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ABSTRACT

The distribution of cloud-base mass ßux is studied using large-eddy simulations (LESs) of two reference
cases: one representing conditions over the tropical ocean and another one representing midlatitude condi-
tions over land. To examine what sets the difference between the two distributions, nine additional LES cases
are set up as variations of the two reference cases. It is found that the total surface heat ßux and its changes
over the diurnal cycle do not inßuence the distribution shape. The latter is also not determined by the level of
organization in the cloud Þeld. It is instead determined by the ratio of the surface sensible heat ßux to the
latent heat ßux, that is, the Bowen ratio B. This ratio sets the thermodynamic efÞciency of the moist con-
vective heat cycle, which determines the portion of the total surface heat ßux that can be transformed into
mechanical work of convection against mechanical dissipation. The thermodynamic moist heat cycle sets the
average mass ßux per cloudhmi , and through hmi it also controls the shape of the distribution. An expression
for hmi is derived based on the moist convective heat cycle and is evaluated against LES. This expression can
be used in shallow cumulus parameterizations as a physical constraint on the mass ßux distribution. The
similarity between the mass ßux and the cloud area distributions indicates thatB also has a role in shaping the
cloud area distribution, which could explain its different shapes and slopes observed in previous studies.

1. Introduction

Since the seminal work on parameterization of cu-
mulus clouds byArakawa and Schubert (1974, hereafter
AS-74), the understanding of the spectral distribution of
cloud properties and how it is controlled by the large-
scale environment remains an obstacle for the formu-
lation of convection parameterizations. In their paper,
AS-74 (p. 687) wrote, ÔÔOur Þnal problem is to Þnd the
mass ßux distribution function. The real conceptual
difÞculty in parameterizing cumulus convection starts
from this point. We must determine how the large-scale
processes control the spectral distribution of clouds, in
terms of the mass ßux distribution function, if they in-
deed do so. This is the essence of the parameterization
problem.ÕÕ With this in mind, it is the goal of our paper to
determine how the mass ßux distribution of shallow
cumulus clouds p(m) is controlled by the underlying
physical processes and large-scale conditions.

In the formulation of the AS-74 parameterization, the
mass ßux distribution function refers to the spectral

distribution of cloud subensembles. The subensembles
encompass clouds of different types based on their sizes
and cloud-top heights. This distribution is estimated in
AS-74 by numerical solution of the Fredholm integral
equation assuming convective quasi equilibrium (QE).
Here, we instead regard the mass ßux distribution as an
asymptotic distribution of the spectral subensembles
that are reduced to single clouds, which then can be
classiÞed as a cloud population distribution. In this way,
we approach the problem from another point of view:
instead of assuming convective QE and solving for the
spectral distribution of mass ßuxes numerically, we fo-
cus on the underlying physical principles that determine
the shape ofp(m) and its parameters.

The decision to examine the population distribution
p(m) instead of the spectral distribution based on cloud
types comes from the need to formulate a scale-aware
parameterization. As the model resolution increases to
the kilometer scale, the separation of the cloud ensem-
ble into spectral bins that represent clouds of different
types loses statistical signiÞcance. Instead, a cloud
sample within a grid box can be viewed as a random
sample of clouds drawn from the cloud population. The
clouds are grouped by the gridbox boundaries regardless
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of the cloud types. The total mass ßux in a grid boxM is
then a sum over the sampled clouds,M 5 � n

i5 1mi, and its
distribution p(M) is characterized by a spectrum of
shapes starting from a normal-like distribution on the
coarse grids, toward a long-tailed distribution on the
kilometer-scale grids (Craig and Cohen 2006; Sakradzija
et al. 2015). The distribution of the total mass ßux within
model boxesp(M) has been parameterized based on the
principles of statistical mechanics and has been applied
to deep convection by Plant and Craig (2008) and fur-
ther developed to a parameterization of shallow con-
vection by Sakradzija et al. (2015, 2016). In the context
of such a parameterization, it is important to understand
the physical constraints onp(m) because ßuctuations of
the subgrid-scale convective tendencies inßuence con-
vective regimes and their organization, as well as the
energetics of the explicitly modeled atmospheric ßows
(Sakradzija et al. 2016).

