Temperature Dependence of Evaporation Coefficient for Water Measured in Droplets in Nitrogen under Atmospheric Pressure

D. Jakubczyk, M. Zientara, K. Kolwas, and M. Kolwas

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

(Manuscript received 26 January 2006, in final form 26 June 2006)

ABSTRACT

The evaporation and the thermal accommodation coefficients for water in nitrogen were investigated by means of the analysis of evaporation of pure water droplet as a function of temperature. The droplet was levitated in an electrodynamic trap placed in a climatic chamber. The levitation time was in the range of seconds, which corresponds to the characteristic time scales of cloud droplet growth. Droplet radius evolution and evaporation dynamics were studied as a function of temperature, by analyzing the angle-resolved light scattering Mie interference patterns. A model of droplet evolution, accounting for the kinetic effects near the droplet surface, was applied. The evaporation coefficient for the temperature range from 273.6 to 298.3 K was found to be between 0.054 and 0.12 with a minimum of 0.036 ± 0.015 seemingly coinciding with water maximum density at 277.1 K. The average value of thermal accommodation coefficient over the temperature range from 277 to 289 K was found to be 0.7 ± 0.2.

1. Introduction

The processes of evaporation and condensation are at the very heart of many fields of science. Cloud and aerosol microphysics together with construction of climate models (e.g., McFiggans et al. 2005; Laaksonen et al. 2004; Ackerman et al. 1995), electrospraying (e.g., Grimm and Beauchamp 2002), and combustion (e.g., Sazhin 2005) are just some areas of relevance. These processes are typically modeled with diffusion type mass and heat transport equations. Such models (originating from Maxwell) assume that space around a droplet is filled with gas and vapor in continuous way, and that an analogous assumption applies to temperature. In many cases, small droplets of size comparable to the mean free path of surrounding gas molecules are of interest, for example, in modeling cloud droplet growth (e.g., Laaksonen et al. 2004; Ackerman et al. 1995). Studying the evolution of droplets of such size requires analyzing the process in microscale and accounting for the kinetic effects. It is then necessary to supplement the diffusion coefficient, appearing in transport equations, with a so-called evaporation (condensation) or mass accommodation coefficient \( \alpha_C \). Likewise the thermal conductivity coefficient must be supplemented with a thermal accommodation coefficient \( \alpha_T \). These phenomenological coefficients describe the transport properties of the liquid–gas interface and are expected to describe only the properties of the very interface. All other processes influencing mass and heat transport, such as chemistry of the interface or the electrostatic interactions should be accounted for separately (Shi et al. 1999). The condensation coefficient \( \alpha_C \) can be perceived as the probability that a vapor molecule (water in this case) impinging on the interface from the gasous phase side enters into the bulk liquid and does not rebound. Similarly, the thermal accommodation coefficient \( \alpha_T \) may be perceived as the probability of thermalization of the gas molecule (nitrogen or water vapor in this case) impinging the interface. It is often assumed that the evaporation and condensation coefficients are equal, which may not be the case (Marek and Straub 2001). It is also agreed, that \( \alpha_C \) and \( \alpha_T \) might possibly exhibit some temperature and pressure dependence (Marek and Straub 2001; Davidovits et al. 2004).

Since the values of \( \alpha_C \) and \( \alpha_T \) influence the rate of growth of droplets (growth time) at the early stage of the growth process, it also indirectly has some impact upon calculated relative humidity in the nascent cloud,
cloud droplet number concentration, and size distribution obtained with cloud models (Ackerman et al. 1995; Snider et al. 2003; Laaksonen et al. 2004; Chuang et al. 1997). For example, for $\alpha_C < 0.1$ in comparison to $\alpha_C = 1$ cloud droplet number concentration may increase by approximately 50%. These effects are generally much smaller for $\alpha_T$ and are usually neglected.

