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ABSTRACT

Global convection-permitting models enable weather prediction from local to planetary scales and are
therefore often expected to transform the weather prediction enterprise. This potential, however, depends on
the predictability of the atmosphere, which was explored here through identical twin experiments using the
Model for Prediction Across Scales. The simulations were produced on a quasi-uniform 4-km mesh, which
allowed the illumination of error growth from convective to global scales. During the Þrst two days, errors
grew through moist convection and other mesoscale processes, and the character of the error growth re-
sembled the case ofk2 5/3 turbulence. Between 2 and 13 days, errors grew with the background baroclinic
instability, and the character of the error growth mirrored the case of k2 3 turbulence. The existence of an error
growth regime with properties similar to k2 5/3 turbulence conÞrmed the radical idea of E. N. Lorenz that the
atmosphere has a Þnite limit of predictability, no matter how small the initial error. The global-mean pre-
dictability limit of the troposphere was estimated here to be around 2Ð3 weeks, which is in agreement with
previous work. However, scale-dependent predictability limits differed between the divergent and rotational
wind component and between vertical levels, indicating that atmospheric predictability is a more complex
problem than that of homogeneous, isotropic turbulence. The practical value of global cloud-resolving models
is discussed in light of the various aspects of atmospheric predictability.

1. Introduction

Over the lastdecade, a tremendous increase in comput-
ing power has facilitated the advent of global convection-
permitting numerical weather prediction (NWP) models
(GCPMs). GCPMs are able to simulate EarthÕs atmo-
sphere with astonishing realism and allow the prediction of
weather seamlessly from local to planetary scales (e.g.,
Satoh et al. 2008; Putman and Suarez 2011; Miyamoto et al.
2013; Skamarock et al. 2014; Heinzeller et al. 2016). Not
surprisingly, GCPMs are often expected to revolutionize
weather prediction, for example, by predicting high-impact
weather up to two weeks ahead (ECMWF 2016). However,
many aspects of the atmosphereÕs predictability are not well
understood, especially processes that involve interactions
across a wide range of scales. Consequently, it is not clear
what forecast problems are potentially tractable and how

GCPMs may be used in practice. This study addresses this
issue by exploring the predictability of the atmosphere in
the context of GCPM simulations.

Atmospheric ßow is extremely complex, which hampers
efforts to comprehensively quantify its predictability. To
keep the problem manageable, predictability has often
been studied in simpliÞed settings, for example, by using
idealized numerical experiments (e.g., Lorenz 1969;
Métais and Lesieur 1986; Rotunno and Snyder 2008). In
fact, most of our knowledge about the predictability of
ßuid ßow is based on idealized ßows and theory, pro-
voking questions about the degree to which this knowl-
edge applies to the real atmosphere.

One way to explore atmospheric predictability in a
more realistic framework is to employ either global or
regional NWP models (e.g., Lorenz 1982; Zhang et al.
2002; Tribbia and Baumhefner 2004; Selz and Craig 2015).
Yet both global and regional model studies have suffered
from distinct shortcomings. For example, classic global
models with grid spacings of. 10 km were generally not
able to explicitly resolve mesoscale processes such as
moist convectionÑa major d isadvantage because con-
vection is the principal process associated with the initial
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growth of forecast error (Zhang et al. 2003). Regional
models, on the other hand, require lateral boundary
conditions, which constrain error growth on synoptic
scales. The constrained error growth in turn leads to ar-
tiÞcially enhanced predictability estimates (Errico and
Baumhefner 1987; Vukicevic and Errico 1990).

GCPMs are excellent tools to study atmospheric
predictability because they combine the high resolution
of regional models with the unrestricted geometry of
global models. With this advantage in mind, the pur-
pose of this study is to better understand the de-
terministic predictability of scales of motions generally
referred to as weather. SpeciÞcally, the goals are 1) to
illuminate the error growth process from convective to
planetary scales, 2) to compare error growth charac-
teristics with those predicted by theory, and 3) to
quantify the atmosphereÕs predictability. Furthermore,
this study is intended to provide an update on previous
low-resolution global model predictability studies (e.g.,
Lorenz 1982; Tribbia and Baumhefner 2004; Simmons
and Hollingsworth 2002) and complement a recent se-
ries of high-resolution predictability studies that em-
ployed regional models (Durran and Gingrich 2014;
Selz and Craig 2015; Durran and Weyn 2016; Weyn and
Durran 2017). Given the studyÕs focus onintrinsic pre-
dictability (Lorenz 1996), model error and initial con-
dition error with realistic amplitude are not considered.
Consequently, the results provide an upper bound on
what we can possibly predict. Moreover, this study does
not examine the predictability of processes from sea-
sonal to subseasonal time scales nor the predictability of
average quantities such as monthly means (Shukla
1981). Finally, questions regarding the oceanÕs effect on
atmospheric predictability cannot be addressed because
the present model is not coupled to an ocean model.

This paper is structured as follows: Relevant previous
work is discussed insection 2. Section 3 introduces the
model and experiment setup, followed by a general de-
scription of the simulations in section 4. Sections 5and 6
discuss error growth and predictability in physical and
spectral space, respectively. These two sections also
introduce a few novel analytics to the predictability lit-
erature, such as a comparison of different error metrics;
computations of error doubling times for different error
growth regimes; and a quantitative analysis of pre-
dictability limits as a function of scale, altitude, and
underlying ßow dynamics. The paper closes with the
summary and conclusions insection 7.