The evidence aboutp(m) based on observations is not
extensive. A few observational studies that examined
p(m) among other cloud statistics were focused on cu-
mulonimbus clouds, for which p(m) was Þtted to a log-
normal distribution function ( LeMone and Zipser 1980;
Jorgensen and LeMone 1989). More evidence about
p(m) has been provided by modeling studies using
cloud-resolving models (CRM) or large-eddy simula-
tions (LESs). In a CRM study of an equilibrium deep-
convective ensemble under homogeneous large-scale
forcing p(m) was Þtted to an exponential function
(Cohen and Craig 2006). This Þt was supported by the-
oretical derivation using the formalism of the Gibbs
canonical ensemble from statistical mechanics (Craig
and Cohen 2006). As more computing power allowed
performing simulations with resolutions on the order of
100 m, it was revealed that the shape of this distribu-
tion is dependent on the horizontal resolution. With
kilometer-scale resolution, where the deep cumulus
clouds are not fully resolved,p(m) takes an exponential-
like shape, while the shape changes toward a power-law
distribution when using higher resolution (Scheufele
2014). Scheufele (2014)further demonstrated that the
power-law-like shape emerges as a result of self-
organization of the individual cloud updrafts.

For shallow cumulus clouds over the ocean,
Sakradzija et al. (2015)found that the overall shape of
the mass ßux distribution results from the superposition
of two distribution modes: one corresponding to the
active buoyant clouds and the other one to nonbuoyant
clouds. The two modes of the cumulus cloud distribution
deviate from an exponential shape as a result of corre-
lation between cloud mass ßuxes and cloud lifetimes.
Each mode can be described using a Weibull distribution
with two parameters, shapek and scalel [see Eq. (13)

and also Sakradzija et al. (2015)]. In the case of
shallow cumulus clouds, the shape parameter of the
Weibull distribution is less than one, k , 1, which sig-
niÞes that it is a heavy-tailed distribution. The combi-
nation of at least two Weibull distribution modes results
in a distribution of the shallow cumulus mass ßux that
takes an overall power-law-like shape (seesection 6).
Hence, it appears that different mechanisms can lead to
power-law distributions (see, e.g.,Mitzenmacher 2003;
Newman 2005). Moreover, either a power-law or a
lognormal distribution can be generated by the same
underlying mechanism under slightly different condi-
tions (e.g., Mitzenmacher 2003), and it is often difÞcult
to rule out one or the other functional form.

It might be possible to gain more insight into the mass
ßux distribution p(m) by making a parallel to the dis-
tribution of cloud sizes. Based on the Þndings of mod-
eling and observational studies, there is no consensus on
the functional form that best describes the cloud size
distribution. The suggested functions span from expo-
nential (Plank 1969; Hozumi et al. 1982; Astin and
Latter 1998), to log-normal ( López 1977; LeMone and
Zipser 1980; Jorgensen and LeMone 1989), to power-
law functions with single (Lovejoy 1982; Zhao and Di
Girolamo 2007; Wood and Field 2011; Dawe and Austin
2012) or double slopes (Cahalan and Joseph 1989;
Sengupta et al. 1990; Nair et al. 1998; Benner and Curry
1998; Neggers et al. 2003; Trivej and Stevens 2010; Heus
and Seifert 2013). Most studies, in particular more re-
cent ones, suggest power laws, with or without a break in
the power-law scaling at the intermediate cloud sizes.
This scale break manifests itself as a change in the slope
of a power-law distribution or as an exponential cutoff
near the distribution tail. However, no explanation
supported by evidence has been provided for the ob-
served differences in the distribution shapes and slopes,
and some of these differences may just reßect different
meteorological conditions.

