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ABSTRACT

Stationary gravity waves, such as mountain lee waves, are effectively described by Grimshaw’s dissipative

modulation equations even in high altitudes where they become nonlinear due to their large amplitudes. In

this theoretical study, a wave-Reynolds number is introduced to characterize general solutions to these

modulation equations. This nondimensional number relates the vertical linear group velocity with wave-

number, pressure scale height, and kinematic molecular/eddy viscosity. It is demonstrated by analytic and

numerical methods that Lindzen-type waves in the saturation region, that is, where the wave-Reynolds

number is of order unity, destabilize by transient perturbations. It is proposed that this mechanism may be a

generator for secondary waves due to direct wave–mean-flow interaction. By assumption, the primary waves

are exactly such that altitudinal amplitude growth and viscous damping are balanced and by that the am-

plitude is maximized. Implications of these results on the relation between mean-flow acceleration and wave

breaking heights are discussed.

1. Introduction

Atmospheric gravity waves generated in the lee of

mountains extend over scales across which the back-

ground may change significantly. The wave field can

persist throughout the layers from the troposphere to

the deep atmosphere, the mesosphere and beyond

(Fritts et al. 2016, 2018). On this range background

temperature and therefore stratification and back-

ground density may undergo several orders of magni-

tude in variation. Also, dynamic viscosity and thermal

conductivity cannot be considered constant on such a

domain (Pitteway and Hines 1963; Zhou 1995).

Two predominant regimes for the waves can be identi-

fied: the homosphere and the heterosphere (Nicolet 1954).

These two are separated by the turbopause, usually

somewhere in the mesopause region. Below the turbo-

pause molecular viscosity is negligible. Hence, if diffusion

occurs, it is caused by turbulence. Due to the missing

damping and the thinning background air,mountainwaves

amplify exponentially when extending upward. This phe-

nomenon is also called anelastic amplification.

At certain heights the amplitudes cannot grow any

further due to limiting processes. Those may be static or

dynamic instabilities that act on the small scale comparable

to the wavelength. For instance, Klostermeyer (1991)

showed that all inviscid nonlinear Boussinesq waves are

prone to parametric instabilities. The waves do not im-

mediately disappear by the small-scale instabilities, rather

the perturbations grow comparably slowly such that the

waves persist in their overall structure over several more

wavelengths. However, turbulence is produced. Lindzen

(1970) modeled the effect of turbulence on the wave by

harmonic damping with a constant kinematic eddy vis-

cosity. The eddy viscosity is exactly such that it saturates

the wave, meaning that viscous damping and anelastic

amplification are balanced (Lindzen 1981; Fritts 1984;

Dunkerton 1989; Becker 2012). Pitteway andHines (1963)

referred to this instance as amplitude-balanced wave.

Above the turbopause molecular viscosity takes over.

It is usually modeled by a constant dynamic viscosity. In

combination with the thinning background density, the

kinematic viscosity increases exponentially with height

resulting in a rapid decrease in amplitude.

In the process of becoming saturated the amplitude

becomes considerably large such that the waves cannot

be considered linear. Pioneering work on the mathe-

matical description of nonlinear gravity waves was ac-

complished by Grimshaw (1972, 1974). This paper aims

to extend Lindzen’s linear wave saturation theory with

the aid of Grimshaw’s nonlinear wave description.
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2. How the modulation equations solve the
compressible Navier–Stokes equations—A brief
review

The nonlinear governing equations for our in-

vestigations are the two-dimensional dissipative Grimshaw’s

modulation equations being first introduced by Grimshaw

(1974). Before presenting them, we want to give a brief re-

view in this section how they solve the dimensionless

compressible, Reynolds-averaged Navier–Stokes equa-

tions (NSE) asymptotically. Detailed derivations can be

also found in Achatz et al. (2010) and Schlutow et al.

(2017). Length and time are nondimensionalized via

(x̂, ẑ, t̂)5

�
1

L
r

x*,
1

L
r

z*,
y
r

L
r

t*

�
, (1)

where Lr ’ 1...10 km denotes the reference wavelength

(hence the subscript r) and yr is the reference velocity.

Note that variables labeled with an asterisk denote di-

mensional quantities throughout the paper. To separate

the hydrostatic background from the flow field associ-

ated with the wave the first ingredient necessary is a

small scale separation parameter

«5L
r
/H

u
� 1, (2)

where Hu ’ 10...100km is the potential temperature

scale height. This choice for the scale separation pa-

rameter was introduced by Achatz et al. (2010).

The authors considered inviscid flows. To take viscous

damping into account, we need to compare inviscid and

viscous terms. The (eddy) viscosity is not a constant

throughout the atmosphere and among others depends

on temperature. Midgley and Liemohn (1966, their

Fig. 9) gave a realistic vertical profile of the effective

kinematic viscosity combining eddy and molecular ef-

fects. Hodges (1969) computed the eddy diffusion by

gravity waves near the mesopause to be Kr(eddy) ’
106...7 cm2 s21, which compares well with Midgley and

Liemohn (1966) and Lindzen (1981). In the scaling re-

gime of Achatz et al. (2010) as well as Schlutow et al.

(2017) these values correspond to Reynolds num-

bers of Re’ 10...100 when the Mach number is Ma’
0.1...0.01. These numbers are also supported by a review

of Fritts (1984).

