5.6), and
(5.7).7

Using the initial tangential wind field given by the
dotted curve in the second panel of Fig. 9 (the same
profile as used in the direct numerical simulation), the
solution of (5.8) yields a ø 82.13 km, so that the outer
edge of the nonzero vorticity region shifts outward ap-
proximately 17.13 km. When this value of a is inserted
into (5.5) and (5.6) we obtain the y(r) and z(r) profiles
given by the dash–dotted curves in the top two panels
of Fig. 9. The associated angular velocity profile v(r)
5 y(r)/r is shown in the bottom panel of Fig. 9. Note
that MinEV-M predicts an 11 m s21 decrease in tan-
gential winds near 60-km radius and a 26 m s21 increase
in tangential winds near 35-km radius, all in such a way
that the total angular momentum (within any disk of
radius $ 82.13 km) is invariant.

To determine the final pressure field we integrate the
gradient wind relation r( f 1 y /r)y 5 dp/dr inward from
r 5 300 km, assuming r 5 1.13 kg m23, f 5 5 3 1025

s21, and p 5 1000 mb at r 5 300 km. A plot of the
resulting p(r) is shown by the dash–dotted curve in the
third panel of Fig. 9. The dotted curve in the third panel
of Fig. 9 gives the radial profile of pressure for the initial
condition. Note that, even though the maximum tan-
gential wind in MinEV-M is approximately 11 m s21

weaker than the maximum tangential wind in the initial
vortex, the central pressure in MinEV-M is approxi-

7 Upon taking the second variation it can be shown that the MinEV-
M vortex is in fact a local minimum with respect to axisymmetric
variations.
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FIG. 9. Plots of the azimuthal mean vorticity z(r), tangential wind y(r), pressure p(r), as
determined from gradient balance, and angular velocity v(r) for MinEV-M (dash–dotted curves),
MinEV-E (dashed curves), and the direct numerical integration at 48 h (solid curves). The initial
curves are shown by the dotted lines. Note that in both cases the vortex appears to be weakening
in terms of tangential wind, but strengthening in terms of central pressure.

mately 7 mb lower than the initial central pressure. In
other words, MinEV-M looks weaker than the initial
vortex when viewed in terms of maximum tangential
wind, but looks stronger than the initial vortex when
viewed in terms of minimum central pressure. This re-
sult cautions us about the inherent unreliability of sta-
tistical relationships between the central pressure and
the maximum tangential wind in real tropical cyclones.

Since the mean vorticity inside r 5 a is invariant,
that is, zr dr 5 z0r dr, and since the angular mo-a a∫ ∫0 0

mentum inside r 5 a is also invariant, that is, r2zra∫0

dr 5 r2z0r dr, we can define an invariant mean radiusa∫0

r by

a 1/2 a 1/2   
2 2r zr dr r z r drE E 0   0 0

   r 5 5 . (5.9)
a a

zr dr z r dr   E E 0
   0 0

The mean radius r is a measure of the dispersion of the
vorticity about r 5 0. For MinEV-M, r is strictly con-
served from the initial to the final vortex. Using (5.6)
in (5.9) we obtain r 5 a{(1⁄3)[1 1 az0(a)/(4y 0(a))]}1/2

ø 46.7 km. Thus, in the top panel of Fig. 9, r ø 46.7
km is the mean radius of the vorticity dispersion for
both the initial z profile and the final z profile predicted
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by the MinEV-M argument. Since r is so constrained,
it is easy to see how a small outward mixing of vorticity
by spiral bands and filaments must be accompanied by
a much larger inward mixing of vorticity by asymmetric
eye contraction. In this sense the outward mixing of
vorticity by spiral bands in real hurricanes (which we
often can observe with radar) may be indicative of inner-
core vorticity mixing which is difficult to observe be-
cause of the absence of strong radar scattering there.

c. Minimum enstrophy vortex with constrained
circulation and energy (MinEV-E)

To begin the MinEV-E argument, we first note the
energy deficit inside r 5 b is given by p ( 2 y 2)rb 2∫ y0 0

dr. We assume that, in the region r $ b, the final axi-
symmetric flow y(r) is equal to the initial axisymmetric
flow y 0(r). In a similar fashion, noting that all the en-
strophy deficit is contained within r 5 b, we can write
the enstrophy deficit of the hypothesized final axisym-
metric flow as p ( 2 z2)r dr.b 2∫ z0 0