Given that the characteristics of cloud updrafts are
substantially different between tropical oceanic and
midlatitude continental cumulus convection (Xu and
Randall 2001), the dependency of p(m) on meteoro-
logical conditions is not surprising. We nevertheless
suspect that there are some dominant macroscopic pa-
rameters or processes that determine the characteristic
cloud size and the mass ßux that cause the variations in
p(m) between different cases and locations. Instead of
assuming a distribution functional form and estimating
the distribution parameters by statistical Þtting of
modeled or observed clouds, we set out to identify the
physical mechanisms that might lead to a speciÞc dis-
tribution functional form and a characteristic scale. We
use LES of shallow cumulus convection based on two
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measurement campaigns, Rain in Cumulus over the
Ocean (RICO) to represent conditions over the ocean
and measurements in an Atmospheric Radiative Mea-
surement (ARM) site to represent conditions over land
(section 2). We aim to reveal what makes the difference
in p(m) between these two reference cases and to
derive a parameterization for the distribution parame-
ters that applies to oceanic and land conditions.

In nine additional simulations, the two reference cases
are modiÞed (seesection 2) to test the impacts of the
large-scale forcing and surface conditions onp(m).
Cloud life cycles are studied using the method of cloud
tracking, also described insection 2. This method pro-
vides the lifetime averaged cloud mass ßux distribution
deÞned insection 3. Several reasons for the difference in
p(m) between the two reference cases are hypothesized
and tested in section 4. In section 5 we describe the
physical principle that explains the difference between
the two characteristic distribution shapes. The distribu-
tion is then Þtted to the mixed Weibull function to es-
timate the remaining unknown parameters (section 6).
Conclusions are given insection 7.

2. LES case studies

Simulations were performed using the University of
California, Los Angeles, large-eddy simulation (UCLA-
LES) model ( Stevens et al. 1999; Stevens 2010). A
detailed description of the UCLA-LES model and the
speciÞcation of the parameters and constants used in our
study are provided in Stevens (2010). The UCLA-LES
model solves the OguraÐPhillips anelastic equations,
discretized over the doubly periodic uniform Arakawa C
grid. The prognostic variables include the wind compo-
nents u, y, and w; liquid water potential temperature ul;
total water mixing ratio qt; and, in the precipitating cases
(see the next paragraph), rain mass mixing ratioqr and
rain number mixing ratio Nr. In the precipitating cases,
the double-moment warm-rain scheme of Seifert and
Beheng (2001) is used to compute the cloud micro-
physics. The subgrid turbulent ßuxes are computed
using the SmagorinskyÐLilly scheme [as described in
Stevens et al. (1999)and Stevens (2010)]. A third-order
RungeÐKutta method is used for numerical time
integration, a directionally split monotone upwind scheme
is used for the advection of scalars, and a directionally split
fourth-order centered scheme is used for the momentum
advection (seeStevens 2010). The effects of radiation are
prescribed as net forcing tendencies.

As a Þrst reference case (R-base), an LES case study
of shallow convection based on the RICO measure-
ment campaign (Rauber et al. 2007) is used to repre-
sent conditions over the tropical ocean. The Þeld

measurements were taken during the winter season
2004/05 in the trade wind region of the western Atlantic
upwind of the islands of Antigua and Barbuda (Rauber
et al. 2007). The initial proÞles of potential temperature
u, speciÞc humidityqn, and the horizontal winds u and
y are constructed as piecewise linear Þts of the averaged
proÞles from the radiosonde measurements taken over
Barbuda during a period with no disturbance due to
mesoscale convective systems [Fig. 2 and Table 2 invan
Zanten et al. (2011)]. Vertical time-invariant proÞles of
the subsidence rate and of horizontal advection of
moisture and temperature are prescribed and act on the
thermodynamic quantities at each time step [Table 2 in
van Zanten et al. (2011)]. The radiative and advective
cooling rates are prescribed jointly as a large-scale ver-
tically homogeneous cooling rate proÞle of 2.5 K day2 1.
The sea surface temperature is set to 299.8 K, while the
surface ßuxes are computed interactively using a
surface-layer bulk aerodynamic parameterization (see
van Zanten et al. 2011). The geostrophic wind proÞles
are prescribed as time invariant and equal to the initial
wind proÞles, and the background wind is set to
u 5 2 5 m s2 1 and y 5 2 4 m s2 1. Duration of the R-base
simulation is 60 h.