Many attempts have been made over nearly a century, to determine experimentally the values of $\alpha_C$ and $\alpha_T$ for water, but the results obtained by different authors spanned from $\sim 0.001$ to 1 for $\alpha_C$ and from $\sim 0.5$ to 1 for $\alpha_T$ (see, e.g., Winkler et al. 2004; Hagen et al. 1989; Zagaynov et al. 2000; Sageev et al. 1986; Gollub et al. 1974; Zou and Fukuta 1999; Shaw and Lamb 1999; Li et al. 2001; Xue et al. 2005; Marek and Straub 2001; Pruppacher and Klett 1997; Davidovits et al. 2004 for reviews). A variety of experimental methods was used. Both condensation on and evaporation from the surface of bulk liquid, liquid films, jets, and droplets were investigated in various environments (vacuum, standard, passive, or reactive atmospheres) under various pressures and for various water vapor saturations. Small droplets, such as encountered in clouds, has been favored, since large Knudsen number could be obtained even for relatively high pressure (like atmospheric pressure). Suspend droplets, trains of droplets, clouds of droplets, and single trapped droplets were studied.

There also exist theoretical considerations concerning $\alpha_C$ and $\alpha_T$ (e.g., Ward and Fang 1999; Vieceli et al. 2004; references in Marek and Straub 2001). Evaporation and condensation coefficients have been derived from the free angle ratio of water molecule, internal evaporation energy of a molecule, hole potential, and molecular dynamics simulations. Again, the results cover the range from $\sim 0.01$ to $\sim 1$. However, recent molecular dynamics simulation yield values close to 1.

The divergence of results has been usually attributed to (i) difficulties in accounting for various physical and chemical interfacial processes; (ii) effect of impurities, and especially surface active agents (Feingold and Chuang 2002; because of high molecular dipole moment, water surface is very sensitive to contamination in general); (iii) structure of the interface (dynamic surface tension, reaching the balance by the interface); and (iv) dependence of the coefficient value upon the model used (indirectness of measurement). It has been pointed out (Marek and Straub 2001; Pruppacher and Klett 1997) that two classes of experiments could be distinguished: (i) with a quasi-static interface, yielding $\alpha_C < 0.1$, and (ii) with a continuously renewing surface, yielding $\alpha_C \geq 0.1$. However, such categorization requires defining the time scale. Such scale has not been agreed yet, as well as the leading mechanism responsible for interface aging. For example, as it is mentioned in Marek and Straub (2001) stationary values of the surface tension are reached within milliseconds. This is far below the characteristic time scales of cloud droplet growth process, which lie in the range of seconds (or even minutes; Chuang et al. 1997).

The results of recently active groups (Davidovits et al. 2004) also fall into, similar categories [$\alpha_C = 0.17$ in Li et al. (2001) and 1 in Winkler et al. (2004) at 280 K], but seem not to follow the suggested categorization of Marek and Straub (2001). Experiments of both groups concerned condensation. In the experiments by Li et al. (2001) the uptake of H$_2$O was measured at low pressure for liquid–gas contact time between 2 and 15 ms. This time is comparable to the surface tension relaxation time. In the experiments by Winkler et al. (2004) the condensation of water vapor on silver nanoparticles at low pressure (in the adiabatic expansion chamber) was measured. The evolution lasted $\sim 50$ ms, so in view of Marek and Straub (2001), the condensation coefficient similar or slightly smaller than in Li et al. (2001) should have been expected.

On the other hand, an experiment similar to Li et al. (2001), utilizing a water jet passing through tritium-labeled steam (Jamieson 1964), yielded $\alpha_C = 0.001$ for corresponding liquid–gas contact time. It also yielded a dependence of $\alpha_C$ versus liquid–gas contact time from $10 \mu s$ to 1 s, indicating that $\alpha_C > 0.3$ could be expected for contact time in the order of microseconds, which is much shorter than surface tension relaxation.

The temperature dependence of $\alpha_T$ was rarely measured. Recently it was studied by Li et al. (2001), who found that $\alpha_C$ decrease with temperature between 257 and 280 K, and by Winkler et al. (2004), who found no temperature dependence (and also no temperature dependence of $\alpha_T$) between 250 and 290 K. The comparison of their results can be found in Davidovits et al. (2004).