We now vary the radius b, the tangential wind profile
y(r), and the associated vorticity profile z(r) in search
of that vortex that has maximum enstrophy deficit for
fixed energy. Because the derivation parallels the der-
ivation of the MinEV-M vortex, the details are provided
in the appendix. The resulting tangential wind is given by

y (b)J (mr)/J (mb) if 0 # r # b0 1 1y(r) 5 (5.10)5y (r) if b # r , `,0

and the relative vorticity is given by

y (b)mJ (mr)/J (mb) if 0 # r # b0 0 1z(r) 5 (5.11)5z (r) if b # r , `,0

where J0 and J1 denote Bessel functions of the first kind
of order zero and one, respectively. The unknowns m
and b are determined from the requirements that z be
continuous at r 5 b, that is, z(b) 5 z0(b), and that energy
be conserved, that is, (r)r dr 5 y 2(r)r dr. For theb b2∫ y ∫0 0 0

initial tangential wind profile given by the dotted curve
in Fig. 9, we find that m ø 0.02912 km21 and b ø 84.42
km, so that the outer edge of the nonzero vorticity region
shifts outward approximately 19.42 km. The final y(r)
and z(r) profiles are given by the dashed curves in the
top two panels of Fig. 9. The associated angular velocity
profile v(r) 5 y(r)/r is shown in the bottom panel of
Fig. 9. Note that the tangential winds predicted by
MinEV-E are generally within 1 or 2 m s21 of the tan-
gential winds predicted by MinEV-M.

To determine the final pressure field we again inte-
grate the gradient wind relation inward from r 5 300
km, assuming r 5 1.13 kg m23, f 5 5 3 1025 s21, and
p 5 1000 mb at r 5 300 km. The resulting pressure
p(r) is plotted as the dashed line in the third panel of
Fig. 9. Note that the central pressure in MinEV-E is
approximately 9 mb lower than the initial central pres-
sure.

Also shown in Fig. 9 are the tangential mean z(r),
y(r), p(r), v(r) for the direct numerical integration at
48 h (solid curves). A comparison of the MinEV-M and
MinEV-E curves with the solid curves shows that the
predictions of the two MinEV theories agree well with
the direct numerical integration for this example. Un-
fortunately, the predictions of the two MinEV theories
are not always so reliable. The next section develops
an alternative theory, based on maximizing a mixing
entropy; the strengths and weaknesses of the two ap-
proaches are contrasted in subsection 6c.

6. Analytical prediction of the equilibrated
end-state via the maximum entropy principle

The direct numerical simulation shown in Fig. 3 il-
lustrates how the mixing process can produce vorticity
patterns of increasing intricacy. An adaptive numerical
method, such as contour dynamics, requires an increas-
ing amount of computer time to advance one time step
as the vorticity field becomes more complex. On the
other hand, the pseudospectral method used to produce
Fig. 3 is not adaptive and requires a fixed amount of
computer time to advance one time step, no matter how
complex the vorticity field. In spectral methods the pro-
duction of finer and finer scales in vorticity is arrested
by the model resolution and by the diffusion (or hy-
perdiffusion) processes operating near the resolution
limit. While it is tempting to run spectral models at
higher and higher resolution in order to follow vorticity
structures to finer and finer scales, such costly pursuits
do not necessarily yield fundamental advances in our
understanding of the dynamics. A statistical mechanics
approach may be more useful. Using the standard point-
vortex model, Persing and Montgomery (1995) simu-
lated the evolution of perturbed vortex rings as a way
of determining the final radial vorticity profile in sta-
tistical equilibrium. A theoretical approach applicable
to continuous vorticity distributions and based on the
maximum entropy principle has recently been developed
by Miller (1990), Robert (1991), Robert and Sommeria
(1991, 1992), Sommeria et al. (1991), Miller et al.
(1992), Whitaker and Turkington (1994), Chavanis and
Sommeria (1996), and Turkington and Whitaker (1996).
Although the maximum entropy theory suffers from the
weakness of predicting vortex merger when the 2D Eu-
ler equations predict corotation without merger (Whi-
taker and Turkington 1994), one nevertheless hopes that
the theory makes reliable predictions when mixing pro-
cesses are dominant. As a test of the theory and as a
foundation for future work we present here a simple
version of this maximum entropy argument for the un-
forced vortex mixing problem.

a. Tertiary mixing case

The maximum entropy argument rests on two views
of the vorticity field after mixing: a macroscopic view,
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FIG. 10. Isolines of the entropy density 2r1 lnr1 2 r2 lnr2 2 (1
2 r1 2 r2) ln(1 2 r1 2 r2) in the (r1, r2)-plane for r1 $ 0 and r2