2. Previous literature

The Þrst classic predictability study was conducted by
Thompson (1957), who explored error growth in a simple

barotropic model and noted that small-scale errors do not
necessarily foil the prediction of large-scale motions.
Made at a time when NWP was still in its infancy,
ThompsonÕs conclusion raised hope for the possibility of
accurate long-term predictions of synoptic-scale weather
systems. This optimistic view was soon challenged by
Lorenz (1963), who employed a highly simpliÞed model
of atmospheric convection to show that even the smallest
errors eventually lead to the loss of predictability of the
entire system. Lorenz (1963) postulated that if the at-
mosphere behaved like the simple system he studied,
accurate long-term weather predictions would not be
possible.

Intrigued by the question of how long the weather can
be predicted, Lorenz studied error growth and pre-
dictability in more fundamental ways. Using a spectral
turbulence model, Lorenz (1969) demonstrated that the
predictability of homogeneous isotropic turbulence de-
pends on the logarithmic slope of the ßowÕs kinetic
energy spectrum. SpeciÞcally, ßows whose spectral slope
is shallower than 2 3 have a Þnite intrinsic limit of pre-
dictability. In this case, error growth is scale dependent
(i.e., errors on progressively smaller scales grow pro-
gressively faster). Moreover, the error growth rate is
time dependent, slowing monotonically as the error
saturates on progressively larger scales. In contrast,
ßows whose kinetic energy spectrum falls off with2 3 or
steeper have formally unlimited predictability. In the
case of a 2 3 spectrum, error growth is not scale de-
pendent and the growth rate is constant, meaning that
predictability can be extended arbitrarily long by mak-
ing the initial error sufÞciently small. (For a spectrum
with a slope steeper than2 3, error growth is scale de-
pendent again, but small-scale errors grow slower than
large-scale errors, and therefore, these types of ßows
also have unlimited predictability.) Over the years,
turbulence models of varying degrees of sophistication
have conÞrmed LorenzÕs theory, which has become a
universally accepted tenet in theoretical meteorology
(e.g., Leith and Kraichnan 1972; Métais and Lesieur
1986; Boffetta et al. 1997; Rotunno and Snyder 2008;
Durran and Gingrich 2014).

Up to this day, however, it remains unclear how pre-
dictability theoryÑwhich strictly speaking only applies
to homogenous isotropic turbulenceÑrelates to the real
atmosphere (e.g.,Harlim et al. 2005; Ngan and Eperon
2012). In particular, the question of whether the atmo-
sphere exhibits an intrinsic limit of predictability has not
been conclusively answered (Tennant 2009; Palmer et al.
2014). Theory implies that mesoscale motionshave
limited predictability , because the atmospheric kinetic
energy spectrum follows a power law close tok2 5/3 at the
mesoscales (k is horizontal wavenumber). By the same
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argument, synoptic-scale motionswould have unlimited
predictability, since the spectrum follows a power law
close tok2 3 at synoptic scales (Nastrom and Gage 1985).

To better understand how predictability theory re-
lates to the predictability of geophysical ßows, scientists
have studied error growth in models of intermediate
complexity (e.g., Morss et al. 2009; Ngan et al. 2009).
These studies generally indicate that certain aspects of
predictability theory apply to geophysical ßows, whereas
other aspects do not. For example, in accord with theory,
Morss et al. (2009)demonstrated that quasigeostrophic
ßow exhibits limited predictability if the slope of the
kinetic energy spectrum is shallower than2 3. On the
other hand, the error growth behavior in geophysical
ßows seems to be different from homogenous isotropic
turbulence. SpeciÞcally, instead of an error cascade from
smaller to larger scales (upscale growth), errors in more
complex ßows tend to grow uniformly at all scales (up-
magnitude growth; e.g.,Mapes et al. 2008; Ngan et al.
2009; Durran and Gingrich 2014). Idealized large-
domain full-physics simulations, such as those ofWaite
and Snyder (2013)and Sun and Zhang (2016), have also
helped to shed light on the nature of kinetic energy
spectra and the relationship between dynamics and
predictability.

In the end, the study of atmospheric predictability
requires realistic NWP models, especially with regard to
quantifying the predictability of the real atmosphere.
Most real-world global model studies conducted over
the last decades agree that the predictability limit of the
atmosphere is about two weeks (e.g.,Lorenz 1982;
Dalcher and Kalnay 1987; Mapes et al. 2008), although a
few studies yielded somewhat longer estimates of up to
three weeks (Simmons and Hollingsworth 2002; Buizza
and Leutbecher 2015). Several global model studies
have also noted that atmospheric error growth does not
concur with predictability theory; in particular, pre-
dictability does not seem to be limited by upscale growth
of initially small-scale errors but rather by the direct
excitation and ampliÞcation of errors on synoptic scales
(Boer 1994; Tribbia and Baumhefner 2004; Ngan and
Eperon 2012).

As brießy mentioned in the introduction, the global
models used in those studies were limited by low reso-
lution. SpeciÞcally, they required the parameterization
of convection, and they could not generate thek2 5/3 part
of the atmospheric kinetic energy spectrum. Hence,
important aspects of the atmospheric error growth
process were not taken into account.

