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ABSTRACT

A theoretical framework for the joint conservation of energy and momentum in the parameterization of

subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved

(planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial

scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics.

Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and mo-

mentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-

activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial

homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-

scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-

activity fluxes—which represents a generalization of the second Eliassen–Palm theorem—is key to ensuring

consistency between energy and momentum conservation. The framework includes a consistent formulation

of heating and entropy production due to kinetic energy dissipation.

1. Introduction

The equations governing fluid dynamics are fundamen-

tally conservative, representing conservation of momen-

tum, energy, and mass (Batchelor 1967). The equations of

climate modeling, which are based on dynamical approx-

imations to the governing equations of fluid dynamics,

preserve the conservation properties to avoid introducing

spurious sources or sinks of the conserved quantities

(Lorenz 1967). The numerical solution to the equations of

climate modeling requires the parameterization of pro-

cesses that occur on scales smaller than can be represented

by the discrete model grid. Physical processes occurring on

these subgrid scales are important to the resolved energy

and momentum budgets and necessarily respect the same

conservation principles.

Self-consistency of conservation properties in subgrid-

scale parameterization is an important issue because

parameterizations of subgrid-scale processes can lead to

spurious long-term trends if energy and momentum

conservation are not respected (Boville and Bretherton

2003). Self-consistency is also important for ensuring the

robustness of the parameterized response to climate

perturbations (Shaw and Shepherd 2007). The errors

introduced by non-self-consistent parameterizations of

horizontal and vertical diffusion can be orders of mag-

nitude larger than those due to implicit numerical dif-

fusion (Burkhardt and Becker 2006; Becker 2003). One

important consistency issue is the inclusion of thermo-

dynamic heating resulting from the transfer of kinetic

energy from the resolved scales to subgrid scales and

eventually to a turbulent microscale, irreversibly. Becker

(2003) showed that in the planetary boundary layer, this

heating can be as large as 1.5 W m22 in the global mean.

Many models treat this energy transfer locally; that is, any

resolved-scale kinetic energy tendency due to subgrid-

scale momentum flux convergence or vertical diffusion is

assumed to be balanced locally by a thermodynamic en-

ergy tendency of the opposite sign; that is,

Q 5�›K

›t
5�v � ›v

›t
(1)

[ECHAM3 atmospheric GCM (see http://www.mpimet.

mpg.de/fileadmin/models/echam/echam3_DKRZ-Report

No.6.pdf); Boville and Bretherton 2003; the European

Centre for Medium-Range Weather Forecasts (ECMWF)
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Integrated Forecast System (see http://www.ecmwf.int/

research/ifsdocs/CY28r1/Physics/index.html, section 3.6)],

where the tendencies in (1) are understood to be those

arising from subgrid-scale parameterizations. This as-

sumption of local conservation is evidently not appropri-

ate for nonlocal transfers of energy and momentum

by subgrid-scale processes. For example, where parame-

terized gravity wave momentum flux convergence acts to

increase the resolved kinetic energy, local energy con-

servation would imply a negative thermodynamic energy

tendency, which is in violation of the second law of ther-

modynamics. (It is not possible to extract heat from a

single reservoir to perform useful work.) Similarly, mixing

induced by wave breaking will generally require energy

input to balance the gain in potential energy, so the extent

of mixing is constrained by the overall energetics. For

these reasons, an understanding of the energy transfers

between the subgrid scale and the resolved scale is nec-

essary to ensure consistency. Here we address the problem

of developing a theoretical framework for subgrid-scale

parameterization in climate models that consistently con-

serves both energy and momentum in a general manner

and respects the second law of thermodynamics.

Any framework for subgrid-scale parameterization in

climate models must involve coupling the equations of

climate modeling, the hydrostatic primitive equations

(Lorenz 1967)—which are valid for length and time scales

L
p

’ O(100� 10000 km), (2a)

H
p

’ O(10 km), and (2b)

t
p

’ O(V�1) (2c)

(Zeytounian 1990), where V is the rotation rate of the

earth (note the lower bound on the length scale, which is

set by the numerical discretization)—to equations gov-

erning subgrid-scale dynamics with approximate length

and time scales

L
m

’ O(10 km), (3a)

H
m

’ O(10 km), and (3b)

t
m

’ O(N�1), (3c)

where N is the buoyancy frequency. Dynamics occurring

on subgrid scales include convection and gravity wave

propagation and are nonhydrostatic. Therefore, the frame-

work must account for the interaction between two

flows: a hydrostatically balanced resolved flow operating

on long and slow spatiotemporal scales, and a non-

hydrostatic subgrid-scale flow operating on short and

fast spatiotemporal scales.

The tools of systematic multiple-scale perturbation the-

ory from applied mathematics (Kevorkian and Cole 1981)

are naturally suited for developing a framework to study

the interaction of physical phenomena occurring on mul-

tiple spatial and temporal scales (i.e., the resolved and

subgrid scales). Klein (2000) and Majda and Klein (2003)

have shown how this theory can be used to systematically

derive balanced models in the midlatitudes and tropics.

Here, the goal is not to derive an asymptotic framework

from first principles. Rather, the goal is to find an asymp-

totic framework that leads to the equations of interest and

to use that framework to define a self-consistent treatment

of energy and momentum in the context in which there is

an imposed separation of horizontal length and time scales

but vertical coupling within each column. This is the case

of relevance to climate models. Note that the assumed

time scale separation imposes statistical stationarity on the

subgrid-scale processes.

Section 2 introduces the equations and relevant non-

dimensionalization. We introduce the multiple-scale

framework in section 3, including the derivation of

momentum, thermodynamic, and continuity equations

for the resolved and subgrid-scale flow including the

resolved-scale total energy budget. The horizontal space

and time scale separation between the resolved and

subgrid scales is used to define wave-activity conserva-

tion lawson the subgrid scale in section 4, which are used to

close the interaction terms. In section 5 the subgrid-scale

dynamics are reduced to a subset satisfying the anelastic

constraint, which is an important regime for applications

(most subgrid-scale parameterizations are formulated us-

ing the anelastic equations), and implications for the wave-

activity conservation law closures are discussed. We show

how the dissipation of subgrid-scale kinetic energy can be

assured to lead to an increase in thermodynamic energy

and to entropy production. The paper concludes with a

summary and discussion in section 6.

2. Preliminaries

The multiscale models developed in subsequent sec-

tions are derived systematically from the Navier–Stokes,

thermodynamic, and continuity equations in planar co-

ordinates:

r
›v

›t
1 r(v � $)v 1 V 3 rv 1 $p 5�rgẑ 1 ~Sv, (4a)

c
p
rp

›u

›t
1 (v � $)u

� �
5 ~S

u
, and (4b)

›r

›t
1 $ � (rv) 5 0, (4c)
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where in the usual way r, p, v, u, and p are the density,

pressure, velocity, potential temperature, and Exner func-

tion (p 5 pk, where k 5 R/cp with R being the dry gas

constant and cp the specific heat at constant pressure),

respectively; ẑ is the unit vector in the vertical direction;

and ~Sv and ~S
u

are (dimensional) source–sink terms meant

to represent the interaction with a turbulent microscale

in which resolved-scale kinetic energy is ultimately dissi-

pated and converted into thermodynamic energy (see

section 4). Although a complete treatment of the problem

will require treatment of the effects of moisture, as a first

step we treat only dry dynamics.