$ 0 with r1 1 r2 # 1. The isolines are 0.1, 0.2, . . . , 1.0 and the
asterisk indicates the maximum value of entropy density (ln 3), which
occurs at r1 5 r2 5 1⁄3.

which sees a smooth distribution of vorticity, and a mi-
croscopic view, which reveals the intricate details pro-
duced by stretching and folding of vorticity in nonlinear
flow. Rather than attempting to describe the finescale
distribution (‘‘microstate’’) directly, we represent the
macroscopic vorticity at a point statistically by aver-
aging over all possible microstates in a small neigh-
borhood of the point.

To keep the mathematics tractable, we assume that
the end-state is axisymmetric and that the initial state
is given by

z if 0 # r , r1 1
z (r) 5 z if r # r , r0 2 1 2
z if r # r , `, 3 2

where r1, r2, z1, z2, and z3 are specified constants. With
this initial condition the problem reduces to one of ter-
tiary mixing. Suppose we sample the vorticity at N
points within a small neighborhood of r. Let n1 denote
the number of points at which the vorticity value z1 is
found, n2 the number of points at which the vorticity
value z2 is found, and N 2 n1 2 n2 the number of points
at which the vorticity value z3 is found. Then r1(r) 5
n1/N denotes the probability, at point r, of finding the
vorticity z1, r2(r) 5 n2/N the probability of finding the
vorticity z2, and r3(r) 5 1 2 r1(r) 2 r2(r) the prob-
ability of finding vorticity z3. The number of possible
arrangements having n1 points with vorticity z1, n2

points with vorticity z2, and N 2 n1 2 n2 points with
vorticity z3 is the multiplicity function W, which is
given by

N!
W 5 .

n !n !(N 2 n 2 n )!1 2 1 2

The logarithm of the multiplicity function is lnW 5 lnN!
2 lnn1! 2 lnn2! 2 ln(N 2 n1 2 n2)!. Using the Stirling
approximation (e.g., lnN! ø N lnN 2 N for large N),
we obtain

lnW ø N lnN 2 n lnn 2 n lnn1 1 2 2

2 (N 2 n 2 n ) ln(N 2 n 2 n )1 2 1 2

5 2n ln(n /N ) 2 n ln(n /N )1 1 2 2

2 (N 2 n 2 n ) ln(1 2 n /N 2 n /N ),1 2 1 2

and we conclude that the entropy density is given by

1
lim lnW 5 2r lnr 2 r lnr1 1 2 21 2NN→`

2 (1 2 r 2 r ) ln(1 2 r 2 r ).1 2 1 2

Isolines of the entropy density in the (r1, r2) plane for
r1 $ 0 and r2 $ 0 with r1 1 r2 # 1 are shown in Fig.
10. Note that the entropy density 2r1 lnr1 2 r2 lnr2

2 (1 2 r1 2 r2) ln(1 2 r1 2 r2) approaches zero as
(r1, r2) → (0, 0), (0, 1), (1, 0), and that its maximum
value of ln3 occurs at r1 5 r2 5 1⁄3. In other words the

multiplicity of microstates is a maximum when a third
of the sampled points in the neighborhood of r have
vorticity z1, a third have vorticity z2, and a third have
vorticity z3.

We now define the Boltzmann mixing entropy S[r1(r),
r2(r)] as

S[r (r), r (r)]1 2

`

5 [2r lnr 2 r lnr 2 (1 2 r 2 r )E 1 1 2 2 1 2

0

3 ln(1 2 r 2 r )]r dr.1 2 (6.1a)

The functional S[r1(r), r2(r)] measures the loss of in-
formation in going from the fine grain (microscopic)
view to the coarse grain (macroscopic) view. The mac-
roscopic vorticity is given in terms of r1(r) and r2(r)
by z(r) 5 z1r1(r) 1 z2r2(r) 1 z3[1 2 r1(r) 2 r2(r)].
To find the most probable macroscopic state, we must
find the particular r1(r) and r2(r), which maximize
S[r1(r), r2(r)] subject to all the integral constraints as-
sociated with the inviscid vorticity dynamics. In other
words, the variational problem is to find the expectation
functions r1(r) and r2(r) by maximizing (6.1a) subject
to the circulation constraints