Indeed, there has been increasing evidence that meso-
scale error growth is more in line with the idealized k2 5/3

turbulence case. Studies using convection-permitting re-
gional models indicate that errors grow fastest on the

smallest resolved scales, which results in the loss of me-
soscale predictability within hours (Zhang et al. 2003,
2007; Selz and Craig 2015; Durran and Weyn 2016;
Weyn and Durran 2017). The practical consequence of
this behavior is the well-known difÞculty to forecast con-
vective phenomena, such as tropical cyclones (Sippel and
Zhang 2008; Judt et al. 2016) and severe convective storms
(e.g.,Hawblitzel et al. 2007; Zhang et al. 2015). Because of
their restricted domains, however, regional models cannot
address error growth from mesoscale to synoptic scales
and vice versa or, in other words, error growth across the
ÔÔkinkÕÕ that links thek2 5/3 and k2 3 parts of the spectrum.
Furthermore, regional models are almost exclusively
employed in case studies focusing on particular mesoscale
phenomena, which makes it difÞcult to generalize the
results.

3. Methods

a. Model and model conÞguration

The foundation of this study is a set of GCPM simu-
lations produced with the atmospheric component of the
Model for Prediction Across Scales (MPAS; Skamarock
et al. 2012). MPAS is a global nonhydrostatic NWP
model that uses C-grid staggering of the prognostic
variables and centroidal Voronoi meshes1 to discretize
the sphere. The model employs a hybrid terrain-
following vertical height coordinate ( Klemp 2011),
which is conÞgured such that horizontal coordinate
surfaces are constant height surfaces above approxi-
mately 15 km above mean sea level.

This particular study used a quasi-uniform mesh
with a mean cell center spacing of 4 km. SpeciÞcally, the
mesh comprised 36 864 002 cells, most of which were
hexagons. Only a few prior studies have employed
global models with a comparable or higher horizontal
resolution (Miyamoto et al. 2013; Skamarock et al. 2014;
Heinzeller et al. 2016). The height coordinate was con-
Þgured with 55 layers, and the model top was at 30 km.
Subgrid-scale processes were parameterized with the
parameterization schemes listed inTable 1. Of note is
the GrellÐFreitas convection scheme, a scale-aware cu-
mulus parameterization that enables a smooth transition
in the partitioning between parameterized and resolved
precipitation ( Grell and Freitas 2014; Fowler et al.
2016). On the 4-km mesh, most deep convection is
considered resolved, and the scheme produces little
parameterized precipitation.

1 Voronoi meshes are unstructured grids that allow for both
quasi-uniform discretization of the sphere and local mesh
reÞnement.
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b. Experiment setup

Error growth was investigated by means of identical twin
experiments, which is a common approach in predictability
studies (e.g.,Tribbia and Baumhefner 2004; Zhang et al.
2007; Selz and Craig 2015). This particular experiment
comprised three sets of identical twins, that is, a 21-day-long
control simulation (CTRL) and three time-staggered per-
turbed simulations with lengths of 20, 15, and 10 days
(Pert-20d, Pert-15d, Pert-10d;Fig. 1). Of course, a larger
number of ensemble members would be more desirable,
but computational and data storage constraints limited
this study to three identical twins. The perturbed runs
were staggered in time to investigate the dependence
of error growth on the large-scale ßow conÞguration,
which evolved during the 20-day experiment period.

As is usual in identical twin experiments, the error
was deÞned as the difference between CTRL, that is,
the ÔÔtruth,ÕÕ and the perturbed simulations (which were
identical to CTRL except for slightly perturbed initial
conditions). CTRL was initialized with ERA-Interim
Þelds valid at 0000 UTC 19 October 2012, and a sub-
sequent 24-h spinup period allowed the model to gen-
erate initially unresolved scales before the actual
20-day experiment period from 0000 UTC 20 October
to 0000 UTC 9 November 2012 (the reason why this
period was chosen is given insection 4). The perturbed
runs were initialized at 0000 UTC 20 October (Pert-
20d), 25 October (Pert-15d), and 30 October 2012
(Pert-10d). Similar to Selz and Craig (2015), the initial
conditions of the perturbed runs were created by saving
restart Þles from CTRL and seeding the 3D temperature
Þeld in the restart Þles with small-amplitude Gaussian
noise (mean m5 0 K, standard deviation s 5 0:01 K).
This minuscule initial ÔÔerrorÕÕ is much smaller than any
observational uncertainty and, according to the well-
known metaphor, can be thought of as mimicking the
effect of butterßies.

c. Error and predictability metrics

The predictability literature offers a variety of metrics
that quantify error, most of which measure the distance
between pairs of simulations by computing squared
differences. One of these metrics is the difference total
energy (DTE; Zhang et al. 2003), which is deÞned as

DTE( x, t) 5
1
2

�
Du2 1 D y2 1

cp

Tr

DT 2

�
. (1)

Here, D indicates a difference between any of the per-
turbed simulations and CTRL. The variables u, y, and T
have their usual meteorological meanings,cp is the heat
capacity of dry air at constant pressure (1004 J kg2 1K2 1),
and Tr 5 287 K is a reference temperature.

Two other error metrics were used in this study, namely,
the difference kinetic energy of the 10-m wind (DKE 10m),
and the root-mean-square error of the 500-hPa geo-
potential height Þeld (Z500RMSE ). The DKE 10m was
computed analogously to DTE (excluding the tem-
perature term), and Z500RMSE was computed ac-
cording to

Z500RMSE (t) 5

����������������������������
1
n

�
n

i5 1
(DZ500)

2

s

. (2)

The Z500RMSE is a legacy metric that has been frequently
used in global model predictability studies (e.g., Lorenz
1982; Simmons and Hollingsworth 2002; Buizza and
Leutbecher 2015). One reason for evaluating DKE 10m and
Z500RMSE in addition to DTE is to test whether pre-
dictability depends on a speciÞc metric.