To nondimensionalize the equations, we choose a gen-

eral set of scaling parameters and make specific scaling

choices for the remaining parameters (see Table 1). The

dimensionless equations are then

r
›v

›t
1 r(v � $)v 1

1

Ro
e 3 rv 1

1

M2
$p 5� 1

Fr2
rẑ 1 S

v
,

(5a)

rp

k

›u

›t
1 (v � $)u

� �
5 S

u
, (5b)

›r

›t
1 $ � (rv) 5 0, (5c)

with

e 5
sinfẑ 1 cosfŷ

sinf
0

, (6)

where f is the latitude on the tangent plane centered

at f0 and ŷ is the unit vector in the meridional direction.

In (5), M is the Mach number, Fr is the Froude number,

Ro is the Rossby number, Sv and Su are the nondimen-

sional versions of ~Sv and ~S
u
, and time is scaled advec-

tively. The three nondimensional numbers—Rossby,

Mach, and Froude—are defined as

Ro 5
U

VH
, M 5

U

c
ref

, and Fr 5
Uffiffiffiffiffiffiffi
gH
p . (7)

Note that in our scaling the length scale in the Rossby

number is H, a length scale relevant for the mesoscale,

rather than a planetary length scale. For the chosen

reference length scale, the Mach and Froude num-

bers are equivalent (i.e., for H 5 pref/grref then gH 5

pref/rref 5 c2
ref).

The final equations are the dimensionless equation of

state and definition of potential temperature:

p 5 rT, u 5 Tp�k or ru 5 p1/g, (8)

where g 5 cp/cy so that k 2 1 5 21/g.

Each variable is assumed to be decomposed into two

component scales: a planetary-scale p and a mesoscale m;

that is,

f (x
p
, x

m
, z

p
, z

m
, t

p
, t

m
) 5 f

p
(x

p
, z

p
, t

p
)

1 f
m

(x
p
, x

m
, z

p
, z

m
, t

p
, t

m
),

(9)

where xp 5 (H/Lp)x, zp 5 (H/Hp)z, tp 5 (H/Lp)t, xm 5

(H/Lm)x, zm 5 (H/Hm)z, and tm 5 (H/Lm)t. We choose

our scalings bearing in mind the dynamical models re-

quired on each scale and according to (2) and (3) we set

H/Lp 5 tp/t 5 �2, with �’ 0.1, H/Hp 5 1, H/Lm 5 tm/t 5 1,

and H/Hm 5 1, whence zp 5 zm 5 z and we refer only to z.1

Given that time is scaled advectively and that tm/t 5 1,

with tm ; O(N21) according to (3), implies a reference

velocity scale U ; NH and thus Frint 5 U/NH ; 1,

where Frint is the internal Froude number. According to

the choice of the reference velocity scale, the Mach and

the (external) Froude numbers in (7) are near unity.

Given the multiple space and time-scale dependence of

a field f, the time derivative and total horizontal gradient

are then

›f

›t
5 �2 ›f

›t
p

1
›f

›t
m

, (10a)

=Hf 5 �2=H
p f 1 =H

mf . (10b)

The asymptotic ansatz we will employ is

u 5 u
p
(x

p
, z, t

p
) 1 �u

m
(x

p
, x

m
, z, t

p
, t

m
), (11a)

w 5 �w
m

(x
p
, x

m
, z, t

p
, t

m
) 1 �2w

p
(x

p
, z, t

p
), (11b)

TABLE 1. Scaling parameters and their values.

Parameter Value

jVj O(1024 s21)

g O(10 m s22)

pref O(105 kg m21 s22)

rref O(1 kg m23)

H O(104 m)

N O(1022 s21)

cref O(102 m s21)

Tref c2
ref/R

U NH

1 In keeping with our motivation, we consider only two time

scales. We do not include the O(��1) time scale in our framework,

which is the mesoscale advective time scale. Its neglect does not

fundamentally change what is derived in the subsequent sections.
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p 5 p
p
(x

p
, z, t

p
) 1 �M2p

m
(x

p
, x

m
, z, t

p
, t

m
), (11c)

r 5 r
p
(x

p
, z, t

p
) 1 �M2r

m
(x

p
, x

m
, z, t

p
, t

m
), (11d)

T 5 T
p
(x

p
, z, t

p
) 1 �M2T

m
(x

p
, x

m
, z, t

p
, t

m
), (11e)

u 5 u
p
(x

p
, z, t

p
) 1 �M2u

m
(x

p
, x

m
, z, t

p
, t

m
), (11f)

where v 5 (u, w) and each field is expanded in � for

example,

f
m

(x
p
, x

m
, z, t

p
, t

m
; �) 5 �

i
�if (i)

m (x
p
, x

m
, z, t

p
, t

m
).

(12)

In the above ansatz, all thermodynamic variables are

decomposed using a standard mesoscale average over tm
and xm (but not z) with the property that f

m
5 0 and

f
p

5 f
p
, which is an ansatz to eliminate secular growth.

Note that this corresponds to an area-weighted average.

For the velocity, we adopt a mass-weighted average

decomposition such that rpup 5 ru, rpwp 5 rw, and

rvm 5 0 since this is more appropriate when considering

conserved quantities such as energy and momentum. The

ansatz (11) accounts for the fact that the mesoscale fields

are small compared to planetary-scale fields and it includes

an anisotropy in the planetary-scale velocities to ensure

that vertical advection balances horizontal advection. We

also choose to scale the mesoscale thermodynamic vari-

ables by M2; limits of this parameter are considered in

section 5. In terms of the thermodynamics, the ansatz (11)

implies a leading-order thermodynamic state that varies

only on the slow and long planetary scales and acts as a

background state for the mesoscale. The source–sink terms

Sv and Su are assumed to take the following forms:

Sv 5 �Sm
v (x

p
, x

m
, z, t

p
, t

m
), (13a)

S
u

5 �M2Sm
u (x

p
, x

m
, z, t

p
, t

m
) 1 �2S

p
u(x

p
, z, t

p
). (13b)

We assume that the mesoscale source–sink terms rep-

resent flux divergences of microscale fluctuations and

hence vanish, as do all mesoscale fields, under the me-

soscale average (i.e., Sm
v 5 Sm

u 5 0). This implies that

the microscale fluctuations directly affect the mesoscale

dynamics but only affect the planetary scale indirectly.

This completes the multiple scale formalism.

Given the introduction of multiple length scales, it is

appropriate to write the Rossby number as

Ro 5
L

p

H
Ro

p
; ��2Ro

p
, (14)

where Rop 5 U/VLp ; 1 is the usual planetary-scale

Rossby number. Thus, it is clear that on the planetary scale,

horizontal advection, vertical advection, and rotation are

of the same order. The limit of small �2 5 H/Lp as rep-

resented in (12) is taken with M, Fr, and Rop held fixed.

3. Equations for the mesoscale planetary-scale
interaction

Proceeding as usual with the asymptotics [plugging

(11) expanded according to (12) into (5)], we obtain a

hydrostatically balanced reference state at O(1); that is,

1

M2

›p
p

›z
5� 1

M2
r

p
, (15)

where we have substituted M for Fr. Here and hence-

forth all velocities are leading order and superscripts are

dropped unless otherwise indicated. The mesoscale dy-

namical equations are obtained at O(�). The mesoscale

horizontal and vertical momentum equations are

r
p

›u
m

›t
m

1r
p
(u

p
�=H

m)u
m

1r
p
w

m

›u
p

›z
1=H

mp
m

5Sm
u ,

(16a)

r
p

›w
m

›t
m

1r
p
(u

p
�=H

m)w
m

1
›p

m

›z
5�r

m
1Sm

w .

(16b)

Note that the mesoscale average, which is hydrostatic

balance between pp
(1) and pp

(1), has been removed to ob-

tain (16b). The mesoscale potential temperature equa-

tion is

r
p
p

p

k
M2 ›u

m

›t
m

1 (u
p
� =H

m)u
m

� �
1

›u
p

›z
w

m

� �
5 M2Sm

u .