` r1

z r (r)r dr 5 z (r)r dr, (6.1b)E 1 1 E 0

0 0

` r2

z r (r)r dr 5 z (r)r dr, (6.1c)E 2 2 E 0

0 r1

the energy constraint
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` 1
2 2(y 2 y )r dr 5 0, (6.1d)E 020

and the angular momentum constraint
`

(ry 2 ry )r dr 5 0. (6.1e)E 0

0

Defining 5 z1 2 z3 and 5 z2 2 z3, and introducingz̃ z̃1 2

the Lagrange multipliers a1, a2, b, g, the variational
problem is

`

0 5 d 2r lnr 2 r lnrE 1 1 2 2[
0

2 (1 2 r 2 r ) ln(1 2 r 2 r ) 1 a r1 2 1 2 1 1

1
2 21 a r 1 b(y 2 y ) 1 g(ry 2 ry ) r dr2 2 0 0 ]2

` r r1 25 2ln dr 2 ln drE 1 21 2 1 2[ 1 2 r 2 r 1 2 r 2 r1 2 1 20

1 a dr 1 a dr 1 bydy 1 grdy r dr1 1 2 2 ]

` r 11 25 2ln 1 a 2 z̃ bc 1 gr dr r drE 1 1 11 2 1 2[ ]1 2 r 2 r 21 20

` r 12 25 2ln 1 a 2 z̃ bc 1 gr dr r dr,E 2 2 21 2 1 2[ ]1 2r 2 r 21 20

(6.2)

where the last equality in (6.2) results from an integra-
tion by parts, along with the relations y 5 dc/dr and
dz 5 d(rdy)/rdr 5 1 . For arbitrary vari-z̃ dr z̃ dr1 1 2 2

ations dr1 and dr2, we obtain

r 11 2ln 5 a 2 z̃ bc 1 gr (6.3a)1 11 2 1 21 2 r 2 r 21 2

and

r 12 2ln 5 a 2 z̃ bc 1 gr . (6.3b)2 21 2 1 21 2 r 2 r 21 2

Solving (6.3) for r1(r) and r2(r), we obtain

1
2exp a 2 z̃ bc 1 gr1 11 2[ ]2

r (r) 5 , (6.4a)1

1 1
2 21 1 exp a 2 z̃ bc 1 gr 1 exp a 2 z̃ bc 1 gr1 1 2 21 2 1 2[ ] [ ]2 2

1
2exp a 2 z̃ bc 1 gr2 21 2[ ]2

r (r) 5 . (6.4b)2

1 1
2 21 1 exp a 2 z̃ bc 1 gr 1 exp a 2z̃ bc 1 gr1 1 2 21 2 1 2[ ] [ ]2 2

Using z(r) 5 z1r1(r) 1 z2r2(r) 1 z3[1 2 r1(r) 2 r2(r)],
we obtain

d dc
r 5 z̃ r (r) 1 z̃ r (r) 1 z . (6.4c)1 1 2 2 31 2rdr dr

Since the expectation functions r1(r) and r2(r) are given
by (6.4a,b), Eq. (6.4c) is a nonlinear ordinary differ-
ential equation for c (r) with yet to be determined La-
grange multipliers a1, a2, b, g. The equations for a2,
a2, b, g are obtained by enforcing the constraints
(6.1b)–(6.1e). Thus, evaluating the integrals on the
right-hand sides of (6.1b) and (6.1c), we obtain

` 1
2r (r)r dr 5 r , (6.4d)E 1 120

` 1
2 2r (r)r dr 5 (r 2 r ). (6.4e)E 2 2 120

The energy constraint (6.1d) can also be written as
c (z 2 z3)r dr 5 c0(z0 2 z3)r dr. When the integral` r2∫ ∫0 0

on the right-hand side of this form of the energy con-
straint is evaluated, we obtain

`

c[z̃ r (r) 1 z̃ r (r)]r drE 1 1 2 2

0

1
45 {z̃ z r 1 z̃1 1 1 216

4 4 2 23 [z (r 2 r ) 2 4(z 2 z )r r ln(r /r )]}.2 2 1 2 1 1 2 2 1

(6.4f)
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FIG. 11. The MaxSV expectation functions r1(r) (dashed), r2(r)
(dotted), and r3(r) 5 1 2 r1(r) 2 r2(r) (solid), as computed from
(6.4a)–(6.4g) for the initial condition displayed by the thick solid
curves in Fig. 12.

FIG. 12. A comparison of the predictions of MinEV-M (dashed)
and MinEV-E (dotted) with the predictions of complete MaxSV (thin
solid) and reduced MaxSV (dash–dotted). The initial curves are
shown by the thick solid lines.