To represent conditions over land, a second reference
case (A-base) is set up based on the ARM campaign, as
in Brown et al. (2002). This case is forced by the aver-
aged observed conditions at the Southern Great Plains
(SGP) site on 21 June 1997. The start of the simulation is
set to 1130 UTC (0630 local time), a time before con-
vection initiates, and is integrated over a single diurnal
cycle until 0200 UTC the next day (2100 local time). The
initial vertical proÞles of the thermodynamics quantities
are computed based on the averaged soundings from
that day (Fig. 1 in Brown et al. 2002). The wind direction
did not change signiÞcantly during that day, so the initial
wind proÞle is set to a constant wind of u 5 10 m s2 1

and y 5 0 m s2 1 at all levels. The geostrophic wind is
also set to these values, while the background wind is
set to u 5 0 m s2 1 and y 5 7 m s2 1. At the surface, the
turbulent heat ßuxes are prescribed following Brown
et al. (2002; see their Fig. 3) and exhibit a strong diurnal
cycle. Weak large-scale forcing tendencies due to hori-
zontal advection of moisture and temperature as well
as radiative cooling rates are prescribed following the
diurnal cycle; however, they have only a minor impact
on the simulation.

The two reference LES cases, R-base and A-base, are
further modiÞed to test the effects of surface conditions,
diurnal cycle, and large-scale forcing on the cloud sta-
tistics (Table 1). For all LES cases, the simulations are
performed over a domain of 51.2 km 3 51.2 km, with a
horizontal grid spacing of 25 m and a vertical resolution
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of 25 m up to a height of 5 km (domain top). Five vertical
grid levels are used as damping layers at the top of
the domain.

In the Þrst group of simulations (R-base, R-0.24,
R-0.33, A-base, A-0.5, A-0.1, A-0.06, and A-0.03;Fig. 1),
we have prescribed a range of values of the ratio of the
sensible to latent heat ßuxes at the surface, the Bowen

ratio, to both cases starting from B 5 0.03 to B 5 0.5.
This range of values is selected because it encompasses
the typical values of B characteristic for the regions of
the tropical oceans to midlatitude continental condi-
tions. The purpose of these simulations is to investigate
the hypothesis that the differences between the two
reference cases come from different Bowen ratios. The
average Bowen ratio in R-base is around 0.03 and is
approximately constant, while in A-base the starting
value of B is around 0.3, and it decreases slightly over the
diurnal cycle (Fig. 1a). The two simulations based on
RICO, R-0.24 and R-0.33, are set up by Þxing the surface
heat ßuxes instead of the Þxed SST. The total heat ßux
magnitude is kept equal to the reference RICO case, but
the ratio of sensible to latent heat ßux is changed to
result in the wanted B value, 0.24 in the Þrst and 0.33 in
the second case. In the ARM-based cases (A-0.5, A-0.1,
A-0.06, and A-0.03), the total surface heat ßuxes are
kept the same, but the ratio of sensible to latent heat ßux
is changed to result in the targetedB values of 0.5, 0.1,
0.06, and 0.03. These newB values are set at the be-
ginning of the diurnal cycle and are decreasing over the
cycle at the same rate as in A-base (seeFig. 1a). Note
that the total surface heat ßux in the RICO-based cases is,

FIG . 1. Time series of the surface forcing in the Þrst group of eight LES cases fromTable 1: (a) Bowen ratio B, (b) surface sensible heat
ßuxFsh, (c) surface latent heat ßuxFlh, (d) surface buoyancy ßuxFbuoy, and the resulting (e) cloud-basezb and (f) cloud-top heights zt. The
difference between these simulations is set through the Bowen ratio, which is indicated in the case abbreviations and line colors: R-base
(black solid), R-0.24 (black dots), R-0.33 (black dotÐdash), A-base (red solid), A-05 (red dotÐdash), A-0.1 (red short dash), A-0.06 (red
dot), and A-0.03 (red long dash). Time from the start of the simulation is shown on the x axis.