The limit of predictability is usually deÞned as the
forecast time at which the error saturates. For ßows that
completely decorrelate, such as idealized turbulence, the
error saturation limit is twice the variance of the ßow itself.
For ßows with climatological components, such as atmo-
spheric ßow, the saturation limit is customarily deÞned as

TABLE 1. List of physics parameterizations used with MPAS.

Parameterization Reference

GrellÐFreitas convection scheme Grell and Freitas (2014)
Thompson microphysics scheme Thompson et al. (2008)
MellorÐYamadaÐNakanishiÐNiino (MYNN) boundary layer and surface layer scheme Nakanishi and Niino (2006, 2009)
Rapid Radiative Trans Model for GCMs (RRTMG) short- and longwave scheme Iacono et al. (2008)
Noah LSM Niu et al. (2011), Yang et al. (2011)

FIG . 1. Schematic of the four simulations that compose the pre-
dictability experiment. The time from 2 1 to 0 denotes the 24-h
spinup period.

1480 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S V OLUME 75

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&



twice the climatological variance. In the latter case, the
variance of climatological components is excluded since
their prediction is usually not considered skillful.

The climatological variance deÞning the saturation
limit for DTE is given by

varuyT (x, t) 5 var(u) 1 var(y) 1
cp

Tr

var(T ). (3)

Here, var(u), var(y), and var(T ) are the variances of the
zonal and meridional wind components and tempera-
ture, computed over the 30-yr period of 1987Ð2016 using
ERA-Interim data. More speciÞcally, 3D variance Þelds
were computed for 0000 UTC of each day in October
and November, and the resulting 61 Þelds were averaged
to obtain a single 3D variance Þeld representative of the
experiment period. Climatological variances deÞning
the saturation limits for DKE 10m and Z500RMSE were
computed similarly. The reanalysis data are much
coarser resolution (80 km) than the model output and
therefore do not account for the variance of smaller-
scale motions. Potential implications of this disparity are
discussed insection 6.

To explore error growth as a function of spatial scale,
error Þelds are usually decomposed spectrally. Here,
error kinetic energy spectra and Z500 error variance
spectra were computed from the MPAS output follow-
ing section 3 ofSkamarock et al. (2014). SpeciÞcally, the
unstructured MPAS-native u, y, and Z500 Þelds were
Þrst interpolated to a regular latitudeÐlongitude grid
with ; 2-km grid spacing. Then a spherical harmonics
transform was applied to the interpolated u, y, and Z500
Þelds to obtain the background spectra, which, multiplied
by two, denote the saturation limit (including climato-
logical components). To obtain the error spectra, the
spherical harmonics transform was applied to the differ-
ence ÞeldsDu, Dy, and DZ500. All resulting 2D wave-
number decompositions were summed over spherical
harmonics with the same total spherical wavenumber to
produce one-dimensional (1D) spectra and truncated at
the minimum resolvable wavelength of 8 km. To illumi-
nate the spectral error growth in relation to the governing
dynamics, the spherical harmonics representation of the
horizontal wind were decomposed into a divergent and a
rotational component.

4. Global weather simulated by the 4-km MPAS

OctoberÐNovember 2012 featured elevated global
weather activity (Blunden and Arndt 2013), making
this period a compelling case for studying atmo-
spheric predictability. Besides powerful extratropical
cyclones, OctoberÐNovember 2012 saw the initiation

of a MaddenÐJulian oscillation event and the develop-
ment of several tropical cyclones in the Atlantic, western
PaciÞc, and Indian Oceans.

Based on a brief qualitative analysis, the 4-km MPAS
simulated the atmosphere quite realistically. The model
captured many observed cloud features, and for the un-
trained eye, it is at Þrst glance difÞcult to identify the
MPAS simulation in a side-by-side comparison with a
satellite image (Fig. 2). SpeciÞcally, MPAS seems to do a
decent job at simulating tropical convection, which em-
phasizes that the 4-km convection-permitting conÞgura-
tion is adequate in this regard. The agreement is not
perfect, and there are some biases; for example, the cloud
distribution appears too extensive over water in the ITCZ
and too limited in the Amazon. Notwithstanding these
biases, the overall realism is relevant given the studyÕs
aim to explore atmospheric predictability with ÔÔa model
that comes as close to natureas currently possibleÕÕ
(R. Rotunno 2017, personal communication). Note that
it was not important to produce an accurate forecast,
because the model was assumed perfect and CTRL was
treated as the truth. Hence, a formal model veriÞcation
with observations is not part of this study.

Figure 3 illustrates select weather phenomena in more
detail and highlights mesoscale processes that past gener-
ations of global models weregenerally not able to resolve.
One example is the cellular wind speed pattern around
508N, 308W in the cold air advection sector of a strong
extratropical cyclone (highlighted by the box in Fig. 3abut
much better demonstrated by the 10-m wind speed ani-
mation provided in the online supplemental material).
This pattern is likely a manifestation of shallow convection
often seen in association with cold air moving over a rel-
atively warmer ocean. Another example is the realistic
depiction of tropical cyclones. CTRL and Pert-20d cap-
tured the full life cycle of Typhoon Son-Tinh, includ-
ing cyclogenesis, mature phase (Fig. 3b), and landfall in
Vietnam. CTRL and Pert-20d also captured the develop-
ment of Hurricane Sandy in the Caribbean but failed to
reproduce the correct track after Sandy moved into the
Bahamas (not shown). Finally, the development of after-
noon surface cold pools over the Amazon basin demon-
strates that the 4-km MPAS is able to explicitly simulate
diurnally driven deep convection (Figs. 3c,d). To assess
whether the magnitude of the cold pools and the diurnal
temperature range agree quantitatively with observations, a
more rigorous model evaluationÑwhich is beyond the
scope of this studyÑwould be necessary.