Similarly, the angular momentum constraint (6.1e) can
be written as r2(z 2 z3)r dr 5 r2 (z0 2 z3)r dr.` r2∫ ∫0 0

When the integral on the right-hand side of this form
of the angular momentum constraint is evaluated, we
obtain

`

2r [z̃ r (r) 1 z̃ r (r)]r drE 1 1 2 2

0

1 1
4 4 45 r z̃ 1 (r 2 r )z̃ . (6.4g)1 1 2 1 24 4

In summary, the solution of the maximum entropy vor-
tex problem involves solving the seven equations com-
prising the nonlinear system (6.4) for r1(r), r2(r), c (r),
a1, a2, b, g, given the constants r1, r2, z1, z2, z3.

Analytical solutions of the system (6.4) are not easily
obtained, and numerical methods are generally required.
To solve (6.4) we have used the iterative algorithm de-
veloped by Turkington and Whitaker (1996). For the
constants defining the initial condition, we choose r1 5
37.5 km, r2 5 57.5 km, 5 4.1825 3 1024 s21, 5z̃ z̃1 2

3.3460 3 1023 s21, z3 5 26.0653 3 1025 s21. This is
the three region approximation to the initial condition
used in the direct numerical simulation described in sec-
tion 4. When these constants are used, the numerical
solution of (6.4) yields the radial profiles of r1(r), r2(r),
and r3(r) 5 1 2 r1(r) 2 r2(r) shown in Fig. 11. These
profiles can be interpreted as follows. In the MaxSV
end-state, fluid particles from the initial annular ring
have the highest probability (;64%) of ending up in
the central core, while fluid particles from the initial
core have the highest probability (;16%) of ending up
just outside the initial annular ring near r 5 67 km. In
the central core of the MaxSV end-state there is a higher
probability of finding air that was originally outside the
annular ring (;28%) than finding air that was originally
inside the annular ring (;9%). In this sense, the vortex
has been ‘‘turned inside-out.’’ Such intense inside-out
turning is the typical fate of highly unstable initial vor-
tices with very low central vorticity. In contrast, for
weakly unstable initial vortices whose central vorticity

is only slightly lower than the vorticity of the annular
ring, the amount of mixing is predicted to be much less,
and typically r1 . r3 at r 5 0.

The resulting vorticity profile, computed from z(r) 5
z1r1(r) 1 z2r2(r) 1 z3[1 2 r1(r) 2 r2(r)], is shown
by the thin solid line in the top panel of Fig. 12. The
MaxSV-predicted reduction (;37%) in the maximum
vorticity value from the initial condition to the final state
is a consequence of the fundamental mixing processes
occurring during the flow evolution. This emphasizes
the fact that material conservation of vorticity on the
macroscale is not a useful description of the flow evo-
lution, even though material conservation of vorticity
on the microscale is a useful description.

The integration of this vorticity profile yields the tan-
gential wind profile shown by the thin solid line in the
middle panel of Fig. 12. The corresponding pressure
field, computed from the gradient balance relation as in
sections 5b and 5c, is shown by the thin solid line in
the bottom panel. For comparison, the MinEV-M and
MinEV-E solutions for this same initial condition are
also shown in the three panels of Fig. 12. For this par-
ticular initial condition the predictions of MaxSV,
MinEV-M, and MinEV-E are all very similar, and, as
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implied by Fig. 9, all agree quite well with the direct
numerical simulation. However, as is discussed below
in section 6c, the MaxSV theory gives more reliable
predictions over a wide range of initial conditions.

b. Maximum entropy vortex with constrained
circulation and angular momentum only

The maximum entropy theory for tertiary mixing has
four Lagrange multipliers (a1, a2, b, g) and four con-
straints [the circulation constraints (6.4d), (6.4e), the
energy constraint (6.4f ), and the angular momentum
constraint (6.4g)]. Can we obtain essentially equivalent
solutions if we drop one of the constraints and, hence,
one of the Lagrange multipliers? We have found that
the answer to this question is, in many cases, no. To
illustrate, consider the solution obtained when the en-
ergy constraint (6.4f ) and the Lagrange multiplier b are
dropped from the problem. Note that this significantly
simplifies the problem (6.4) since the bc terms disap-
pear from (6.4a), (6.4b) and the determination of a1,
a2, g via (6.4d), (6.4e), (6.4g) decouples from the de-
termination of c via (6.4c). Using the same values of
r1, r2, , , z3 given in section 6a, we now obtain fromz̃ z̃1 2

this reduced MaxSV theory the radial profiles of z(r),
y(r), and p(r) shown by the dash–dotted curves in Fig.
12. As is evident from Fig. 12, this reduced version of
MaxSV theory produces less mixing, and hence higher
central vorticity, than the complete MaxSV theory. The
differences are large enough to conclude that this par-
ticular reduced form of MaxSV theory is not a useful
approximation to the complete MaxSV theory.