TABLE 1. List of the LES cases with the abbreviations used in the
text, the case on which the simulations are based, the maximum
Bowen ratio Bmax, the total surface turbulent heat ßux averaged
over the simulation period Fin 5 Fsh 1 Flh , and the type and
duration of the large-scale forcing LSforc.

Abbreviation Reference case Bmax Fin (W m2 2) LSforc

R-base RICO 0.06 171 Const
R-0.24 RICO 0.24 152 Const
R-0.33 RICO 0.33 152 Const
A-base ARM 0.36 343 14 h 30 min
A-0.5 ARM 0.50 340 14 h 30 min
A-0.1 ARM 0.11 347 14 h 30 min
A-0.06 ARM 0.06 348 14 h 30 min
A-0.03 ARM 0.03 349 14 h 30 min
A-lowßx ARM 0.36 274 14 h 30 min
A-short ARM 0.36 341 10 h
A-long ARM 0.36 344 19 h
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in average, more than twice lower than the total surface
heat ßux in the ARM-based cases (Table 1). By comparing
the maximum values of the total surface heat ßux or of
the buoyancy ßux near the peak of the diurnal cycle
(Figs. 1bÐd), the difference between the two reference
cases is even up to 4 times.

As expected, the mean thermodynamic state of the
subcloud layer is affectedby the changes in the Bowen
ratio. Increase of the Bowen ratio from 0.03 to 0.33 in
the RICO-based cases causes an increase of the liquid
water potential temperature by 1 K and a decrease in
the total water mixing ratio by 1 g kg 2 1, as averaged
over a 500-m-thick layer starting from the surface. In
the ARM case, a decrease of the Bowen ratio from
0.33 in A-base to 0.03 in A-0.03 causes a decrease of
the liquid water potential temperature by 2 K, and an
increase of the total water mixing ratio by 2 g kg2 1,
averaged over a 500-m-thick layer at the surface.
Clearly, all these test cases have a different thermo-
dynamic state in the boundary layer, even though the
Bowen ratios might have the same values.

The depth of the subcloud layer is controlled by the
surface buoyancy ßuxFbuoy (Stevens 2007) with the
higher cloud-base heights in the simulations with
higher surface buoyancy ßuxes (Figs. 1d,e). The rate of
growth of the subcloud layer is also inßuenced byB,
and it is higher in the cases with higherB [Fig. 1e; see

also Schrieber et al. (1996)]. Convective clouds are
initiated sooner for the higher values of B (Fig. 1f).
Except for the R-base case where the surface ßuxes are
not Þxed, the top of the cloud layer does not seem to
be signiÞcantly inßuenced by the changes inB or Fbuoy

(Fig. 1f). This indicates that the processes in the cloud
layer are to some extent detached from the surface
forcing.

In the second group of simulations (A-lowßx,
A-short, and A-long; Fig. 2), we have kept the Bowen
ratio to its assigned values, but changed other key
aspects of the forcing that are distinct between the two
reference cases. The effect of the diurnal cycle in
ARM is tested by shortening it by 1/3 (A-short), or by
prolonging it by 1/3 (A-long), by applying these
changes to the cycle period of the surface ßuxes (see
Figs. 2b,c) and the large-scale forcing tendencies. The
effect of the value of the total surface heat ßux is
tested by reducing it by 20% in ARM (A-lowßx). As
can be seen inFig. 2e, the rate of the growth of the
cloud-base height is not affected by these changes.
However, if there is more time for the cloudy
boundary layer to develop, as in A-long, a higher
cloud-base height is reached. The cloud layer deepens
further either with an increase in the forcing period or
with stronger total surface heat ßuxes, although the
differences are only around 100 m (Fig. 2f).