5. Error growth in physical space

Maps and time series present a basic overview of the
atmospheric error growth process, including an assessment
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of the global-mean limit of predictability. SpeciÞcally, this
section addresses differences in error growth and pre-
dictability between the troposphere and stratosphere, the
height dependence of error growth in the troposphere, and
the impact of different error metrics.

a. Error growth from convective to planetary scales

The sequence of global DTE maps inFig. 4 illustrates
the tropospheric error growth process in magnitude,
scale, and spatial extent over 20 days. During the Þrst
12h, the initially miniscule error ampliÞed rapidly in
convective regions, such as the ITCZ and extratropical
fronts (Fig. 4a). Zooming in on the front off the U.S.
Atlantic coast in Fig. 5arevealed the quasi-linear shape of
the DTE Þeld with embedded cellular maxima, which
suggests a close relationship between error growth and
precipitating convective bands. During days 1 and 2, the
DTE Þeld expanded substantially, mainly because the
error spread out beyond the convective zones (Figs. 4b,c).
At the same time, the narrow frontal DTE bands became
less pronounced and coalesced into a larger-scale feature
(Fig. 5b). Sun and Zhang (2016)observed qualitatively
similar upscale error growth in idealized simulations of a
baroclinic wave. By day 5, the expanding error Þeld had
contaminated the entire troposphere, and previously
elongated midlatitude mesoscale DTE features that were
associated with precipitating frontal zones had expanded
into synoptic-scale patches (Fig. 4d). The extratropics
experienced considerable error ampliÞcation between
days 5 and 10, leaving behind a clear DTE minimum in

the tropics (Fig. 4e). Error growth continued beyond day
10, but during the Þnal days, the DTE pattern evolved
without a noticeable change in magnitude or scale, in-
dicating that the error growth process had concluded by
day 20 (Fig. 4f). The magnitude of DTE had also in-
creased in the tropical belt by this time, but the tropics
still represented a DTE minimum.

The error growth process described above concurs
with the conceptual error growth model proposed by
Zhang et al. (2007): errors initially grow with moist
convection, quickly spread through the mesoscales, and
eventually contaminate the baroclinic scales. It is not
clear, however, what processes cause error growth be-
yond the mesoscale in the tropics, where no baroclinic
instability exists. Error growth processes in the tropics
are therefore an excellent topic for future research. An
animation visualizing the entire error growth process
between 0 and 20 days is available in the supplemental
online material. The 12-min time step of the animation
highlights the initial signiÞcance of rapidly evolving
moist convection and exposes the ÔÔradiationÕÕ of error
away from convective systems, which may signify the
dispersion of error by gravity waves (Bierdel et al. 2017).

The evolution of stratospheric DTE ( Figs. 6 and 7)
broadly resembled the tropospheric DTE evolution,
although there were some noteworthy differences. Ini-
tially, stratospheric DTE was strongly collocated with
tropospheric DTE ( Figs. 6a,bvs Figs. 4a,b). This sug-
gests that stratospheric errors were induced by tro-
pospheric moist convection, likely through upward

FIG . 2. Comparison of (a) observed and (b) simulated clouds at 0000 UTC 20 Oct 2012; 10-mm channel-scaled radiances
from the GOES-East satellite are shown in (a), and outgoing longwave radiation (W m2 2) from CTRL is shown in (b).
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propagating gravity waves (Zhang et al. 2007; Ngan and
Eperon 2012). The stratospheric DTE Þeld was gener-
ally smoother and more diffuse than the tropospheric
DTE Þeld, and stratospheric DTE did not exhibit the
linear structures resembling precipitating frontal bands
(Fig. 7a vs Fig. 5a). Furthermore, errors in the strato-
sphere seemed to radiate away faster from the convec-
tive sources, which is illustrated by the greater areal
extent of stratospheric DTE compared to DTE at the
same time (Fig. 6b vs Fig. 4b). In contrast with the tro-
posphere, there was also no distinct stratospheric DTE
minimum in the tropics on day 5 (Fig. 6e). These qual-
itative differences between the troposphere and strato-
sphere indicate that errors grow through distinct
physical processes, conÞrming earlier Þndings byNgan
and Eperon (2012).

b. Evolution of global-mean error

Time series of global, volume-averaged DTE sum-
marize the information discussed above and quantify

error growth in a global-mean sense (Fig. 8). The data
are presented in linear (Fig. 8a) and log-linear graphs
(Fig. 8b) to better reveal distinct regimes of error growth
and highlight the initial growth period when the error
magnitude is still small. While much of the discussion in
this subsection involves error growth rates, the growth
rates themselves are investigated more quantitatively
by way of error doubling times in section 5c.

Error growth began with a relatively short initial
burst, during which DTE ampliÞed by three to four
orders of magnitude (Fig. 8b). Because of the close re-
lationship between error growth and mesoscale pro-
cesses during this time, in particular moist convection,
the early growth phase from 0 to 48 h will be referred to
as theconvective-mesoscale phase. Closer inspection of
the time series revealed that the growth rate (i.e., the
slope of the lines in Fig. 8b) decreased monotonically
during the convective-mesoscale phase, which is char-
acteristic of error growth in k2 5/3 turbulence and a
hallmark of limited predictability.