(17)

The final equation is the continuity equation,

M2 ›r
m

›t
m

1 (u
p
� =H

m)r
m

� �
1 $

m
� (r

p
v

m
) 5 0, (18)

where $m is the three-dimensional gradient on the meso-

scale. Note that the ansatz (11) together with the assumed

scaling has not eliminated compressibility effects on the

mesoscale [cf. the first term on the left-hand side of (18)].

Before proceeding to the next order, it will be useful

to plug (11) into the equation of state, the definition of

potential temperature (8), and the Exner function:

p 5 rT ! (p
p

1 �M2p
m

) 5 (r
p

1 �M2r
m

)(T
p

1 �M2T
m

)

! p
p

5 r
p
T

p
, p

m
5 r

p
T

m
1 r

m
T

p
, (19)
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u 5 Tp�k ! (u
p

1 �M2u
m

) 5 (T
p

1 �M2T
m

)(p
p

1 �M2p
m

)�k

! (u
p

1 �M2u
m

) ’ (T
p

1 �M2T
m

)(p
p
)�k(1� �M2kp

m
/p

p
)

! u
p

5 T
p
p�k

p , u
m

5 p�k
p T

m
� k

u
p

p
p

p
m

5
u

p

gT
p

T
m
� k

u
p

r
p

r
m

, (20)

and

p 5 pk ! (p
p

1 �M2p
m

) 5 (p
p

1 �M2p
m

)k

! (p
p

1 �M2p
m

) ’ pk
p(1 1 �M2kp

m
/p

p
)

! p
p

5 pk
p, p

m
5 kpk�1

p p
m

5 k
p

m

r
p
u

p

.

(21)

According to these expansions, the leading-order me-

soscale momentum Eq. (16) can be written without ap-

proximation as

r
p

›u
m

›t
m

1 r
p
(u

p
� =H

m)u
m

1 r
p
w

m

›u
p

›z

1 r
p
=H

m

u
p

k
p

m

� �
5 Sm

u , (22a)

r
p

›w
m

›t
m

1 r
p
(u

p
� =H

m)w
m

1 r
p

›

›z

u
p

k
p

m

� �

5
r

p

u
p

u
m

1
r

p

k

›u
p

›z
p

m
1 Sm

w , (22b)

where (22b) can be obtained from (16b) using

�r
m

5
r

p

u
p

u
m
� 1

gk

r
p

p
p

p
m

, (23)

which is derivable from (19), (20), and (21), as well as

›p
m

›z
5

›

›z

r
p
u

p

k
p

m

� �
5 r

p

›

›z

u
p

k
p

m

� �
1

u
p

k

›r
p

›z
p

m

(24)

5 r
p

›

›z

u
p

k
p

m

� �
� 1

k
r

p

›u
p

›z
1

1

g

r
p

p
p

 !
p

m
, (25)

where the last line is obtained upon taking the vertical

derivative of rpup 5 pp
1/g, which can be obtained from

(19) and (20).

The planetary-scale dynamical equations are O(�2).

To obtain them, we apply the mesoscale average to the

O(�2) equations and account for the mesoscale average

applied to the O(�) equations.2 The horizontal momen-

tum equation on the planetary scale is

r
p

›u
p

›t
p

1 r
p
(v

p
� $

p
)u

p
1 e

z
3 r

p
u

p
1

1

M2
=H

p p
p

5� ›

›z
(r

p
u

m
w

m
), (26)

where ez 5 (e � ẑ)ẑ, and is derived using (18). The

planetary-scale potential temperature equation is

1

M2

r
p
p

p

k

›u
p

›t
p

1 (v
p
� $

p
)u

p

" #

5� ›

›z

r
p
p

p

k
u

m
w

m

� �
�

r
p

u
p

u
m

w
m
�

u
p

k
p

m
$

m
� (r

p
v

m
)

�
r

p

k

›u
p

›z
p

m
w

m
1

1

M2
Sp

u (27)

and is derived using the relations

M2 1

r
p

r
m

Sm
u 5

p
p

k
u

m
$

m
� (r

p
v

m
) 1

›u
p

›z
r

m
w

m

� �
, (28)

M2 1

p
p

p
m

Sm
u 5

r
p

k

u
p

r
p

p
m
$

m
� (r

p
v

m
) 1

›u
p

›z
p

m
w

m

" #
,

(29)

which can be derived by multiplying (17) by rm and pm,

respectively, and using (18). Note that (27) has been

divided by M2 so that when calculating the total energy

budget the pressure-work term on the planetary scale

can be associated with the corresponding term in the

planetary-scale kinetic energy budget. We choose to

write the planetary-scale potential temperature equa-

tion in the above form so that mesoscale kinetic energy

conversion terms can be identified. We note that the first

2 The mesoscale average of (22) contributes to O(�2) according

to the mass-weighted average decomposition: rv
m

5 0 implies

r
p
v

m
5 ��M2r

m
v

m
; O(�). Thus, the r

p
w

m
and r

m
w

m
contribu-

tions combine at O(�2) to satisfy rwm 5 0.
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two terms on the right-hand side of (27) can be associ-

ated with diabatic effects on the mesoscale because

r
p
p

p

k

›u
p

›z
u

m
w

m
5 M2u

m
Sm

u , (30)

which is derivable by multiplying (17) by um [analogous

to (28) and (29)]. Finally, the planetary-scale continuity

equation is

›r
p

›t
p

1 $
p
� (r

p
v

p
) 5 0. (31)

Given that most climate models use enthalpy as their

prognostic thermodynamic variable, it is beneficial to

convert the planetary-scale potential temperature equation

into an equation for planetary-scale enthalpy. Expanding

the left-hand side of (27) and using the leading-order

expression in (20), we obtain

1

M2

r
p

k

›T
p

›t
p

1 (v
p
� $

p
)T

p

" #
� 1

M2

›p
p

›t
p

1 (v
p
� =H

p )p
p

" #
1

1

M2
r

p
w

p

5� ›

›z

r
p
p

p

k
u

m
w

m

� �
�

r
p

u
p

u
m

w
m
�

u
p

k
p

m
$

m
� (r

p
v

m
)�

r
p

k

›u
p

›z
p

m
w

m
1

1

M2
S

p
u . (32)

It is clear from (26) and (32) that mesoscale fluxes

of momentum, potential temperature, and pressure

drive the planetary-scale flow, which obeys hydrostatic

dynamics (15). The quasi-linear mesoscale [(17), (18),

and (22)] is coupled nonlinearly through these eddy

fluxes to the planetary scale. This interaction has im-

plications for the planetary-scale energy and momentum

budgets.

The planetary-scale momentum budget, derived by

adding (26) to up times (31), is

›

›t
p

(r
p
u

p
) 1 $

p
� (r

p
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p 8 u
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) 1 e

z
3 r
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p
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p p
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›z
(r

p
u

m
w

m
), (33)

where 8 is the tensor product. Because the important

transfers between the planetary scale and mesoscale are

assumed to occur in the vertical direction, angular mo-

mentum conservation applies within each model vertical

column and hence within each latitude band. Moreover,

we have made a shallow atmosphere approximation.

Therefore, angular momentum conservation in this case

is equivalent to zonal momentum conservation. (Recall

that in the shallow-atmosphere approximation the an-

gular momentum does not vary with z.) It is clear from

(33) that integrating over z leads to conservation of

zonal momentum.