FIG . 2. As in Fig. 1, but for forcing in the second group of the LES cases based on ARM: A-base (red solid), A-lowßx (dark red dashes),
A-short (orange dots), and A-long (orange dotÐdash). The difference between these simulations is set through the period of the large-scale
forcing (A-short and A-long) and through the total surface heat ßux magnitude (A-lowßx).
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Cloud tracking

The cloud tracking algorithm developed by Heus
and Seifert (2013) is applied to the simulated cloud
Þelds in postprocessing of the LES. In the tracking
algorithm, clouds are identiÞed as the adjacent grid
points that hold the liquid water path exceeding a
threshold value of 5 g m2 2. In that way, the identiÞed
cloud area is a projection of a cloud from all vertical
levels that can be tracked through space and time.
Using the temporal resolution of 1 min, cloud areas,
vertical velocities, and cloud lifetimes are recorded
for each cloud in the simulation. A cloud splitting al-
gorithm is then used to separate and track the indi-
vidual cloud elements that form the multicore clouds
or the merged cloud clusters. These cloud elements
are deÞned as holding a buoyant core with the maxi-
mum in-cloud virtual potential temperature uy excess
larger than a chosen threshold of 0.5 K. More details
and validation of the tracking method are provided in
Heus and Seifert (2013).

To develop a cloud parameterization based on the
mass ßux approach, the cloud mass ßux has to be es-
timated near the cloud-base level. For this reason, we
have developed a secondary tracking routine, as in
Sakradzija et al. (2015), in which we record the area
that every cloud occupies at the level that lies 100 m
above the lifting condensation level (LCL). We deÞne
this area as the area that contains all the points with
liquid water content greater than zero.

3. Cumulus cloud population statistics

The upward ßux of mass through cloud base of theith
cloud is deÞned as

mi 5 r aiwi , (1)

where ai is the area (m2) occupied by points holding
liquid water at a level 100 m above LCL and wi (m s2 1)
is the vertical velocity averaged over the areaai. To
compute the distribution of the cloud mass ßuxp(m)
we averagemi over the lifetime of each cloud. Similar
results can nevertheless be obtained by looking at the
instantaneous values. The choice of computing the
lifetime averaged mass ßuxes comes from the possi-
bility to reconstruct cloud life cycles for the purpose
of a parameterization, as in Sakradzija et al. (2015).

The distribution of cloud-base mass ßuxes is cal-
culated for the two reference cases, RICO and ARM
(Fig. 3). The probability densit y distribution is com-
puted using the generic R function hist (R Core Team
2015). The width of the bins used to compute the
probability density of mass ßuxes is logarithmically
increasing with higher mass ßux values. The sampling
period in RICO is from hour 6 to hour 22 of the
simulation, while in the ARM case clouds are sam-
pled from hour 6 (1730 UTC) to hour 12 (2330 UTC)
of the simulation. Only those clouds that were ini-
tialized during the sampling period are included in
the calculation. Clouds that lasted longer than this
sampling time period are followed beyond the time
limit to Þnalize their life cycles. The sample size of the
lifetime average cloud-basemass ßux distribution is
317 014 clouds in the RICO case and 120 292 clouds in
the ARM case.