FIG . 3. Examples of meteorological phenomena ranging from synoptic scale to convective scale as simulated by
CTRL: (a) extratropical cyclone in the North Atlantic (shading; 10-m wind speed; m s 2 1), (b) Typhoon Son-Tinh in
the South China Sea (shading; outgoing longwave radiation; W m2 2), and (c),(d) diurnal minimum and maximum of
2-m temperature (shaded;8C) and deep convection over the Amazon basin. Deep convection manifests in the
development of cold pools during local afternoon in (d).
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The convective-mesoscale phase was followed by a
prolonged phase of quasi-exponential error growth,
which seemed to last for about 10Ð12 days (only Pert-20d
was long enough to complete this phase;Fig. 8). The
10Ð12-day duration and the near-constant growth rate
(i.e., near-constant slopes inFig. 8b) suggest that the
error grew with the background baroclinic instability, in
agreement with the conceptual model of Zhang et al.
(2007) and the much lower-resolution experiments of
Tribbia and Baumhefner (2004). Therefore, this period
will be referred to as the baroclinic phase. Variability
between members increased during the baroclinic
phase, indicating that the large-scale ßow conÞguration
affects the growth rate during this regime.

The tropospheric error growth rate decreased abruptly
on day 13, announcing the end of the baroclinic phase
(again, only in Pert-20d, in Fig. 8a). Thereafter, DTE

grew unsteadily, reached its saturation limit on day 17
(the predictability limit), attained an overall maxi-
mum on day 18, and then decreased. Such ßuctuations
are typical of errors approaching saturation due to
changes in the mean-state kinetic energy (Boffetta and
Musacchio 2017). Considering that only one pair of
twins exhibited error saturation, one should not take the
predictability limit of 17 days too literally, and a vaguer
statement like ÔÔthe tropospheric predictability limit is
around 2Ð3 weeksÕÕ seems more appropriate. The latter
estimate is consistent with previous studies, especially
the more recent work by Ngan and Eperon (2012)and
Buizza and Leutbecher (2015).

During the convective-mesoscale phase, the glob-
ally averaged stratospheric error traced the tropo-
spheric error closely (Fig. 8, orange lines). However,
during the quasi-exponential phase, the growth rate of

FIG . 4. Sequence of DTE maps illustrating tropospheric error growth over a 20-day period. DTE in this example
is based on the twins CTRL/Pert-20d and vertically averaged between 0 and 11 km. Blue rectangles in (a) and
(b) outline the zoomed-in area in Fig. 5.
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the stratospheric error was substantially smaller. Con-
sequently, the stratospheric quasi-exponential phase
extended beyond 20 days, and the error never saturated.
This result implies that the intrinsic predictability limit
of stratospheric ßow is greater than 20 days, but it is
unclear what mechanisms contribute to error growth in
the stratosphere during the quasi-exponential phase,
given that baroclinic instability plays a lesser role (Ngan
and Eperon 2012).

The troposphere and stratosphere evidently differ in
error growth and predictability, but it is not apparent
whether this is also true for different levels within the
troposphere. Error growth turned out to be height de-
pendent, or more speciÞcally, the baroclinic-phase error
growth rate increased with height (Fig. 9). However, the
climatological variance also increased with height and
saturation occurred around day 17 at all levels; there-
fore, the predictability limit was not a function of height.
Given that both var uyT and DTE are dominated by the
kinetic energy component (85%, not shown), the in-
crease with height is likely because the wind speed in-
creases with height.

The last question to be addressed in this section is
whether error growth and predictability depend on the
error metric. The answer seems to be no. Aside from dif-
ferences in their growth rates, both Z500RMSE andDKE 10m

follow the familiar DTE evolution ( Fig. 10). SpeciÞcally,

Z500RMSE andDKE 10m also undergo the convective-
mesoscale and baroclinic growth phases, with error
saturation on day 17 in Pert-20d. The fact that volume-
averaged DTE, Z500RMSE , and DKE 10m all saturate at
the same time indicates that the troposphere exhibits
an unequivocal predictability limit independent of al-
titude and metric, at least in the simple bulk sense
discussed here. This Þnding somewhat disagrees with
Hohenegger and Schär (2007), who noted that mete-
orological surface variables have shorter predictability
than variables in the free troposphere. However,
Hohenegger and Schär (2007) used a regional model
over complex terrain, which may be the reason for this
discrepancy.

c. Error doubling times

Error doubling times are another way of quantifying
error growth, one that is helpful to estimate the margin
for forecast improvement (a doubling time implies that
the predictability horizon can be doubled by halving
the initial error). Early studies found that the atmo-
sphereÕs error doubling time is about 5 days, but this
number steadily decreased as models became more
realistic. In the last two decades or so, doubling times
have settled to 1.2Ð1.7 days (Simmons et al. 1995;
Simmons and Hollingsworth 2002; Tribbia and
Baumhefner 2004). Here, error doubling times were

FIG . 5. As in Figs. 4a and 4b, but zoomed in on the midlatitude front over the western North Atlantic.
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calculated for tropospheric DTE and Z500RMSE ac-
cording to

Td 5 (t2 2 t1)
ln(2)

ln

�
E(t2)
E(t1)

#

8
><

>:

9
>=

>;
, (4)

where E is either tropospheric DTE or Z500 RMSE and
t2 2 t1 5 D t 5 12 h.

DTE doubling times were initially very small ( , 1 h)
but increased steadily throughout the Þrst two days
(Fig. 11, red lines). This increase is a consequence of the
decreasing error growth rate during the convective-
mesoscale growth phase and typical of ßows with lim-
ited predictability. To illustrate this point, an initial error
doubling time of , 1 h, as is the case here, means that
decreasing the initial error amplitude by 50% lengthens
the global predictability horizon by less than 1 h.