The contribution of mesoscale momentum flux con-

vergences to the planetary-scale energy budget can be

understood by calculating the total energy budget on

the planetary scale. Upon taking the inner product of

(22) with vm and taking a mesoscale average, we obtain

the mesoscale kinetic energy equation on the planetary

scale:
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� Sm

v . (34)

Mesoscale kinetic energy is changed by planetary-scale

shear, pressure work, the conversion of planetary-scale

enthalpy to mesoscale kinetic energy [cf. first three

terms on the right-hand side of (34) and the second

through fourth terms on the right-hand side of (32)],

and the cascade of kinetic energy to smaller (micro)

scales [the last term in (34)]. We obtain the planetary-

scale kinetic energy equation upon taking the inner

product of (26) with up and adding it to Kp multiplied

by (31):

›

›t
p

(r
p
K

p
) 1 $

p
� (r

p
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p
K

p
) 1

1

M2
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p
� =H

p p
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5�u
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� ›

›z
(r

p
u

m
w

m
), (35)

where Kp 5 jupj2/2. As we expect for hydrostatic dy-

namics, Kp does not include wp. Planetary-scale kinetic

energy is changed locally by pressure work and meso-

scale momentum fluxes. Upon adding Tp/kM2 times (31)

to (32), we obtain the planetary-scale internal energy

equation:
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Planetary-scale internal energy is changed locally by

pressure work, the conversion to planetary-scale po-

tential energy, mesoscale entropy fluxes, the conversion

to mesoscale kinetic energy, and planetary-scale sources

and sinks. Defining the geopotential as Fp 5 z/M2, the

planetary-scale potential energy equation can be calcu-

lated using (31) as

›

›t
p

(r
p
F

p
) 1 $

p
� (r

p
v

p
F

p
)� 1

M2
r

p
w

p
5 0. (37)

Planetary-scale potential energy is changed locally by

conversion to planetary-scale internal energy. Finally,

the total energy equation on the planetary scale is

obtained by adding (34), (35), (36), and (37):
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It is clear from (38) that total energy is globally conserved

apart from the last two terms on the right-hand side. Total

energy on the planetary scale is changed locally by meso-

scale momentum and pressure fluxes, mesoscale potential

temperature fluxes, the cascade of mesoscale kinetic en-

ergy to smaller scales, and planetary-scale sources and

sinks. The last three terms in (38) are directly attributable

to nonconservative effects. In the case of the mesoscale

potential temperature flux, it is the direct result of diabatic

effects on the mesoscale according to (30).

4. Understanding the interaction across scales:
Wave-activity conservation laws

The planetary scale and mesoscale interact through

eddy flux convergences of mesoscale momentum, poten-

tial temperature, and pressure, which drive the planetary

scale via quasi-linear mesoscale dynamics. A full under-

standing of the exchange of energy and momentum across

scales requires dynamical equations on the mesoscale

describing how mesoscale energy and momentum evolve

through the interaction with the planetary scale. Because

of the existence of the planetary-scale background, the

mesoscale energy and momentum are themselves not the

best quantities to examine for this purpose, as they are not

conserved under adiabatic dynamics. Here we use wave-

activity conservation laws to understand such multiscale

interactions. By a wave-activity conservation law, we mean

a relation of the form

›A

›t
m

1 $
m
� F 5 D, (39)

where A is the wave-activity density and F its flux, both

being quadratic for linear dynamics, and D is the wave-

activity source–sink term. In the conservative case D 5 0.

Note that after performing a mesoscale average, (39)

becomes

›

›z
F

(z)
5 D (40)

and hence any vertical wave-activity flux must be driven

by source–sink terms somewhere in the vertical column.

Wave-activity conservation laws play a central role in

the study of fluid dynamical disturbances to a specified

background state. In the case of the large-scale circulation

of the atmosphere, the Eliassen–Palm wave activity has

been crucial to theoretical analysis (Andrews et al. 1987;

Shepherd 2003; Vallis 2006). Wave-activity conservation

laws can be generally derived using the Hamiltonian struc-

ture of geophysical fluid dynamics (Shepherd 1990). This

framework should, in principle, allow one to consider

general disturbances to a background flow, without mak-

ing any Wentzel–Kramers–Brillouin (WKB)-type as-

sumptions, and be extendable to finite amplitude. In the

case of the dynamics derived in the previous section,

these conservation laws can be derived in the usual way

because the planetary scale acts as a horizontally and

temporally homogeneous background flow for the me-

soscale dynamics according to the ansatz (11). (The

scales are, however, coupled in the vertical, as is assumed

in the parameterization of subgrid scales in climate

models.) In particular, the xm, ym, and tm symmetries in
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u . (36)
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the background flow lead to pseudomomentum and

pseudoenergy conservation laws (Shepherd 1990).

Shaw and Shepherd (2008, hereafter SS08) derived

wave-activity conservation laws for three-dimensional dis-

turbances to a horizontally homogeneous background flow

with disturbances governed by the anelastic or Boussinesq

equations. In the current nomenclature, the mesoscale is

considered the disturbance and the planetary scale is the

background flow. The mesoscale dynamics derived in

section 3 are not explicitly anelastic; however, the results

of SS08 can be extended to the situation considered here.

A detailed derivation can be found in appendix A. The

anelastic form of the mesoscale fluxes and multiscale in-

teractions, and their connection to the wave-activity con-

servation laws, is presented in the next section.

The mesoscale source–sink terms are responsible for

the generation and dissipation of mesoscale pseudo-

energy and pseudomomentum: taking the mesoscale

average of wave activities derived in appendix A, (A10)

and (A21), yields

›

›z
FE(z) 5

›

›z
r

p
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p
� u

m
w

m
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r
p
u

p

k
p

m
w

m

� �
5 DE ,

(41a)

›
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F
P

x

(z)x̂ 1 F
P

y

(z)ŷ

� �
5

›

›z
(r

p
u

m
w

m
) 5 DPx x̂ 1 DPy ŷ,

(41b)

where FE(z), F
Px

(z), and F
Py

(z) are the vertical components

of the pseudoenergy and x and y pseudomomentum

fluxes with corresponding source–sink terms DE , DPx ,

and DPy , defined in (A11) and (A22), which satisfy the

constraint

DE � v
m
� Sm

v �M2 k

p
p

2

(u2
p)

z

u
m

Sm
u 1

1

p
p

p
m

Sm
u

" #

5 u
p
� DPx x̂ 1 DPy ŷ
	 


. (42)

Note that the vertical fluxes are identical to those de-

rived by Hines and Reddy (1967) without using the

Hamiltonian framework but assuming WKB-type con-

ditions in the vertical. This shows that previous work

using these fluxes applies more generally than under the

circumstances considered by Hines and Reddy (1967).

This generality is reflected in the fact that the vertical

fluxes are directly associated with the wave-activity

densities (A10) and (A21), which take full account of the

background shear, as does the right-hand side of (41).

The vertical wave-activity fluxes in (41) are important

in driving the planetary scale. In particular, the pseudo-

momentum (41b) forces the planetary-scale momentum

via (33), whereas the pseudoenergy (41a) contributes to

forcing the total energy on the planetary scale via (38).

The wave-activity conservation laws provide a means of

relating the mesoscale fluxes in (33) and (38) to source–

sink terms on the mesoscale. The other mesoscale terms

on the right-hand side of (38) have already been related

to source–sink terms on the mesoscale. In the absence

of wave-activity sources–sinks, the subgrid-scales do not

contribute to the planetary-scale budgets and thus (41a)

and (41b) can be thought of as ‘‘non-acceleration’’ the-

orems (Charney and Drazin 1961; Eliassen and Palm

1961) for the effects of subgrid-scale disturbances.