The two reference LES cases exhibit distinct hori-
zontal and vertical extents of the clouds, number of
clouds, and their spacing because of different initial
conditions, surface, and large-scale forcing. The mass
ßux distributions corresponding to these two refer-
ence cases have different shapes, and they cover
different ranges of the mass ßux values (Fig. 3). The
distribution of the cloud-base mass ßux in the ARM
case shows a straight-line shape on a logÐlog plot,
similar to a power-law distribution over a range of
three orders of magnitude. In contrast, the distribu-
tion in the RICO case shows a more concave shape. In
previous literature on the cloud size distribution,
such a type of a concave shape has often been iden-
tiÞed as a double power-law distribution with two
distinct slopes and a scale-break point at the in-
termediate cloud size (Cahalan and Joseph 1989;
Sengupta et al. 1990; Nair et al. 1998; Benner and
Curry 1998; Neggers et al. 2003; Trivej and Stevens

FIG . 3. The probability density distribution of the lifetime
average cloud-base mass ßuxes. Clouds are sampled from hour 6
to hour 22 from the simulation start in the R-base case; and from
hour 9 to hour 12 after the simulation start in the A-base case.
Clouds with mass ßux values, 600 kg s2 1 are discarded from the
plot to remove possible numerical noise, since those are mostly the
clouds that cover only a single grid cell. The 95% conÞdence bands
are plotted as shaded areas.
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2010; Heus and Seifert 2013). To make a parallel to
these studies, we identify the scale break in the mass
ßux distribution of the R-base case at a value of the
cloud-base mass ßux close to 13 105 kg s2 1 (Fig. 3).
Based on the qualitative comparison of the mass ßux
distributions of the R-base and A-base case, we con-
clude that there is no universality in the distribution slopes
on a logÐlog plot (Fig. 3). As we will show in section 4c,
the slope of the mass ßux distribution changes with the
change of a control parameter of the simulations.

The sampling variability of the mass ßux distributions is
very low in both reference cases except near the end of the
right tails of the distributions ( Fig. 3), which is a sign of a
limited sample size of the largest possible cloud mass ßux
values. This portion of the distribution tail has higher

sampling variability based on the 95% conÞdence intervals
computed for each distribution bin (shaded areas inFig. 3).
The conÞdence intervals were calculated using a bootstrap
method with replacement using 1000 random samples.

As a key contributor to the cloud-base mass ßux, the
cloud area ac is distributed quali tatively similarly to
the distribution of the mass ßux (Fig. 4a). The differ-
ence between the two reference LES cases shows
similar characteristics as for the two mass ßux distri-
butions. So, the knowledge about the physical mech-
anism that shapesp(m) might also be sufÞcient to
describe p(ac). The cloud area distribution of the
A-base case shows a power-law-like shape with a scale
break around the value of 106 m2. The scale break in
the ARM-base case is located at a scale an order of
magnitude larger than the one of the R-base case.
These two cloud area distributions are actually very
similar to the two typical cloud size distributions ob-
served over land and over ocean as derived from the
Landsat images inSengupta et al. (1990), their Fig. 4.
A similar change in the distribution behavior for the
largest cloud areas is observed in the radar echo areas
distribution in Trivej and Stevens (2010). Different
statistics of the large echoes compared to a power-law
behavior of the small echoes may be controlled by the
meteorological environment. In particular, the exis-
tence of an inversion layer topping the cloud layer
limits the growth of clouds beyond a certain size,
which can be connected to the observed break in the
scaling (Trivej and Stevens 2010). Strong subsidence
inversions over the tropical oceans might explain the
position of the scale break at the lower values than
what is observed at midlatitudes (see alsoWood and
Field 2011).

The distribution of vertical velocity of individual clouds
is approximately symmetric and can be well Þtted using a
normal distribution, as illustrated in Fig. 4b. The average
vertical velocity per cloud is hwi 5 0.64 ms2 1 in the RICO
case andhwi 5 0.76 ms2 1 in the ARM case. Compared to
the RICO case, in the ARM case the variance of w is
signiÞcantly higher, and some clouds can gain velocities
larger than 2ms2 1. This result is in line with the Þndings of
Xu and Randall (2001), albeit for deep convection, where
the most signiÞcant differences in the updraft intensities
between tropical oceanic and midlatitude continental
convection were found in the strongest 10% of the up-
drafts, not in the median values. The correlation between
vertical velocity wi of individual clouds and their mass
ßuxesmi is very low (not shown here). This is the reason
for the similarity between p(m) and p(ac), while p(w)
belongs to a different family of distributions.