In this paper, the application of the method (first described in Zientara et al. 2005) of finding $\alpha_C$ and $\alpha_T$ to water in nitrogen under atmospheric pressure for various temperatures is presented. The method is based on the analysis of evaporation of a microdroplet of water in a humid environment. Nitrogen was used instead of air in order to avoid surface chemistry caused by such gases as CO$_2$ or SO$_2$. The liquid–gas contact time is in the order of seconds, which corresponds to the characteristic time scales of cloud droplet growth. This moderate time scale enabled determination of the temporal evolution of the droplet radius by analyzing the angle-resolved light scattering Mie interference pat-
terns with high accuracy. A procedure based on Mie light scattering theory yielded evolution curves smooth enough (25 experimental points per second) to find simultaneously $\alpha_C$ and relative humidity $S$ as well as $\alpha_F$ reliably.

2. Experiment

The experimental setup is presented in Fig. 1 and consists of an electrodynamic quadrupole trap (Paul 1990), of a hyperboloidal type, kept in a small climatic chamber. A detailed description of this apparatus can be found in Jakubczyk et al. (2001) and of further modifications in Jakubczyk et al. (2004a,b). The essential technical detail was that every electrode was driven via a 100 M$\Omega$ resistor. This was the main factor inhibiting discharges and thus enabling us to operate in a humid atmosphere.

Temperature in the upper and in the lower part of the chamber was measured (T-type thermocouple, TT-T-40-SLE, Omega) and controlled separately. Such control enabled us to eliminate vertical temperature gradients. Horizontal gradients were found to be negligible. There were also two relative humidity sensors (HIH3610–2, Honeywell): above and below the trap. The measurements of humidity performed with these sensors were rather tentative since the exchange of vapor (gas) between the interior and exterior of the utilized trap was hindered.

Before each experiment, the chamber was flushed with dry gaseous nitrogen, obtained from liquid nitrogen, in order to remove liquid water that accumulates in the chamber during experiments due to condensation and stray injection. Next, a filtered humid nitrogen (obtained by bubbling through distilled water) was passed through the chamber from the bottom to the top port. When the required humidity and a satisfactory humidity gradient were reached, the flow was stopped to enable uninfluenced, droplet trapping. Between the instants of trapping the chamber was flushed with humid nitrogen to maintain required humidity conditions.

A piezo-type droplet injector (similar to those described in, e.g., Lee and Perl 1999; Zoltan 1972) was used in the experiment. The injection timing was controlled with a digital delay circuit utilizing the trap driving AC signal zero crossing as the reference. By choosing the proper injection phase the sign and (to a certain extent) also the value of the charge deposited on the injected droplet could be controlled.

Since in our experiment the droplet injector nozzle remained at the temperature of the chamber, the initial temperature of the droplet was also the same. Since the temperature gradients across the chamber were found smaller than 0.15 K, the initial vapor density was assumed uniform across the chamber. A droplet of pure water is not in equilibrium with its surroundings for relative humidity $S \leq 1$. The fastest molecules leave the liquid phase for the vapor and thus the evaporation starts at the cost of the droplet internal energy. However, in a fraction of a second the evaporation reaches its nearly steady state (Pruppacher and Klett 1997)—the gradients of temperature and water-vapor density become nearly constant. The briefly lasting nonstationary phase could not be observed in our experiment. However it has negligible impact on further stationary process.
a. Sample preparation

Ultrapure water was produced in the laboratory in our institute (Milli-Q Plus, Millipore). A sterile plastic syringe, additionally washed with ultrapure water, was used for transferring it into the droplet injector within 10 min. The injector, made of Pyrex glass and Plexiglass, was immediately placed in the climatic chamber and the experiment was conducted within 1 h after (ultra) purification. The chemistry caused by such gases as CO₂ or SO₂ was avoided by substituting air with nitrogen in the climatic chamber.