c. Comparison of the MinEV and MaxSV theories

The MinEV and MaxSV approaches for predicting
the final end-state of the barotropically unstable vorticity
ring rest on different assumptions. For the initial basic
state of Fig. 4, both produce solutions that agree well
with the direct numerical solutions. However, for the
tertiary mixing case, as the radial width of the initial
annular vorticity patch gets larger, the MinEV-M and
MinEV-E theories begin to produce unreasonably large
final vorticity (i.e., larger than the initial maximum vor-
ticity in the annular ring) near the center of the vortex.
This occurs even in the case of an initially stable Ran-
kine vortex (r1 5 0) where little or no adjustment is
expected.8 The final vorticity profiles suggest that the
MinEV-M and MinEV-E adjustment processes remove
too much enstrophy at the outer edge of the initial vortex
patch and must then produce the spuriously high vor-
ticity near the center in order to conserve circulation.

8 This fact is readily demonstrated for both the MinEV-M and
MinEV-E formulations developed in sections 5b and 5c. In the former
case one obtains a 33% increase in vorticity at the center while in
the latter case one obtains a 40% increase.

In contrast, the maximum entropy adjustment process
does not produce spuriously large vorticity, as can be
seen as follows. Since z(r) 5 z1r1(r) 1 z2r2(r) 1 z3[1
2 r1(r) 2 r2(r)] with 0 # r1(r) # 1, 0 # r2(r) # 1,
r1(r) 1 r2(r) # 1, the final vorticity z(r) is a mixture
of z1, z2, z3. In such a mixture it is impossible for the
final vorticity to lie outside the range set by the max-
imum and minimum values of z1, z2, z3. In this sense
the predictions of the maximum entropy theory are more
reliable than those of the minimum enstrophy theory.

While the MaxSV approach does not suffer from the
same weaknesses of the MinEV approach for describing
the redistribution of an initial vorticity ring, the MaxSV
approach, when applied to atmospheric vortex merger
problems, does not appear to be entirely defect-free ei-
ther, since it predicts vortex merger when the 2D Euler
equations predict corotation without merger (Whitaker
and Turkington 1994).9

7. Concluding remarks

Although considerable insight into the physics of
tropical cyclones has been acquired using axisymmetric
theory and models (e.g., Ooyama 1969), fundamental
questions remain concerning the role of asymmetric pro-
cesses in the cyclone life cycle. Questions associated
with asymmetric potential vorticity redistribution in
tropical cyclones can be studied with a hierarchy of
dynamical models. These include the barotropic non-
divergent model, the barotropic divergent model (shal-
low water equations), the quasigeostrophic model, the
asymmetric balance model, the quasi-static primitive
equation model, and the full nonhydrostatic primitive
equation model. The latter two models may include pa-
rameterized or explicit moist physical processes. The
present study complements recent work examining trop-
ical cyclogenesis as a PV redistribution problem gov-
erned by vortex Rossby waves on PV monopoles (Mont-
gomery and Enagonio 1998) and has focused on PV
redistribution in or near the eyewall region of mature
hurricanes possessing an elevated ring of PV near the
eyewall. For simplicity, the study has been limited to
the barotropic nondivergent model. We thus have by-
passed all questions associated with vertical structure
and moist physical processes. Despite these limitations,
the results seem sufficiently interesting to warrant fur-
ther study with more complete physical models.