We now proceed by making use of a relationship that

connects the planetary-scale energy and momentum

budgets. There exists a general relationship between the

pseudoenergy and pseudomomentum wave activities,

AE ¼ cAP (where c is the phase velocity in the direction

of symmetry associated with AP), which is derivable

from Noether’s theorem (see SS08). This relationship

holds for a monochromatic wave. However, because AE ,

APs , and APn are quadratic and the background flow is

homogeneous in xm, ym, and tm, the quantities can be

decomposed into spectra and the relationship holds for

each wavenumber–frequency pair (with its own c). In

fact, the wave activities need not correspond to waves at

all; we may just define c as c 5 AE /AP . This relationship

imposes a relationship between the vertical components

of the pseudoenergy and pseudomomentum fluxes:

FE(z) 5 c
s
F
P

s

(z) 5 c
s
ŝ � F

P
x

(z)x̂ 1 F
P

y

(z)ŷ

� �
, (43)

where cs is the streamwise phase velocity. As noted by

SS08, (43) is the generalization of the first Eliassen–

Palm theorem (Lindzen 1990) to three dimensions with

a veering background flow.3 Relations (42), (41), and

(43) are key to ensuring the consistency of energy and

momentum conservation on the mesoscale. In particu-

lar, the relations (41) and (43) imply

DE 5 c
s
ŝ � DPx x̂ 1 DPy ŷ
	 


. (44)

Combining (44) with (42), we obtain

3 Eliassen and Palm (1961) derived their first and second theo-

rems for the case of steady, two-dimensional gravity waves, as-

suming conservative dynamics. However, they did not derive

conservation laws that relate the vertical fluxes to conserved

quantities. Subsequent authors (Bretherton 1966; Hines and Reddy

1967; Lindzen 1973) generalized the Eliassen–Palm theorems to

nonsteady disturbances, but they appealed to WKB-type condi-

tions in the vertical (large Richardson number) to define a wave

packet with phase velocity c and the associated wave action.
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, (45)

where the second equality follows from (29) and (30).

Relation (45) represents the generalization of the sec-

ond Eliassen–Palm theorem to three dimensions with a

veering background flow and to dissipative dynamics.

Lindzen (1973) extended the second Eliassen–Palm the-

orem to include diabatic forcing but assumed WKB

conditions in the vertical. The plane-parallel version of

(45) with Sv
m 5 0, in particular the first line and last

equality, corresponds exactly to (8) in Lindzen (1973)

and to (8.24) in Lindzen (1990). Here we have shown

that the second Eliassen–Palm theorem can be derived

systematically using the Hamiltonian structure of geo-

physical fluid dynamics in the general context of the in-

teraction between a mesoscale (subgrid-scale) flow and a

planetary-scale (resolved) flow. Furthermore, we have

generalized the relation to three dimensions with a

veering background flow, and the wave-activity source–

sink terms take full account of the background vertical

shear (there is no WKB-type requirement on the back-

ground flow).

We now discuss the implications of (45) for conser-

vation of total energy and the second law of thermo-

dynamics. Two requirements of our theory are that

total energy is conserved when there are no external

sources or sinks and that the second law of thermo-

dynamics (entropy production by internal dynamics)

is satisfied. To prove that total energy is conserved,

we must show that the integral of (38) over the entire

domain dV 5 dxp dyp dz vanishes under appropriate

boundary conditions. Before applying the integral,

we must partition the planetary-scale thermal source/

sink term Su
p into the rate of work done by the meso-

scale source/sink term Sv
m and the contribution from

planetary-scale external sources/sinks. In particular, we

set

1

M2
S

p
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1 Q
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u
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� Sm

v 1
›
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m
� (d

m
)

z
] 1 Q

p
u , (46)

where dm is the symmetric shear stress tensor on the

mesoscale with (dm)z 5 [(dm)xz, (dm)yz, (dm)zz] and Sv
m 5

$m � dm; Qu
p is a mass-weighted diabatic source/sink term.

The second term on the right-hand side involving dm is

recognized as the transfer of the turbulent shear stress by

the mesoscale velocity. This partitioning isolates the ex-

ternal (radiative) heating from the internal heating due

to kinetic energy dissipation. (To incorporate latent heat

release would require a full treatment of moist processes

to ensure total energy conservation). We choose not to

introduce an explicit stress tensor formulation of Sv
m so as

to keep the framework general enough to admit different

closures. (The closure will depend on the particular phys-

ical processes being parameterized.)

Applying (46) to (38), integrating over dV (assuming

vanishing boundary conditions), and assuming Qu
p 5 0

we obtain
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dV 5 0. (47)

Thus, total energy is conserved when Qu
p 5 0.

The second requirement that must be satisfied is the

second law of thermodynamics. The planetary-scale en-

tropy equation is
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, (48)

which is obtained by multiplying (27) by k/ppup, adding

lnup multiplied by (31), and using (46). To ensure that

the planetary-scale entropy increases as a result of ex-

changes of energy and momentum with the mesoscale,

we require that the vertical integral of (48) be positive

definite when Qu
p 5 0—that is, when the atmosphere

is a closed system (a condition that is required for

the second law to hold). (In practice,
Ð

kQ
p
u /Tp dV , 0

balances the entropy production.) Under such condi-

tions, ensuring the positivity of the right-hand side of
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(48) (with Qu
p 5 0) ensures that there is an irreversible

increase in planetary-scale entropy, consistent with

the second law. The right-hand side of (48) can be re-

lated to the wave-activity conservation law source/

sink terms using (45) such that entropy production

requires
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Further interpretation is relegated to the next section

where we discuss the implications under the anelastic

constraint.

5. Anelastic dynamics

In section 3 planetary-scale momentum and total

energy budgets were derived, including contributions

from mesoscale fluxes of momentum, heat, density,

and pressure. The dynamics on the mesoscale, although

nonhydrostatic, did not satisfy the anelastic constraint

$m � (rpvm) 5 0. Understanding how the planetary-scale

momentum and total energy budgets are affected by an

anelastic constraint on the mesoscale is relevant for

climate models because the theoretical formulations of

many state-of-the-art subgrid-scale parameterizations

are based on the anelastic equations. A reduction of the

planetary-scale momentum and energy budgets derived

in section 3 can be made by neglecting those terms af-

fected by the anelastic constraint. In particular, a re-

duced set of planetary-scale equations with mesoscale

fluxes satisfying the anelastic constraint can be obtained

by neglecting terms in (27) proportional to M2pmSm
u

[identified using (29)]. Upon neglecting the relevant

terms and proceeding as in section 3, the planetary-scale

momentum and total energy equations become

›
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), (50a)

Clearly, the neglect of these terms does not alter the

conservation of momentum and energy on the planetary

scale. It also does not change the mesoscale contribu-

tions to the right-hand sides of the two budgets.

The neglect of these terms to obtain the reduced

planetary-scale dynamics can be justified by considering

the small Mach number limit of the dynamics presented in

section 3. [Note that section 3 considered an O(1) Mach

number.] It is clear from (18) that in the limit of small

Mach number, the anelastic constraint $m � (rpvm) 5 0

is recovered. In this limit, the integrity of the meso-

scale thermodynamic equation (17) can be preserved if

the stratification on the planetary scale is assumed to be

O(M2). A weak stratification is a well-known assumption

of the anelastic equations (Lipps and Hemler 1982; Klein

2000). It is clear that these assumptions result in the ne-

glect of terms proportional to M2p
m

Sm
u in the planetary-

scale enthalpy and mesoscale kinetic energy equations.
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The mesoscale potential temperature flux is not ne-

glected because (30) remains valid under the anelastic

approximation when ›up/›z 5 O(M2). As in the previous

sections, its source is diabatic effects on the mesoscale.

Zeytounian (1990) derived the small-Mach number

limit of the hydrostatic primitive equations, which

he called the reduced hydrostatic primitive equations,

by first applying the shallow atmosphere approxima-

tion (equivalent to �� 1 in section 3) and then applying

the small Mach number limit (see his section 7.4).