The initial parameters of the ultrapure water used in the experiment, guaranteed by the equipment manufacturer, were: resistivity ~18 MΩcm, total dissolved solids <20 ppb, total organic carbon (TOC) ≤10 ppb, no suspended particles larger than 0.22 µm, microorganisms ≤1 colony-forming unit per milliliter, silicates <0.1 ppb, and heavy metals ≤1 ppb. Since the influence of even small amounts of surface active agents upon the experimental results might be disproportionately large, we tried to estimate it in our case. On assuming that all TOC comes from surfactants and that it is all concentrated in ~1-nm layer on the surface of the droplet, we still arrive at ~30 ppm of surfactant in this layer for a droplet of 8-µm radius (average initial radius in our experiment). If we assume that the mass of the surfactant molecule is equal to (only) 10 masses of the water molecule, then there are ~3 × 10⁴ water molecules per one surfactant molecule. During the observed evaporation droplet radius diminishes, on average, by a factor of 5, so concentration of surfactant grows by a factor of 25 (assuming that the thickness of the surface layer does not change). This yields ~10⁵ water molecules per surfactant molecule for freshly purified water. Thus, the influence of surface active agents upon evaporation rate at this stage is not expected to be of importance. We were not able to determine how the water was picking up contaminants of nonionic kind during the transfer and the experiment. However, the changes of resistivity of ultrapure water loaded into the injector placed in ambient air were carefully measured and the estimate of the pickup of contaminants of ionic kind was done. It has been noticed that during the first hour after purification the concentration of such impurities grew by a factor of 3. Such an increase in concentration of ionic kinds of impurities (an 125 times increase of concentration during droplet evaporation accounted for separately) has undetectable influence upon the evolution of the droplet. If we assume, by similarity, that the concentration of surfactants grows by a factor of 3 over the same time interval, we obtain ~3 × 10⁷ water molecules per surfactant molecule (0.003 surfactant mass concentration) at the end of the evolution of the droplet. This agrees with the observed lack of droplet radius stabilization. In about 10-h time the total concentration of all dissolved substances was becoming large enough to stop the evaporation of the droplet formed of such contaminated water. At the current stage we cannot point to a specific agent responsible for this. According to the resistivity measurements described above, there would then be ~45 ppb of impurities of ionic kind in the water in the droplet injector.

b. Determination of the evolution of droplet radius

The Mie scattering interference patterns recorded during the experiment represent the scattered light irradiance \( I \) for \( s \) (vertical) polarization of the light wave, as a function of azimuth angle \( \theta \) in the observation plane and elevation angle \( \phi \). Three example scattersgrams are presented in Fig. 1. Each scattering pattern was averaged along \( \phi \) yielding the \( I(\theta) \) function. It was further smoothed by removing frequencies higher then the characteristic (distribution) from its fast Fourier transform (FFT) spectrum. The fitting of the experimental \( I(\theta) \) with the theoretical \( I_0(\theta) \) dependence generated with Mie formulae (see, e.g., Jakubczyk et al. 2001; Bohren and Huffman 1983) was then performed, for all video frames, and the evolution of the droplet radius \( a(t) \) was found (an example in Fig. 2). The fitting was performed with a gradientless library method, where the smallest distance (\( L_2 \) measure) between the functions was sought. Besides the droplet radius \( a \) there
were two additional parameters of the fit, accounting for the movements of the droplet in the trap: effective field of view angle and the angle of side displacement. Application of this method to slowly evaporating droplet allows to find the dependence of radius upon time \( a(t) \) with \( \pm 25 \text{ nm} \) (i.e., \( \pm 1\% \)) precision. However, for most rapidly evaporating droplet (for relatively lower humidities), the charge-coupled device (CCD) exposure time, for acquisition rate of 25 frames per second (fps), is comparatively long. It results in obtained pattern blur due to summation, and in turn in loss of precision up to \( \pm 200 \text{ nm} \) (i.e., \( \pm 10\% \)).