In the numerical simulations presented here, a ring
of elevated vorticity was perturbed with azimuthally

9 Note added in proof: A recent paper by Chavanis and Sommeria
(1998) has generalized Leith’s MinEV theory to simultaneously en-
force the circulation, angular momentum, and energy constraints.
They have shown that the resulting relation between vorticity and
streamfunction is the same as the linearized version of the corre-
sponding MaxSV relation (e.g., the linearized version of (6.4a)–(6.4c)
for the three region case), thus establishing a connection between
MinEV and MaxSV theories in the limit of strong mixing.
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broadbanded initial conditions as a means of demon-
strating a simple dynamical mechanism for the forma-
tion of polygonal eyewalls, asymmetric eye contraction,
and vorticity redistribution. The intent was not to rep-
licate the evolution of a hurricane eyewall, but rather
to isolate the fundamental dynamics believed respon-
sible for the formation of polygonal eyewalls and me-
sovortices. The simulations indicate that the barotropic
instability associated with annular regions of relatively
high vorticity results in polygonal shapes before the
ultimate rearrangement into a nearly monopolar circular
vortex. Although the minimum enstrophy description
tends to overestimate the degradation of the maximum
vorticity, the numerically simulated end-state neverthe-
less suggests a significant reduction of the initial vor-
ticity maximum. These results suggest a limitation of
the idea that the vorticity within the ‘‘core’’ of vortices
is a rugged invariant (Carnevale et al. 1992). Analytical
predictions based on maximum entropy arguments sup-
port this view.

In the eyewall of a real hurricane, frictional conver-
gence, and moist convection continually act to concen-
trate high vorticity there, thus satisfying the necessary
condition for barotropic exponential instability and the
sufficient condition for a mode-1 algebraic instablitiy
(see footnote 2). Natural convective asymmetries near
the eyewall provide the perturbations that allow these
instabilities to grow. As the instabilities grow the vor-
ticity pools into a small number of ‘‘pockets,’’ creating
the appearance of a polygon on the inner edge of the
original annular region. These pools or pockets of PV
are also likely to be responsible for mesovortices. At
later times in the numerical simulations most of the
vorticity in these pockets gets strained by the mean shear
and is ultimately diffused by viscosity at small scales.
The remaining high vorticity gets advected into the cen-
tral region, thereby spinning up the center or ‘‘eye.’’
Our numerical and analytical results therefore suggest
an explicit quasi-two-dimensional mechanism for the
spinup and maintenance of the hurricane’s eye circulation
and thermal structure (via thermal wind balance), which
is thought to be a crucial process for the attainment of
maximum intensity (Emanuel 1997, and references).

There are a variety of ways the present work could
be extended. Within the context of the barotropic non-
divergent model, the theoretical predictions of sections
5 and 6 could be extended from the symmetric to the
asymmetric case. Of particular interest would be the
determination of the bifurcations between the symmetric
and asymmetric structures predicted by the maximum
entropy vortex arguments. Outside the context of the
nondivergent model, both the direct numerical integra-
tions and the theoretical predictions could be general-
ized to the shallow water equations. This generalization
would allow a distinction between vorticity and poten-
tial vorticity and a distinction between enstrophy and
potential enstrophy, and would allow the energy con-
straint to include both kinetic and potential energy. The

generalization to the quasi-static primitive equations in
isentropic coordinates would not be significantly more
difficult than the shallow water case. Finally, there re-
mains the question of the relevance of the concepts pre-
sented here to the moist convective environment in real
hurricanes (e.g., Schade 1994; Guinn and Schubert
1994). This difficult question might partially be an-
swered through the use of PV diagnostics on the output
of ‘‘full-physics models.’’

In closing we would like to point out that, in addition
to the connections with tornado suction vortices and
with the dynamic instability of the stratospheric polar
vortex (e.g., Ishioka and Yoden 1994, 1995; Bowman
and Chen 1994), there is a remarkable connection be-
tween the PV redistribution problem in hurricanes and
the electron density redistribution problem recently
studied in experimental plasma physics. The plasma ex-
periment involves the creation of a confined pure elec-
tron plasma in a cylindrical trap, with a uniform axial
magnetic field providing radial confinement, and bias
voltages applied to the cylinder ends providing axial
confinement. Once produced, the confined plasma
evolves due to the drift flow, which is determined by
the cross product of the electric and magnetic fields (i.e.,
E 3 B drift). The drift flow is two-dimensional in a
plane perpendicular to the axis of the cylinder. Since
the drift velocity changes the electron density according
to an equation identical to the inviscid form of the vor-
ticity equation (3.4), and since electron density is related
to the Laplacian of the electrostatic potential, the two-
dimensional equations for the evolution of the electron
plasma are isomorphic with the two-dimensional Euler
equations for inviscid incompressible flow (electron
density ↔ vorticity and electrostatic potential ↔
streamfunction). Compared to laboratory experiments
with ordinary fluids (e.g., Chomaz et al. 1988), the elec-
tron plasma experiments have the advantage of being
able to simulate very high Reynolds number flow; this
strengthens the analogy with geophysical fluid dynam-
ics. For further details on these extraordinary experi-
ments readers are referred to the recent papers by Peur-
rung and Fajans (1993), Huang and Driscoll (1994), and
Fine et al. (1995).
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APPENDIX