The small Mach number limit was applied to the hydro-

static primitive equations in pressure coordinates, and the

leading-order pressure and enthalpy contributions were

O(M2). Our reduced planetary-scale dynamics are in

agreement with (7.57) of Zeytounian (1990).

The reduced wave-activity conservation laws are ob-

tained by applying the small Mach number and weak

stratification limit to the compressible pseudoenergy

and streamwise and normal pseudomomentum densities

in appendix A. The anelastic wave-activity conservation

laws derived in appendix B correspond exactly to those

derived in SS08. Upon performing a mesoscale average

over the anelastic wave-activity conservation laws (B3)

and (B6), we obtain
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(51b)

with the wave-activity source–sink terms defined in (B4)

and (B7) satisfying the constraint

DE � v
m
� Sm

v �M2 k

p
p

2

(u2
p)

z

u
m

Sm
u 5 u

p
� (DPx x̂ 1 DPy ŷ).

(52)

Analogously to (41), (51) can be thought of as non-

acceleration theorems for the effects of subgrid-scale

disturbances satisfying the anelastic constraint.

Interestingly, the anelastic constraint only affects the

horizontal wave-activity fluxes; the vertical wave-activity

fluxes are unchanged. A plausible reason for this is that

the hydrostatic primitive equations admit only horizon-

tally propagating sound waves, so any coupling with the

mesoscale through compressible dynamics can only occur

through the horizontal fluxes. Thus, the anelastic limit,

which filters out sound waves, has no effect on the vertical

fluxes, which are responsible for forcing the planetary-

scale momentum and energy.

Making use of (30) and the relationship (44) between

the pseudoenergy and the pseudomomentum, we obtain

�v
m
�Sm

v �M2 k

p
p

2

(u2
p)

z

u
m

Sm
u 5�v

m
�Sm
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u
p

u
m

w
m

5�DE1u
p
� DPx x̂1DPy ŷ
	 


5(u
p
� c

s
ŝ) � DPx x̂1DPy ŷ
	 


,

(53)

which is the anelastic version of (45).

As in section 4, the wave-activity conservation laws

provide a means of relating the mesoscale flux terms in

(50a) and (50b) to mesoscale source–sink terms. [The

other terms on the right-hand side of (50b) have already

been related to source–sink terms on the mesoscale.] As

discussed in the previous section, (53) is the generali-

zation of the second Eliassen–Palm theorem for the case

of anelastic dynamics.

Upon applying the same partitioning of the planetary-

scale thermodynamic source/sink term as in (46), energy

conservation when Qu
p 5 0 is preserved under the anelastic

constraint. Proceeding to the second law of thermody-

namics, under the anelastic approximation (48) becomes

1
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p
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) 1 $
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� Sm
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�
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� (d

m
)

z
]�Q

p
u

�
, (54)

where we have neglected terms proportional to M2p
m

Sm
u

and M2u
m

Sm
u identified using (29) and (30). As in the

previous section, the right-hand side of (54) can be related

to the anelastic wave-activity conservation law source/sink

terms via (53) such that entropy production (for Qu
p 5 0)

requires

ð
k

T
p
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� c
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� (d
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z
]

� �
dz . 0. (55)
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If a diffusive (Richardson flux gradient) closure is as-

sumed for (dm)z, the right-hand side of (55) can be re-

written according to

�v
m
� Sm

v 1
›

›z
[v

m
� (d

m
)

z
)]

5�v
m
� ›

›z
K

z

›v
m
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� �
1

›

›z
v

m
� K

z

›v
m

›z

� �" #

5 K
z

›v
m

›z

� �2

, (56)

with Kz being a vertical diffusion coefficient. For Kz . 0,

the entropy production constraint is clearly satisfied in

this case. The terms in the entropy production constraint

can be associated with different subgrid-scale energy

transfers. The first term on the left-hand side in the first

line of (55), proportional to the wave-activity source–

sink terms, is associated with nonlocal mesoscale energy

transfer, the second with local transfer of mesoscale

internal–potential energy to planetary-scale internal en-

ergy, and the final term with local kinetic energy transfer

from the mesoscale to turbulence.

According to the first Eliassen–Palm theorem (43),

upward propagation implies that momentum flux depo-

sition must drag the background flow toward the phase

velocity of the waves, such that the nonlocal transfer term

in (55) is positive in the wave dissipation region. We

obtain the same result from the requirement of entropy

production, provided the local transfers are not positive.

Our framework, however, shows that a complete state-

ment requires consideration of the local transfers as well

as of the wave source region (which is not generally taken

into account in gravity wave parameterizations).

It is apparent from (55) that the sign of the various

contributions to the entropy budget depends crucially

on the structure of the background temperature Tp. If

we consider the case of stable stratification on the plan-

etary scale and assume that mesoscale mixing is down-

gradient, then u
m

w
m

, 0; thus, the second term on the

left-hand side of (55) is negative-definite and requires a

compensation in the other terms to ensure that entropy

is produced. In this way, the entropy budget constrains

the extent of the vertical mixing. Similar considerations

apply to the local turbulent transfer term. Furthermore,

nonlocal transfers between regions of contrasting Tp are

constrained by (55).

The nonlocal transfer term in the entropy production

constraint can be related to a planetary-scale thermo-

dynamic (enthalpy) tendency, which is how the con-

straints of the second law have been usually considered

(e.g., Lindzen 1990). This can be shown by making use of

the generalized second Eliassen–Palm theorem for the

mesoscale dynamics, (53) or (45). In particular, the left-

hand sides of (53) or (45) can be substituted into the

enthalpy equation (32) to obtain
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p
u , (57c)

where we have used the planetary-scale momentum

equation (26) to obtain the second line, and where the

dots refer to adiabatic terms. Relation (57c) contrasts

with the local conservation of energy (1) discussed in

the introduction. Consider the case in which the local

transfers [the flux divergence terms in (57)] are ne-

glected, and Qu
p 5 0. If the remaining nonlocal transfer

term is positive-definite, then it is clear that the vertical

exchanges of energy and momentum lead to a warming

of the planetary-scale temperature (wave absorption

warms the background), as argued by Lindzen (1990).

On the other hand, if the term proportional to cs in

(53) and (45) is neglected, then an acceleration of the

planetary-scale flow by momentum flux convergence

leads to a decrease in entropy and local cooling, ac-

cording to (57), in violation of the second law. This was

the example considered in the introduction. Interest-

ingly, the form of the thermodynamic energy tendency

is not directly affected by the anelastic constraint on

the mesoscale, although the sources of the tendency are

[compare the left-hand sides of (53) and (45)].

However, the second law of thermodynamics is a global

constraint and cannot be ensured from local consider-

ations as in (57). For complete consistency, it is neces-

sary to consider the entropy constraint (55), as discussed

above. In this case the local transfers do not integrate
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out in the vertical column, as they do in the enthalpy

budget.

6. Summary and discussion

By combining the theories of multiple-scale asymp-

totics and Hamiltonian geophysical fluid dynamics, we

have derived a self-consistent (in terms of energy and

momentum) theoretical framework for physical pa-

rameterization in climate models. We have derived en-

ergy (38) and momentum (33) equations for a nonlinear,

hydrostatic resolved (planetary) scale, which include

interactions with a quasi-linear, compressible or an-

elastic subgrid-scale (mesoscale) described by (17), (18),

and (22). The temporal and horizontal spatial symme-

tries in the planetary-scale background flow for the

mesoscale allow the construction of wave-activity con-

servation laws (A10), (A21), (B3), and (B6) on the

mesoscale. These conservation laws are used to under-

stand the fluxing of energy and momentum between

scales and the ultimate dissipation of mesoscale kinetic

energy, conversion to planetary-scale internal energy,

and increase in planetary-scale entropy. In particular,

they are used to relate mesoscale flux terms in the

planetary-scale momentum and energy budgets to me-

soscale source–sink terms, thereby providing general-

ized nonacceleration theorems.