### 3. The model of transport of mass and heat

Many authors have discussed droplet evaporation, by also taking kinetic effects into account (see, e.g., Pruppacher and Klett 1997; Zou and Fukuta 1999; Fuchs 1959; Kozyrev and Sitnikov 2001). In our version of the model, the kinetic and surface tension effects were accounted for. The effect of droplet charge and of soluble contaminants was also incorporated (cf. e.g., Friedlander 2000; Cadle 1966), the last one for the sake of generality of the picture. Adopting a widely used model of droplet evaporation enabled us to compare our results with those of other authors (see section 5). Although we concentrate on evaporation, the model considerations presented apply equally to both evaporation and condensation.

Since the temperature \( T_R \) and relative humidity \( S \) of the gas filling the reservoir was measured, it is natural to start with the equations describing the transport of heat and mass farther from the droplet, using language of diffusion. However, both theoretical and experimental studies of heat and mass transport through the gas-liquid interface indicate that there is a change of the character of flow in the very vicinity of the interface, up to the distance \( \Delta \) comparable with the mean free path of particles of surrounding gaseous medium. In the region between \( a \) and \( a + \Delta \) the molecules leaving or reaching the interface do not collide in average. Considering the mass and heat transport in this virtually collisionless region, resembling evaporation into the vacuum, requires using the language of kinetic theory of gases. Since the mathematical form of equations both in diffusion and kinetic regimes are similar, it is possible to write them down in the compact form. This is a widely accepted procedure that can be found, for example, in Pruppacher and Klett (1997). Thus, the steady-state evaporation of a charged droplet of diluted solution can be described with the mass (1) and heat (2) transport equations in the following form:

\[
\frac{d a}{d t} = \frac{M D_k(a, T_s)}{a p_L} \times \left\{ S \frac{p(T_R)}{T_R} - \frac{p(T_a)}{T_a} \exp \left( \frac{2\gamma}{3M} \left( \frac{Q^2}{a^4} - \frac{Q}{a^2} \right) - n_s \frac{a_0^3}{a^3} \right) \right\} \tag{1}
\]

\[
\frac{d a}{d t} = \frac{\lambda_k(a, T_s)}{q p_L} (T_a - T_R), \tag{2}
\]

where \( T_s \), \( Q \) and \( a_0 \) are the droplet temperature, charge, and initial radius, respectively, \( p_s \) is the saturated vapor pressure at a given temperature, \( \gamma \), \( p_L \), \( M \), and \( q \) are the surface tension, density, molecular mass, and the latent heat of evaporation of liquid water, \( a_0 \) is the permittivity of vacuum, \( n_s \) is the concentration of soluble contaminants and \( R \) is the universal gas constant. According to Eq. (1), the evolution of the droplet mass (radius) is driven by the difference of vapor density near the droplet surface (term with exponential) and far from the droplet (in the reservoir; term with \( S \)). The terms in exponential account for the modification of vapor density near the droplet surface due to surface curvature (Kelvin term), charge effects and volume contamination effects respectively. The influence of soluble contaminants was considered within the limit of very low concentrations. The change of droplet mass by evaporation (condensation) is associated with heat absorption (release), which manifests as temperature difference between the droplet and the reservoir. The effective diffusion coefficient \( D_k \) and the effective thermal conductivity of moist nitrogen \( \lambda_k \) account for gas kinetic effects:

\[
D_k = \frac{D}{a(a + \Delta_0)} + D \sqrt{\frac{2\pi M}{(RT_s)(a\alpha_0^2)}}, \tag{3}
\]

\[
\lambda_k = \frac{\lambda}{a(a + \Delta_0)} + \lambda \sqrt{\frac{2\pi M}{(RT_s)(a\alpha_0\rho_s c_p)}}, \tag{4}
\]

where \( D \) is the diffusion constant for water vapor in nitrogen and \( \lambda \), \( \rho_s \), \( M_N \), and \( c_p \) are thermal conductivity, density, molecular mass and specific heat capacity under constant pressure of (moist) nitrogen. Since for water and lower-troposphere conditions the partial pressure of water vapor can be neglected in comparison to that of nitrogen, it can be assumed that heat is conducted to the droplet mostly by the molecules of nitrogen. In consequence, the flux of mass can be considered
separately from the flux of heat and $\Delta C$ associated with the transport of mass should be distinguished from $\Delta T$ associated with the transport of heat.

