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1. Introduction

Ambadan and Tang (2009, hereinafter AT09) recently

performed a study of several varieties of a ‘‘sigma-point’’

Kalman filter (SPKF) using two strongly nonlinear

models, Lorenz (1963, hereinafter L63) and Lorenz

(1996, hereinafter L96). In this comparison, a reference

benchmark was the performance of a standard ensemble

Kalman filter (EnKF) of Evensen (1994, 2003), presum-

ably with perturbed observations following Houtekamer

and Mitchell (1998) and Burgers et al. (1998). We have

identified problems in the description of the EnKF as

well as its application with the L63 and L96 models.

2. Problem in the description of the EnKF

AT09 stated (p. 262) as a drawback of the EnKF that

it ‘‘. . . assumes a linear measurement operator; if the

measurement function is nonlinear, it has to be linear-

ized in the EnKF.’’ This statement is incorrect; the

EnKF is routinely applied with nonlinear measurement

operators; the standard formulation for this is shown in

Hamill (2006) in his Eqs. (6.11), (6.14), and (6.15).

3. L63 experiments

AT09’s examination of the EnKF with small ensem-

bles was potentially misleading. They chose to include

a white-noise model of unknown model errors in their

assimilating model. This representation of model error

was particularly poorly suited for use with EnKFs; in

fact, AT09 showed that a 19-member ensemble had

a root-mean-square error (RMSE) that was more than

3 times that of a 1000-member ensemble. However,

a 19-member ensemble in fact has an RMSE that is only

1.05 times that of the 1000-member ensemble when

white noise is removed from the assimilating model.

This is consistent with the successful application of

EnKFs with 10–100 members, even in large numerical

weather prediction models (e.g., Houtekamer et al.

2005, 2009; Whitaker et al. 2008).

4. L96 experiments

AT09’s EnKF reference was badly degraded by not

using covariance localization and/or other methods to

stabilize the filter.

Much has been learned about the performance of

ensemble-based data assimilation methods since the

preliminary studies of the 1990s, lessons that AT09 ap-

parently did not incorporate into their L96 EnKF ref-

erence. Since the early implementations of the EnKF,

several now-standard modifications are commonly con-

sidered to be essential in spatially distributed systems;

the first is some form of ‘‘localization’’ of covariances

(Houtekamer and Mitchell 2001; Hamill et al. 2001).

Another common technique for the stabilization of the

EnKF is the enlargement of the prior through ‘‘covariance

inflation’’ (Anderson and Anderson 1999) or through

additive noise (Houtekamer et al. 2005; Hamill and

Whitaker 2005). Without judicious application of such

techniques, poor performance or even filter divergence

may occur in ensemble filters.
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To review briefly, covariance localization modifies the

estimate of covariances provided directly by the ensem-

ble. When assimilating a given observation, the ensemble

estimates of the cross covariance between the state at the

observation location and the state at surrounding grid

points are multiplied by a number between 0 and 1; typ-

ically, grid points near the observation location have their

covariances multiplied by a number near 1.0, and the

farther a grid point is from the observation, the nearer the

multiplication factor is to 0.0. This function is usually

a smooth function of distance between the observation

and grid point and is compactly supported. As explained

in Hamill et al. (2001), covariance localization provides

several beneficial effects: it greatly increases the effective

rank of the background-error covariance matrix, it filters

out noisy far-field covariances, and it can consequently

prevent an overfitting to the observations and a collapse

of spread in the ensemble. Because of its strongly positive

effect on EnKF performance, some form of localization is

now common in almost all implementations of the EnKF

for large-dimensional, spatially distributed systems. Fur-

ther, there is now a substantial body of research on var-

ious alternative localization techniques and the benefits

and tradeoffs. Mitchell et al. (2002) and Lorenc (2003)

have pointed out that, despite the beneficial effects, co-

variance localization can introduce state imbalances;

Anderson (2006) has discussed an adaptive localization

technique that does not require tuning. Hamill (2006)

provides a review of localization and pseudocode for

a filter that includes this. Hunt et al. (2007) demonstrate

in their local ensemble transform Kalman filter that an

effect similar to localization can be achieved through

distance-dependent reweighting of observation-error vari-

ances. Buehner and Charron (2007) discuss localization in

spectral space. Zhou et al. (2008) discuss a multiscale lo-

calization alternative. Bishop and Hodyss (2009a,b) dis-

cuss how localization may be improved through power

transformations. Kepert (2009) discusses balance issues

as well as how localization may be improved through a

transformation of the state vector.