The relationships between the subgrid-scale fluxes

(45) and (53) derived here, which result from self-

consistency in terms of energy and momentum conser-

vation, are generalizations of the second Eliassen–Palm

theorem and place strong constraints on the contributions

of subgrid-scale fluxes to the resolved energy and mo-

mentum budgets. Any parameterization of subgrid-scale

momentum fluxes must satisfy them to ensure the con-

servation of both energy and momentum and conform to

the second law of thermodynamics. This includes wave

drag, cumulus, and boundary layer parameterizations. In

particular, entropy production is only guaranteed if (49)

and (55) are satisfied. These relations also place strong

constraints on parameterized fluxes and may be especially

useful in cases where observational constraints are lack-

ing. [Note that (45), (53), (49), and (55) are valid whether

or not a phase velocity can be usefully defined.] For ex-

ample, mixing by gravity wave breaking is constrained not

only by energy considerations but also by the requirement

of entropy production. Current treatments of kinetic en-

ergy dissipation that assume local conservation of energy

by balancing a kinetic energy tendency locally by a ther-

modynamic tendency, as in (1), are incorrect according to

(57c) and may lead to spurious sources/sinks of energy

and a violation of the second law. [The local conservation

formulation (1) can also be seen to be in error according

to (46) because it neglects the second term on the right-

hand side of the second equality, which involves a non-

local transfer by the turbulent microscale flow.] Ensuring

that particular parameterizations satisfy the entropy pro-

duction constraint in the vertical column, (49) and (55), is

the subject of future investigation.

While the motivation of the framework was the param-

eterization of subgrid-scale processes in climate models,

numerical weather prediction models, which are gener-

ally of higher spatial resolution, must also parameterize

the transfer of energy and momentum between the re-

solved and subgrid scales. Thus, the relationships be-

tween the fluxes derived here are also relevant for such

models.

In the context of gravity wave propagation, Lindzen

(1973) showed that the thermodynamic energy tendency

due to gravity wave dissipation has the form (57b);

however, a constant background wind was assumed in

the derivation. In the context of gravity wave drag pa-

rameterization, the Lindzen (1981) parameterization does

not represent the thermodynamic energy tendency ac-

cording to (57b), although Becker and Schmitz (2002)

extended Lindzen’s parameterization to include the

correct tendency [see their Eq. (15)]. In the Hines (1997)

parameterization, an analogous thermodynamic energy

tendency is used; however, it is scaled by a fudge factor

F5 with a suggested range of 1 # F5 # 3. According to

the current analysis, F5 must equal unity to ensure con-

sistency between energy and momentum conservation.

In all the above studies, the thermodynamic tendency is

only applied in the dissipation (wave breaking) region;

the present framework implies that it should be also

applied in the generation region (and be associated with

the wave sources).

Under the time scale separation assumption of our

framework, which is that typically made in the param-

eterization of subgrid scales in climate models, the me-

soscale is forced to be statistically stationary on the

planetary scale. This leads to the wave-activity conser-

vation laws being diagnostic relations [e.g., (41) and

(51)]. Some climate models include turbulent kinetic

energy equations that are prognostic. To include prog-

nostic effects on the mesoscale, the theory would need

to incorporate an intermittency factor to preserve the

scalings on the planetary scale.

A weakness of our framework is that the mesoscale

dynamics are assumed to be quasi-linear, in the sense

that they are described by the small-amplitude form of

the wave-activity conservation laws. This would seem

to limit the applicability of the framework (e.g., con-

vection and boundary layer turbulence are clearly non-

linear processes). The introduction of an intermittency

factor should also make it possible to allow a nonlinear
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mesoscale without disturbing the balances on the plan-

etary scale, and the Hamiltonian framework ensures

that the mesoscale wave-activity conservation laws can

be extended to finite amplitude. [Extension to moist

dynamics should also be possible; see, e.g., Bannon

(2003).] Unfortunately, in this case the direct connection

between the vertical wave-activity fluxes and the planetary-

scale equations is lost because there is an additional term

in the vertical fluxes involving advection of the wave-

activity density (Scinocca and Shepherd 1992). (This

problem also arises for the classical theory of wave–

mean-flow interaction involving the Eliassen–Palm wave

activity; see Andrews et al. 1987.) Since the planetary-

scale equations remain the same in the case of a nonlinear

mesoscale, our framework still provides a general under-

standing of the transfers of energy and momentum be-

tween the resolved and subgrid scales in this case. In

particular, every pseudomomentum flux must be accom-

panied by a pseudoenergy flux. Thus, the parameteriza-

tions of convective momentum transport of Schneider and

Lindzen (1976) and Gregory et al. (1997), which neglect

the energetics, are in error according to (57a). Similarly,

parameterizations of the turbulent dissipation of resolved-

scale kinetic energy in the boundary layer that neglect the

associated dissipative heating are also in error. Computing

the actual importance of these errors in realistic applica-

tions is the subject of future investigation.
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APPENDIX A

Compressible Wave-Activity Conservation Laws

The wave-activity conservation laws used in section 4

can be derived following the Hamiltonian formulation

of the three-dimensional, compressible, nonhydrostatic

equations found in section 4.5 of Shepherd (1990). The

Hamiltonian, horizontal momentum and Casimir in-

variants of the compressible nonhydrostatic equations,

according to (4.61), (4.67), and (4.69) of Shepherd (1990)

and using the present nondimensionalization, are

H5

ð
r

2
jvj2 1

1

Fr2
rz 1

1

M2

1

kg
rT

� �
dV, (A1a)

M5

ð
ru dV, (A1b)

C5

ð
rC(u, q) dV, (A1c)

where kg 5 R/cy, with cy being the specific heat at con-

stant volume, q 5 v � $u/r is the potential vorticity with

v 5 $ 3 v and dV 5 dx dy dz. (Recall that rotation is

negligible on the mesoscale by assumption.) The third term

in the Hamiltonian is recognized as the internal energy of

the system. Using these functionals, we proceed to derive

the relevant wave-activity conservation laws according to

the procedure outlined in section 5 of Shepherd (1990).

According to the ansatz (11), we consider the planetary

scale as a horizontally and temporally homogeneous but

vertically varying background flow for the mesoscale dy-

namics. Accordingly, the xm, ym, and tm symmetries in the

planetary-scale flow lead to pseudomomentum and pseu-

doenergy conservation laws on the mesoscale.

We begin the derivation by taking the first variation of

the above functionals. In the case of the Hamiltonian

and the Casimir invariants, we obtain

dH5

ð
rdv 1

1

2
jvj2dr 1

1

Fr2
zdr 1

1

M2

1

kg
(Tdr 1 rdT)

� �
dV

5
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rdv 1

1
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jvj2 1

1

Fr2
z

� �
dr 1

1

M2

1
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Tdr 1 r g

T

u
du 1 kg

T

r
dr

� �� �� �
dV

5

ð
rdv 1

1

2
jvj2 1

1

Fr2
z 1

1

M2

1

k
pu

� �
dr 1

1

M2

1

k
rpdu

� �
dV, (A2)(A2)

dC5

ð
(Cdr 1 rC

u
du 1 rC

q
dq) dV 5

ð
[Cdr 1 rC

u
du 1 C

q
(dv � $u 1 v � $du� qdr)] dV

5

ð
[$ 3 (C

q
$u) � dv 1 (C � qC

q
)dr 1 (rC

u
� $C

q
�v)du] dV, (A3)
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where d(*) represents the usual functional derivative

and (20) has been used to derive the first variation of the

Hamiltonian. It can be easily verified that

dH

dv
5 rv,

dH

du
5

1

M2

1

k
rp,

dH

dr
5

1

2
jvj2 1

1

Fr2
z 1

1

M2

1

k
pu, (A4a)

dM

du
5 r,

dM

dv
5 0,

dM

du
5 0,

dM

dr
5 u, (A4b)

dC

dv
5 $ 3 (C

q
$u),

dC

du
5 rC

u
� $C

q
�v,

dC

dr
5 C � qC

q
. (A4c)