Though the concept of charged droplet Rayleigh stability does not enter the droplet evolution model directly, Eqs. (1)–(2) must be supplemented with the Rayleigh condition (Duft et al. 2002):

$$\frac{E_Q}{2E_r} = \frac{Q^2}{6\pi\varepsilon_0 \gamma a^3} < 1,$$

where $E_Q$ is the Coulomb energy of a charged droplet and $E_r$ is the energy associated with the surface tension. Electrically neutral, clean droplets evaporate completely. Evaporation of charged droplets may be accompanied by loss of charge and (little) mass by means of Coulomb explosions, or, for very small droplets, with loss of charge by field emission (Loscertales and de la Mora 1995; Gamero-Castaño 2002). For the droplets of a solution a stabilization of the size is possible since the increase of concentration reduces the vapor pressure over the surface of the solution. A stable droplet of finite size in nonsupersaturated vapor is possible only in the presence of contaminants.

To test the model presented above, Eqs. (1)–(2) have been solved numerically for water in nitrogen (see Fig. 3). The values of constants pertaining to water properties were taken from Pruppacher and Klett (1997), The International Association for the Properties of Water and Steam (1998, 1992, 1994), Harvey et al. (1998), Perkins et al. (1991), and Ziebland and Burton (1958), and the values of $\Delta C = 10.4 \times 10^{-8}$ m and $\Delta T = 2.16 \times 10^{-7}$ m were taken from Pruppacher and Klett (1997). The influence of temperature dependence of $\lambda$, $\rho_L$, $D$, $\gamma$, $q$, $\Delta C$, and $\Delta T$ upon the solution of equations set (1)–(2), in the range of temperatures $233 \text{ K} < T_R < 313 \text{ K}$, was found to be below 0.5% and was considered negligible (The International Association for the Properties of Water and Steam 1992, 1994, 1998; Hall and Pruppacher 1976). The departure of temperature of the droplet from the temperature of the reservoir $T_a - T_R$ was found to be always well below 1 K.

4. Determination of evaporation and thermal accommodation coefficients $\alpha_C$ and $\alpha_T$

From the experiment, the evolution of droplet radius $a(t)$ was obtained and then $a \dot{a}(t)$ was found. The analysis was restricted to the range of radii $a(t) < 8 \mu$m and $a^2 \dot{a}/dt^2 < 0$. The quantities $p_{\text{atm}}$ and $T_R$ come from the measurement. The evolution of droplet temperature $T_a$ during the evaporation was then calculated from Eq. (2) within diffusion limit ($\lambda K \rightarrow \lambda$) and inserted into the Eq. (1). Such approximation was found quite harmless. For $d^2a/dt^2 < 0$ negligence of terms corresponding to the influence of dissolved contaminants and charge is quite legitimate. Even the charge corresponding to Rayleigh limit does not influence the evolution significantly in this region. Therefore, Eq. (1) can be integrated within $(t_L, t_H)$ limits. An algebraic equation binding $\alpha_C$ and $S$ follows. If we randomly select two different $(t_L, t_H)$ ranges ($t_L$ and $t_H$ should not be too close), we obtain a solvable algebraic equation set, yielding $\alpha_C$ and $S$. Repeating this procedure yields statistical distributions of $\alpha_C$ and $S$. These distributions reflect the errors in determining $a(t)$ and $\dot{a}(t)$. Both $\alpha_C$ and $S$ distributions were fitted with normal distributions and the most probable value of $\alpha_C$ and $S$ was taken. Half-width at half-maximum (HWHM) of the $\alpha_C$ distribution was taken for the uncertainty of $\alpha_C$. However, the resulting coefficient value was also found to depend on the details of the data handling procedures (e.g., smoothing). The (systematic) error introduced in this way was hard to evaluate. Basing on our numerical experiments we added 50% to HWHM error limits. Having applied the whole procedure to various datasets enabled studying the dependence of $\alpha_C$ versus temperature. The results are presented in Fig. 4. The evaporation coefficient for the temperature range from 273.6 to 298.3 K was found to be between 0.054 and 0.12. A minimum at ~277 K was encountered, apparently coinciding with the maximum density of water. This minimum value of $\alpha_C$ is $0.036 \pm 0.015$. A dashed line in Fig. 4 represents a best
fit based on an assumption that the evaporation coefficient is inversely proportional to density of liquid water to the power of $d$: $\alpha_C \sim (1/\rho_L)^d$. However we could not find the value of $d$ unambiguously (surface density $\rho_L^{2/3}$ would be the first guess). Qualitatively similar results were obtained for water in air for the same temperature range, as should have been expected because of the high nitrogen content in air (cf. Zientara et al. 2005).