The Z500RMSE doubling times differed quite drasti-
cally from the DTE doubling times during the Þrst
two days and displayed two pronounced diurnal cycles
(Fig. 11, turquoise lines). These diurnal cycles, which
according to the knowledge of the author have not
been reported in the literature, are again evidence that
convection plays an important role in the early error
growth phase. During the early baroclinic phase
(roughly between days 2 and 6), both DTE and
Z500RMSE error doubling times leveled off around 24Ð
36 h before increasing again after day 6. Averaging the
doubling times over the core of the baroclinic phase
between days 3 and 10 and over the three pairs of twins
yielded 39 h (1.6 days) for DTE and 42 h (1.8 days) for
Z500RMSE . These values are in close agreement with
previous studies (Simmons and Hollingsworth 2002;
Tribbia and Baumhefner 2004), which indicates a
broad consensus: errors growing with the background

FIG . 6. As in Fig. 4, but for stratospheric DTE vertically averaged between 18 and 29 km.
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baroclinic instability double in a little more than
1.5 days. Error doubling times rose more sharply toward
the end of the baroclinic phase and ßuctuated wildly
when the error approached saturation (not shown).

6. Error growth in spectral space

The overall goal of this section is to explore the scale
dependence of error growth and quantify the atmo-
sphereÕs scale-dependent predictability limits. Three
particular questions are addressed. First, how do error
growth and predictability differ between the k2 5/3 and
k2 3 parts of the atmospheric kinetic energy spectrum?
Second, how do error growth and predictability differ
between the divergent and rotational spectrum? And
third, how do error growth and predictability depend on
altitude? Additionally, the relationship between atmo-
spheric error growth and predictability theory is dis-
cussed. Section 6b advances analytics of previous
predictability studies, which were mostly in the form of
spectra, by explicitly depicting the predictability limits
of the divergent, rotational, and total wind as a function
of spatial scale and altitude.

a. Evolution of error spectra

Figure 12 shows the background and error kinetic
energy spectra of the divergent, rotational, and total

wind at three different altitudes. The spectra comple-
ment those shown by Weyn and Durran (2017), who
computed similar spectra from a doubly periodic Car-
tesian domain. The spectra of the total wind are
the respective sums of the divergent and rotational
spectra and thus dominated by the rotational spec-
tra at larger scales (e.g.,Waite and Snyder 2013;
Skamarock et al. 2014; Bierdel et al. 2016). Scales
smaller than 6D 5 24 km, to the right of the vertical
gray lines, are not fully resolved and will not be
considered further.

The background spectra of the rotational and total
wind clearly illustrate the transition between the k2 3 and
k2 5/3 segments of the kinetic energy spectrum. In
agreement with Skamarock et al. (2014) and Bierdel
et al. (2016), the transition occurs at longer wavelengths
in the stratosphere than in the troposphere. In the lower
stratosphere and upper troposphere (Figs. 12aÐf), the
divergent spectrum differed markedly from the rota-
tional spectrum. SpeciÞcally, the divergent spectrum
had a shallower slope and lacked thek2 3 segment
(Figs. 12a,d). Descending toward the surface, the spectra
became generally shallower and the transition between
the k2 3 and k2 5/3 segments became less well deÞned. In
addition, the differences between the divergent and ro-
tational spectra became less obvious. For instance, both
the divergent and rotational spectrum of the 10-m wind

FIG . 7. As in Fig. 5, but for stratospheric DTE vertically averaged between 18 and 29 km.
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featured a transition between a steeper and shallower
segment (Figs. 12gÐi).

The growth of error growth in magnitude and scale is
manifested in the progression of error spectra inFig. 12.
The error swept out nearly the entire spectrum within
20 days except for scales of motion larger than about
wavenumber 5 (physical scale: 8000 km). According
to Boer (1994), the unsaturated large-scale motions
represent climatological ßow features, such as sta-
tionary waves. Thus, the ÔÔretained predictabilityÕÕ at
scales. 8000 km does not contradict the 17-day pre-
dictability limit described in section 5, where pre-
dictability was evaluated with respect to climatology. In
agreement with many previous studies, the error grew
up-magnitude instead of cascading from smaller to
larger scales (e.g.,Tribbia and Baumhefner 2004; Mapes
et al. 2008; Durran and Gingrich 2014).

SuperÞcially, it seems that error growth did not differ
substantially between the divergent and rotational
component, especially in the troposphere (Figs. 12dÐi).
However, the shape of the error spectra differed ap-
preciably between the troposphere and the lower
stratosphere at 20 km. SpeciÞcally, the error spectra in
the stratosphere were ßatter than the tropospheric error
spectra and almost horizontal in the case of the rota-
tional component and total wind. The ÔÔßatnessÕÕ of the

stratospheric error spectra is in agreement with the
Þnding that the stratospheric error spread to larger
scales more quickly (section 5a), and the discrepancy
between tropospheric and stratospheric error spectra is
further evidence that error growth differs between the
two layers.

Spectral error growth in the troposphere under-
went two distinct phases, consistent with the two
phases discussed insection 5. Initially (i.e., during the
convective-mesoscale phase), the error peaked at the
smallest resolved scales, and the growth rate decreased
monotonically ( Figs. 12dÐi, 13a). Both of these proper-
ties are consistent with spectral error growth in the case
of k2 5/3 turbulence (Fig. 13c), which provides compelling
evidence that the atmosphere has indeed a Þnite limit of
predictability. Figures 13a and 13calso differ in certain
aspects, because the initial error inFig. 13ais white noise,
whereas the initial error in Fig. 13c is saturated at the
smallest scale and zero everywhere else.Durran and
Gingrich (2014) demonstrated that the form of the
evolving error spectra in the Lorenz turbulence model
is a function of the initial error spectrum as well as the
slope of the background kinetic energy spectrum.