The pseudoenergy functional is defined by

AE 5H(j) 1CE(j)�H(X)� CE(X), (A5)

where j is the state vector (a vector of the dependent

variables) and X is the vertically dependent planetary-

scale background state, subject to the condition that the

first variation of AE vanish when j 5 X:

dH

dj j5X

5�dCE

dj

�����
�����
j5X

. (A6)

This extremal condition is used to define the pseudo-

energy Casmir CE . Using the first variations above, the

extremal conditions for the pseudoenergy are

r
p
u

p
5�$ 3 (CEq$u

p
), (A7a)

r
p
CEu 5� 1

M2

1

k
r

p
p

p
1 $CEq � ($ 3 u

p
), (A7b)

CE � q
p
CEq 5�1

2
ju

p
j2 � 1

Fr2
z� 1

M2

1

k
p

p
u

p
. (A7c)

Given that only the first two conditions are required

to define the Casimirs, we can appeal to the results of

SS08, who solved for Casimirs satisfying the first two

conditions in the context of their derivation of wave-

activity conservation laws for the anelastic equations.

In their derivation for the conservative equations, they

noted that for a strictly vertically varying background

state there is no background potential vorticity, and the

wave-activity conservation laws must be considered in

the limit of vanishing perturbation potential vorticity.

(Indeed, qp is a higher-order term because it involves

gradients on the long horizontal planetary scale and

because Coriolis forces are higher-order terms.) In the

more general case, we need to consider finite pertur-

bation potential vorticity. In the general case the qua-

dratic form of the pseudoenergy density is

where v?m 5 �vm(y)
x̂1vm(x)

ŷ, qm 5 upz
vm(z)

1 u?pz
�=H

mum,

W 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(up)2 1 (yp)2

q
, and qpn

is the background potential

vorticity gradient in the normal direction defined by

n̂ 5 sinax̂ � cosaŷ, where a is the angle between the

background (planetary-scale) velocity and the x̂ direc-

tion. The effects of compressibility are associated with

AE 5
1

2
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�
, (A8)

where dp/kgp 5 du/u 1 dr/r according to (23). Upon making use of the Casimir coefficients given in SS08 and the

ansatz (11), and equating the Mach and Froude numbers as done in section 3, the pseudoenergy density becomes
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the second, sixth, and seventh terms. The pseudoenergy

wave-activity conservation law, calculated by taking a

time derivative of the pseudoenergy density and making

use of the mesoscale dynamics (17), (18), and (22), is

The term in (A11) involving the mesoscale potential

vorticity is associated with the mesoscale source/sink

terms because the mesoscale potential vorticity itself is

only generated by source/sink terms:

›q
m

›t
m

1 =H
m � (u

p
q

m
) 5 u

p
z
(=H

m)? � Sm
u

1 M2ku?p
z
� =H

mSm
u /r

p
u

p
. (A12)

Because the background potential-vorticity gradient is

higher order, there is no generation of qm through the in-

teraction with the background. In regions where the source–

sink terms are zero, as is the case between the source and

sink regions of the nonlocal transfer of energy and mo-

mentum, the mesoscale potential vorticity is zero. Thus,

all terms in (A11) can be related to mesoscale source–

sink terms.

In the case of the pseudomomentum, we define stream-

wise and normal pseudomomentum components. The

streamwise pseudomomentum functional is defined by

AP
s 5M

s
(j) 1CPs (j)�M

s
(X)� CPs (X), (A13)

where the Casimir CPs must satisfy

dM
s

dj j5X
5�dCPs

dj

�����
�����
j5X

(A14)

to ensure the background state is an extremal. The nor-

mal component of the pseudomomentum is analogously

defined. The extremal conditions for the streamwise pseu-

domomentum are

r
p
ŝ 5�$ 3 (C

P
s

q $u
p
), (A15a)

r
p
C
P

s

u 5 $C
P

s
q � ($ 3 u

p
), (A15b)

CPs � q
p
C
P

s
q 5�u

p
� ŝ, (A15c)

where ŝ 5 cosax̂ 1 sinaŷ. As for the pseudoenergy, the

streamwise pseudomomentum Casimir is defined by the

first two conditions and we can make use of the results

of SS08. The general quadratic form of the streamwise

pseudomomentum is

APs 5
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where the pseudoenergy source–sink term is
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Upon making use of the Casimir coefficients given in

SS08 and the ansatz (11), the streamwise pseudomo-

mentum becomes
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The pseudoenergy and streamwise pseudomomentum

densities satisfy the relation
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The extremal conditions and the general quadratic form

of the normal component of the pseudomomentum are

the same as those for the streamwise component with ŝ

replaced by n̂, such that the density is

APn 5 n̂ � M2u
m

r
m
�M4 1

2

(r
p
)2

(u
p

z
)2

u
p

z

r
p

 !
z

(u
m

)2

2
4

�M2
r

p

u
p

z

v?mu
m
�M4

u
p

z

u
p

z

r
m

u
m

#

1 M4
r2

p

(u
p

z
)2

q
p

z

q
ps

u
m

q
m
�M4

r2
p

u
pz

q
ps

(q
m

)2, (A19)

where qps
is the background potential-vorticity gradient

in the streamwise direction. The streamwise pseudo-

momentum wave-activity conservation law, calculated

by taking the time derivative of the streamwise pseu-

domomentum density and making use of the mesoscale

dynamics, is

The streamwise and normal pseudomomentum compo-

nents can be combined to give the usual vertical fluxes of

horizontal momentum:
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with F
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y

(z)ŷ 5 r
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m
(see SS08). The pseudo-

momentum source–sink terms are
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APPENDIX B

Anelastic Wave-Activity Conservation Laws

The anelastic pseudoenergy and pseudomomentum

wave-activity densities are obtained by applying the

anelastic limit described in section 5 to (A9), (A17), and

(A19) to obtain

From (A9), (A17), and (A19), the only terms involv-

ing M that are retained are those containing M2/u
pz

,

which is assumed to be O(1) under the weak stratifica-

tion assumption discussed in section 5. The other terms

involving M are higher order under the anelastic ap-

proximation. In the anelastic case, the pseudoenergy

and streamwise pseudomomentum densities satisfy the

relation
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In the limit of vanishing perturbation potential vorticity,

the wave activity densities (B1) correspond exactly to

(4.3)–(4.6) in SS08.

The anelastic pseudoenergy wave-activity conserva-

tion law, calculated by taking a time derivative of the

pseudoenergy density and making use of the mesoscale

dynamics (17), (18), and $ � (rpvm) 5 0, is
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As with the compressible wave activities, we combine

the streamwise and normal pseudomomentum to obtain

›

›t
m

(cosaAPs 1 sinaAPn ) 1 $
m
� FPx 5 DPx , (B6a)

›

›t
m

(sinaAPs � cosaAPn ) 1 $
m
� FPy 5 DPy , (B6b)

with F
Px

(z)x̂ 1 F
Py

(z)ŷ 5 rpumwm. In the anelastic case, the

pseudomomentum source–sink terms become

In effect, the anelastic constraint eliminates the ex-

change of elastic energy between the two scales as rep-

resented by those terms in (A9), (A17), (A19), (A10),

and (A20) proportional to rm and pm.
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