Having found $\alpha_C$ and $S$ enabled proceeding to $\alpha_T$. It can be noted (see Fig. 2), that for steady-state evaporation, for the range of time $t_1 < t < t_2$, $T_R(t)$ can be treated as a linear function of time. Equation (2) can then be written down in the following form:

$$Bt + C = T_R + \alpha_T \frac{\rho_L}{\lambda_K},$$  \hspace{2cm} (6)

where $B$ and $C$ are constants. By writing down the Eq. (6) for three randomly chosen points in time in the range $(t_1, t_2)$ (the points should not be too close), we obtain a solvable equation set and find $B$, $C$ and $\alpha_T$ (by finding $\lambda_K$). We restrict ourselves to solutions, where $A > 0$, $B > 0$, and $0 < \alpha_T < 1$. Repeating this procedure yields a statistical distribution of $\alpha_T$. This distribution was fitted with a normal distribution and the most probable value of $\alpha_T$ was taken. Again, HWHM of this distribution plus 50% was taken for the uncertainty of $\alpha_T$. However, this procedure is essentially approximate and also extremely sensitive to $\alpha_C$ inaccuracy. Because of limited quality of the experimental data, the temperature dependence of $\alpha_T$ could not be characterized and only its average value in the temperature range from 277 to 289 K could be given: $0.7 \pm 0.2$. This is in agreement with the previous result for water in air (Zientara et al. 2005).

5. Discussion

The presented values of mass and thermal accommodation coefficients are not direct experimental numbers but depend on the underlying model. We used a frequently utilized model of droplet evolution, so the results can be compared with other authors. A few issues pertaining to the approximations made have already been discussed. However, we would like to address some others.

(i) The velocity distribution in the very vicinity of an evaporating droplet may be non-Maxwellian and the mean velocities of vapor and gas molecules entering into expressions (3) and (4) may not be fully justified.

(ii) The matching of gas kinetic and diffusional regime is an essential part of the model applied. However, a molecule-free path may differ considerably from a mean free path, which smears the concept of a matching point and makes $\Delta_v$ and $\Delta_r$ much arbitrary parameters. Indeed, having changed $\Delta_v$ by a factor of up to 4 or $\Delta_r$ by a factor of up to 40, had a negligible effect upon the evolution of $a(t)$ or $T(t)$.

(iii) Using Kelvin formula for expressing vapor density near the curved, charged surface is not fully justified for a nonstationary state. It seems more appropriate to introduce the effects of surface curvature and charge into the latent heat of evaporation, which is ordinarily defined for a flat, neutral surface. However this would considerably change the model and would result in changes of $\alpha_C$ and $\alpha_T$. We intend to study this problem further.