At the later stages of the convective-mesoscale phase,
the initially well-deÞned peak broadened and shifted
toward larger scales (Figs. 12dÐf). During the baroclinic

FIG . 8. (a) Time series of volume-averaged DTE from all the three pairs of identical twin
experiments (solid lines). Tropospheric DTE is in red, and stratospheric DTE in orange.
Dashed lines depict the error saturation limits, which were calculated according to Eq.(3).
(b) As in (a), but with a logarithmic y axis.
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phase, the error spectra developed a peak in the bar-
oclinically active band between wavenumbers 10 and 20,
in agreement with Tribbia and Baumhefner (2004). This
peak was especially pronounced in the rotational wind
(and therefore also in the total wind), indicating that
errors grew mainly with the balanced rotational ßow.
During the baroclinic phase, the growth rate was nearly
constant (Fig. 13b), and error growth generally mirrored
the case ofk2 3 turbulence (Fig. 13d).

Compared with the error kinetic energy spectra, the
evolution of the Z500 error variance spectra was quite
different ( Fig. 14). The Z500 error variance spectra
lacked both the early peak at the smallest resolved scales
and the later peak at the baroclinically active scales.
Quite remarkably, the Z500 error did not saturate at
scales, 300 km, mainly because error growth slowed
drastically in the shallower mesoscale part of the spec-
trum before reaching the saturation limit. The reason for
this unexpected behavior is unknown, and it may be due
to climatological features associated with topography
(Boer 1994). Future research is necessary to shed more
light onto this peculiar result.

b. Scale-dependent predictability limits

Sequences of error spectra such as the ones shown in
Fig. 12 illustrate the growth of error as a function of
spatial scale, but they are not ideal for quantifying the
scale-dependent predictability limits of atmospheric

ßow. Here, following Judt et al. (2016), the predictability
limit of a given wavenumber was explicitly calculated by
determining the forecast time at which the error reaches
95% of the saturation limit. The resulting values are
plotted as red dots in Fig. 15 for the divergent, rota-
tional, and total wind components at various altitudes.
Analogously, points in orange show forecast times at
which the error reaches 60% of its saturation value, a
percentage that is often used to deÞne useful prediction
skill ( �Zagar et al. 2017). As before, data points corre-
sponding to scales smaller than 6Dwill not be considered
further.

The patterns traced by the red data points differ
substantially between the divergent and rotational wind
component and between different vertical levels. Evi-
dently, the predictability of atmospheric ßow is much
more complex than what could be conveyed by the
simple global averages insection 5or by the spectra in
Fig. 12. In particular, the predictability limits of atmo-
spheric motions are not only scale dependent but also
affected by the underlying dynamics (divergent vs ro-
tational motions) and altitude. Although the altitude
dependence is also apparent when considering a
threshold of 60% error saturation, differences between
the divergent and rotational motions are far less pro-
nounced (Fig. 15, orange dots).

Only rotational motions far above the boundary layer
exhibited a classic monotonic relationship between scale

FIG . 9. As in Fig. 8, but for horizontally averaged DTE on pressure levels of 250, 500, and
850 hPa from the twins CTRL/Pert-20d.
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of motion and limit of predictability ( Figs. 15b,e,h; red
dots). For divergent motions in general and rotational
motions closer to the surface, the functional relationship
between the spatial scale and predictability limit is
convex, meaning that smaller mesoscale motions have
longer predictability than larger mesoscale motions.
Predictability limits are shortest at intermediate scales,
around wavenumber 500 for divergent motions in the
free atmosphere, and near wavenumber 100 for di-
vergent and rotational motions at and below 850 hPa.
(The predictability limits of the total wind in the right
column of Fig. 15are averages of the predictability limits
of the divergent and rotational motions, weighted by the
contribution of each wind componentÕs kinetic energy to
the total kinetic energy.) Although not described with as
much detail, Boer (1994) noticed the peculiar inverse
relationship between predictability and spatial scale at
the mesoscales and attributed it to local topographic
forcing. This hypothesis is substantiated by the fact that
the signal is stronger for the divergent ßow, which is
dominated by gravity waves (Waite and Snyder 2013).
The effect of EarthÕs surface on the predictability of
atmospheric ßow also manifests in the increase of pre-
dictability time toward the surface. In fact, regarding the
10-m wind, only a few wavenumbers suffer from error
saturation, and many scales of motion retain pre-
dictability for at least 20 days (Figs. 15mÐo).

Considering a threshold of 60% saturation, the re-
lationship between spatial scale and the time it takes the
error to reach this threshold is more in line with the

classic picture (i.e., the smaller the spatial scale, the
shorter the time, at least at the 500-hPa level and
above). More speciÞcally, there exists a kink that co-
incides with the transition zone between the k2 5/3 and
k2 3 segments of the kinetic energy spectrum. This kink
is further evidence that the errors grow differently de-
pending on the spectral slope of the background spec-
trum, and in particular, errors in the k2 5/3 regime grow
upscale faster than errors in thek2 3 regime. In the free
troposphere, the limit of the useful prediction skill of
motions in the k2 5/3 regime is consistently , 5 days.
Closer to the surface, there seems to be a tendency for

FIG . 11. Error doubling times for global volume-averaged DTE and
Z500RMSE , computed from the data shown in Figs. 8and 10.

FIG . 10. As in Fig. 8, but for DKE 10m and Z500RMSE .
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