Derivation of the MinEV-E Vortex

This appendix presents the derivation of the MinEV-
E vortex discussed in section 5c. Introducing the La-
grange multiplier l, the variational problem is

b

2 2 2 20 5 d [z 2 z 1 l(y 2 y )]r drE 0 0

0

b

2 25 2 (2zdz 2 lydy)r dr 1 [z (b) 2 z (b)]bdbE 0

0

b dz
5 2 2 ly dy r dr 2 2bz(b)dy(b)E 1 2dr0

2 21 [z (b) 2 z (b)]bdb0

b dz
25 2 2 ly dy r dr 1 [z (b) 2 z(b)] bdb,E 01 2dr0

(A.1)

where (as in the MinEV-M case) the last term in the
second line of (A.1) has been simplified by the use of
y(b) 5 y 0(b), the third line of (A.1) results from an
integration by parts, along with the relation dz 5 d(rdy)/
rdr, and the last line makes use of dy(b) 5 [z0(b) 2
z(b)]db. For the independent variation db, we obtain the
transversality condition

z(b) 5 z0(b). (A.2)

For the independent variation dy , we obtain dz/dr 5
ly for 0 # r # b, or

2d y dy
2 2 2r 1 r 1 (m r 2 1)y 5 0 for 0 # r # b,

2dr dr
(A.3)

where m2 5 2l. The solution of (A.3) is a constant
times J1(mr), where J1 is the first-order Bessel function.
The constant is determined by requiring that y(b) 5
y 0(b). Remembering that the flow is unchanged for r $
b, we can write the solution for the tangential wind as

y (b)J (mr)/J (mb) if 0 # r # b0 1 1y(r) 5 (A.4)5y (r) if b # r , `.0

Since z(r) 5 d(ry)/rdr and d[rJ1(mr)]/rdr 5 mJ0(mr),
we obtain from (A.4)

y (b)mJ (mr)/J (mb) if 0 # r # b0 0 1z(r) 5 (A.5)5z (r) if b # r , `.0

Requiring z(b) 5 z0(b) for the expression in the upper
half of (A.5) yields

z (b)0J (mb) 5 J (mb), (A.6)0 1my (b)0

which provides one of the two necessary relations be-
tween m and b. Another relation between m and b is

obtained as follows. Substituting (A.4) into the energy
constraint (r)r dr 5 y 2(r)r dr yieldsb b2∫ y ∫0 0 0

b b2y (b)02 2y (r)r dr 5 J (mr)r dr. (A.7)E 0 E 12J (mb)10 0

Using (x) 5 d{ x2[ (x) 1 (x)] 2 xJ0(x)J1(x)}/dx12 2 2xJ J J21 0 1

and (A.6), we can perform the integration in (A.7) to
obtain

b2 z (b) z (b) 20 02 2y (r)r dr 5 y (b) 1 1 2 .E 0 02 5 6[ ]b my (b) my (b) mb0 00

(A.8)

Given the initial tangential wind y 0(r) and the associated
initial vorticity z0(r), (A.6) and (A.8) determine m and b.

An important special case of (A.6) and (A.8) occurs
when the initial vorticity vanishes at those radii to which
mixing extends. In that case the term in braces in (A.8)
becomes unity, and b is entirely determined by (A.8).
In addition, (A.6) simplifies to J0(mb) 5 0, so that mb
must be one of the zeroes of the J0 Bessel function. The
minimum enstrophy will occur for the smallest possible
value of m. Thus, to minimize the enstrophy, we must
choose mb to be the first zero of J0, so that mb ø 2.4048.
From (A.4) it can then be shown that the radius of
maximum wind is r ø 0.7656b and that the maximum
wind is y ø 1.121y 0(b). Evaluating (A.5) at r 5 0, we
also obtain z(0) 5 [mb/2J1 (mb)](2y 0 (b)/b) ø
2.3161(2y 0(b)/b), so that the peak vorticity is approx-
imately 2.3161 times the average vorticity inside r 5 b.

We can summarize the MinEV-E argument as follows.
Given an initial unstable symmetric vortex with tan-
gential wind y 0(r), first determine m and b from (A.6)
and (A.8). The final adjusted tangential wind profile y(r)
and vorticity profile z(r) are then given by (A.4) and
(A.5).
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