(iv) There are many constants (taken from the literature) and parameters of the model that are known with finite accuracy. This might influence the accuracy of finding $\alpha_C$ and $\alpha_T$. However, it has been found that the accuracy of determining droplet radius has, mainly through the action of derivative, a much greater impact upon the accuracy of $\alpha_C$ and $\alpha_T$ than any other constant or parameter. The accuracy of measuring the temperature and pressure of droplet surroundings has negligible impact upon the accuracy of $\alpha_C$ and $\alpha_T$ but weights upon $S$. Apart from that, the direct fitting of the model to the experimental data seems to suggest that the accuracy of temperature measurements is better ($\pm 0.2$ K) than guaranteed by the thermocouple manufacturer.
As has been mentioned in the introduction, the value of mass accommodation coefficient depends on the state of the interface. For water (and also for other liquids) it has been reported to decrease after the interface formation by ~3 orders of magnitude for the time span from microseconds to seconds (Jamieson 1964; Marek and Straub 2001). There seem to be a few processes involved (molecules orientation, dynamic surface tension, gas adsorption by dipole forces). This raises a few issues: What is the normal state of the interface? For different liquids different processes may participate in interface stabilization—which of them should be accounted for separately while measuring the accommodation coefficient? We have adhered to the following attitude: The accommodation coefficients have been traditionally introduced for (quasi) stationary processes, and a great care is required in applying them to fast processes. All the processes occurring at time scales much shorter than seconds should be included in the value of the accommodation coefficient. Accommodation coefficients defined in such way can be applicable to microphysical processes in clouds.

Our analysis of the experimental data seems to indicate that another source of spread of results may prevail in many cases. It is well known that the $\alpha_C$ value is very sensitive to relative humidity (Chuang et al. 1997; Kulmala et al. 2001; Zientara et al. 2005). Here $\alpha_C$ and $S$ partially overlap [see Eqs. (1) and (3)]. For relative humidities close to unity (above or below) changes below 1% in $S$ (which are instrumentally unmeasurable) cause dramatic changes in $\alpha_C$. If $S$ is taken from the measurement and $\alpha_C$ is calculated (fitted) from droplet evolution data, a large error in $\alpha_C$ may easily happen. In our work we overcome this problem by fitting simultaneously $S$ and $\alpha_C$. We illustrate this issue in Fig. 3. The experimentally obtained droplet radius evolution (solid circles) is precisely reconstructed with model predictions for $\alpha_C = 0.15$, $\alpha_T = 0.92$, and $S = 0.97818$ (dotted line). However, for $\alpha_C = 0.9$ and $\alpha_T = 1$ the best fit is for $S = 0.97978$ (solid line), which is well below any instrumental $S$ measurement resolution. The fit curves are shifted by less than 100 nm, and for even slightly less precise method of droplet radius measurement, they would be statistically indistinguishable. It must be noted, that the value of $S$ found by fitting is, to a certain extent, a parameter of fit. Its absolute accuracy is limited by the accuracy of temperature $T_R$ measurement.

6. Conclusions

The temperature dependence of evaporation coefficient $\alpha_C$ and thermal accommodation coefficient $\alpha_T$ was studied for water in gaseous nitrogen at atmospheric pressure. The dynamics of the evolution of radius of the evaporating levitated droplet was studied. The time scale of the process in the region of seconds corresponds to droplet growth time in clouds. A very precise, laser light scattering method was used to study the droplet evolution. The interference scattering patterns were analyzed with electromagnetic Mie scattering theory. The precision of the method enabled simultaneous finding of evaporation coefficient and relative humidity, and avoiding errors introduced by instrumental humidity measurement. Results for both evaporation and thermal accommodation coefficients $\alpha_C$ and $\alpha_T$ were obtained similar to those of, for example, Hagen et al. (1989), Zagaynow et al. (2000), Shaw and Lamb (1999), and Li et al. (2001). The investigation suggests that there is a temperature dependence of evaporation coefficient, possibly exhibiting a minimum coinciding with the maximum density of water. This temperature dependence is different than obtained by other authors (Li et al. 2001; Winkler et al. 2004). A possibility of finding thermal accommodation coefficient simultaneously with evaporation coefficient (Zientara et al. 2005) was confirmed.

Acknowledgments. This work was supported by Polish Ministry of Education and Science Grant 1 P03B 117 29.

REFERENCES