Why are the two reference population distributions dif-
ferent? Is the distribution shape changing under the

FIG . 4. The probability density distribution of (a) lifetime aver-
aged cloud-base areas and (b) vertical velocity (w) through cloud
base for RICO (black) and ARM (red). As in the previous Þgure,
clouds with mass ßux values, 600 kg s2 1 are discarded from the
plot to remove possible numerical noise.
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inßuence of the large-scale forcing or of the surface condi-
tions? We address these questions in the following section.

4. The three hypotheses

The main differences between the two reference
LES cases are in the existence of a strong diurnal cycle
over land, strong self-organization of clouds over
ocean, and in the magnitude and partitioning of the
surface turbulent heat ßuxes (Table 1). Other aspects
of the large-scale forcing are also different between
the two reference cases. However, we rule out those
differences as a cause of the different distribution
shapes because it was hypothesized and shown in
previous studies that the intensity of the convective
updrafts was insensitive tochanges in the large-scale
forcing (e.g., Robe and Emanuel 1996; Cohen and
Craig 2006; Plant and Craig 2008). Based on these
facts, we propose the three hypotheses that might
explain the divergence of the mass ßux distribution
between the two reference LES cases:

(i) diurnal cycle of convection determines the distri-
bution p(m),

(ii) convective self-organization determines the distri-
bution p(m), and

(iii) surface ßuxes determine the distribution p(m).

In the following, we test the three hypotheses by ana-
lyzing all 11 LES cases (Table 1).

a. The Þrst hypothesis: Diurnal cycle of convection

Here we test if changes in the forcing associated
with the convective diurnal cycle might be responsible

for the different shapes of p(m) in the two reference
cases. We sample the clouds that emerge in the ARM
case during four time frames of 1-h duration, taken at
different stages of the diurnal cycle, starting at 1730 UTC.
The distribution of cloud -base mass ßux in all four
time frames is shown inFig. 5. It is clear that there is
no signiÞcant change in p(m) over the diurnal
cycle of the ARM case [i.e., the distribution p(m) is
stationary].

Another property of the diurnal cycle that might
inßuence p(m) is the period of the diurnal cycle.
Shorter or longer diurnal cycles imply faster or slower
temporal changes in the forcing. With faster changes,
clouds might have less time to develop undisturbed, so
their sizes and mass ßuxes might be lower. Or, with
slower changes in the forcing, larger clouds might
result. To test this, we investigate the results of the
simulations A-short and A- long. A time frame of 1-h
duration is taken around the peak of the diurnal cycle,
after 9, 7, and 11 h from simulation start in A-base,
A-short, and A-long, respectively, and p(m) is exam-
ined (Fig. 6). There is again no signiÞcant difference
among the simulations, except near the right tail of the
distribution, where the A-short case shows a faster
drop-off than the other two cases. This means that the
largest possible clouds cannot develop in the ARM
case if the period of the forcing is too short. Overall,
there is nevertheless no change in the distribution
shape, and the slope of the line stays similar across
the three cases. The results of these experiments
demonstrate that changes of the forcing over a diurnal
cycle do not shape the distribution of the cloud-base
mass ßux.

FIG . 5. The probability density distribution of the lifetime av-
erage cloud-base mass ßux (kg s2 1) sampled over time frames of
1-h duration over the diurnal cycle of the A-base case, starting after
6 (gray), 8 (red), 10 (blue), and 11 h (green) of simulation (at 1730,
1930, 2130, and 2230 UTC, respectively).

FIG . 6. The probability density distribution of the lifetime av-
erage cloud-base mass ßux over the cases with different diurnal
cycle periods, based on the ARM case: A-base (red), A-short
(blue), and A-long (green).
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