Another common modification is to increase the vari-

ances in the prior as a guard against overfitting and even-

tual filter divergence. These are helpful in perfect-model

scenarios and are nearly ubiquitous in real-world sce-

narios with model error. Anderson and Anderson (1999)

proposed a method now known as covariance inflation

whereby perturbations around the mean state are inflated

by some constant somewhat greater than 1.0. Anderson

(2009) recently proposed an adaptive method for control-

ling the amount of inflation to apply, based on inno-

vation statistics. Another general method is the addition

of structured noise to each member of an ensemble, as

demonstrated in Houtekamer et al. (2005) and Hamill

and Whitaker (2005). Zhang et al. (2004) propose

a method they called ‘‘relaxation to prior’’ whereby,

after the data assimilation step, the posterior perturba-

tions are enlarged somewhat in the direction of the prior

perturbations.

Do these details have a profound effect? In the case of

the simulations presented in AT09, the answer is clearly

yes. In section 5c of their article, they compared their 200-

member SPKF with a 200-member EnKF using the L96

model with a state vector of 960 elements. They correlated

the time series of ensemble-mean analyses and forecasts

with the truth, obtaining a correlation of 0.59 for the

SPKF and 0.10 for the EnKF (their correlations were

calculated from the first element of the 960-dimensional

state). However, in our simulations in which both co-

variance localization and a mild 2% covariance inflation

were used, profoundly higher scores were obtained. When

localization was applied using the compactly supported

near-Gaussian function of Gaspari and Cohn [1999; their

Eq. (4.10)] with a localization radius of 10 grid points (the

multiplication factor is 0.0 for 10 grid points and beyond)

and with a 2% covariance inflation, the correlation in-

creased from 0.10 to 0.92. Figure 1 provides a time series

for this configuration of the EnKF, corresponding to

AT09’s EnKF in their Fig. 15c. Note also that it may not

be necessary to determine an effective localization radius

and a covariance inflation value by trial and error; tech-

niques that automatically determine appropriate values as

part of the assimilation process are in widespread use in

atmospheric applications (Anderson 2006, 2009).

A general conclusion that may be drawn from these L96

results is that any filter with a covariance model whose

effective rank is much smaller than the effective number

of degrees of freedom in the model is unlikely to produce

high-quality analyses. Covariance localization, despite

the noted drawbacks, provides a computationally trac-

table way of increasing the effective rank of an EnKF’s

background-error covariance matrix, filtering noisy en-

semble estimates, and consequently improving ensemble

performance. Again, evidence of the performance of such

filters in real, high-dimensional weather prediction models

can be found, for example, in Houtekamer et al. (2005),

Whitaker et al. (2008), and Houtekamer et al. (2009).

There is great interest in the development of ensem-

ble filters and reduced-rank filters. We argue that, for all

future manuscripts, should the authors wish to compare

with an ensemble data assimilation method as a bench-

mark, they must make a good-faith effort to compare

with some state-of-the-art version of the filter. In 2009,

this means a filter with some incorporation of the con-

cepts of localization plus inflation and/or additive noise.

Whitaker and Hamill (2002) provide an example of the

kind of exploration of this parameter space that is
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warranted when choosing the configuration of a filter,

and the subsequent range of filter performance.
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FIG. 1. Time series for the first element of a 960-dimensional Lorenz ’96 system. The solid line

denotes the trajectory of the EnKF ensemble-mean analysis and forecast, plus signs denote the

observations that were assimilated, and the dashed line denotes the truth.
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