Taking these arguments into account, a realistic flow

regime in terms ofMach, Froude, Reynolds, and Prandtl

number most suitable for internal gravity waves in the

middle/upper atmosphere region is then found by

assuming

y
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p [Ma5O(«) , (3a)

y
rffiffiffiffiffiffiffiffi
gL

r

p [Fr5O(«1/2) , (3b)

r
r
y
r
L

r

m
r

[Re5O(«21) , (3c)

c
p
m
r

k
r

[Pr5O(1) , (3d)

where rr, pr, kr, and mr represent the reference density,

pressure, thermal conductivity, and dynamic viscosity,

respectively. The constant k5 2/7 is the ratio of the ideal

gas constant R to the specific heat capacity at constant

pressure cp for diatomic gases. Equations (3) provide a

distinguished limit for multiple-scale asymptotic analy-

sis. Introducing compressed coordinates for the hori-

zontal, vertical, and time axis,

(x, z, t)5 («x̂, «ẑ, «t̂), (4)

separates the slowly varying background from the fast

oscillating wave fields. Under the assumption of stable

stratification to the leading order, the hydrostatic

background is determined by the vertical temperature

profile T(z). Two dimensionless background variables,

which vary on the large scale, will appear in the final

modulation equations, the Brunt–Väisälä frequency or

stratification measure N and the background density r.

They have to be calculated from the temperature by

solving

N2 5
1

T

�
dT

dz
1 1

�
, (5)
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�
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which originate from the hydrostatic assumption in

combination with the ideal gas equation of state.

With the given scale separation of background and

wave field, we can formulate the scaled two-dimensional

compressible NSE,

Dv

Dt̂
1 =̂p2Nbe

z
52«(Nb=̂p2N2pe

z
)1 «L=̂2v1 . . . ,

(7a)

Db

Dt̂
1Nw52«

�
N2 1

1

N

dN

dz

�
wb1 «L=̂2b1 . . . , (7b)

=̂ � v52«

�
N2 1

1

r

dr

dz

�
w1 . . . , (7c)

in terms of the wave-field variables, velocity v, buoyancy

Nb, and kinematic pressure p, where =̂5 (›/›x̂, ›/›ẑ)T
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and ez the unit vector pointing in the vertical direction;

D/Dt̂ denotes the material derivative, and L is the total

kinematic viscosity. The dots represent higher-order

terms that we do not give explicitly but must not be

neglected. The interested reader finds these terms in

Schlutow et al. [2017, their (2.19)].

Wentzel–Kramers–Brillouin (WKB) theory provides

us with a multiple-scale method to solve the scaled NSE

asymptotically by the spectral ansatz

U(x̂, ẑ, t̂; «)5U
0,0
(x, z, t)1 [U

0,1
(x, z, t)eif(x,z,t)/« 1 c.c . ]

1 h.h. 1O(«) , (8)

where c.c. stands for the complex conjugate and h.h. for

higher harmonics. The vectorU5 (v, b, p)T contains the

prognostic variables and f is the wave’s phase.

We want to give a remark at this point. By construc-

tion, the WKB ansatz is a nonlinear approach. In the

limit « / 0 the amplitudes are finite. In fact, the ansatz

converges to the nonlinear plane wave of Boussinesq

theory, which is known to be an analytical solution.

Mean-flow interaction and Doppler shift are leading-

order effects, which is in contrast to weakly nonlinear

theorywhere they appear as higher-order corrections. In

the « limit, the weakly nonlinear approach converges to

the linear plane wave.

The nonlinear WKB ansatz is inserted into the com-

pressible NSE and terms are ordered with respect to

powers of « and harmonics.

3. Governing equations: Grimshaw’s dissipative
modulation equations

To leading order of the nonlinear WKB analysis of

the NSE with the turbulence model of Lindzen one

obtains Grimshaw’s dissipative modulation equations

supported by a mean-flow horizontal kinematic pres-

sure gradient [Grimshaw 1974, their (4.1)–(4.6)]. Note

that the leading-order WKB analysis of the dissipative

pseudoincompressible equations (Durran 1989) lead to the

same modulation equations. We present them in slightly

different notation as Grimshaw and with the prerequisite

that thewave field is horizontally periodic (0, kx5 const)

and only modulated in the z direction,

›k
z

›t
1

›v

›z
5 0, (9a)

r
›a

›t
1

›v0ra
›z

52Ljkj2ra , (9b)

r
›u

›t
1

›v0k
x
ra

›z
52

›p

›x
. (9c)

The modulation equations govern the evolution of

vertical wavenumber kz, wave action density ra, and

mean-flow horizontal wind u. Equations (9a)–(9c) are

closed by

jkj2 5 k2
x 1 k2

z , (9d)

v5
Nk

x

jkj 1 k
x
u , (9e)

v0 52
Nk

x
k
z

jkj3 , (9f)

where k, v, and v0 represent the wavenumber vector,

extrinsic frequency, and vertical linear group velocity,

respectively. Note that primes denote derivative with

respect to the vertical wavenumber throughout this pa-

per. Extrinsic frequency is defined by the sum of intrinsic

frequency and Doppler shift. It is linked to the wave-

number vector by the dispersion relation for non-

hydrostatic gravity waves. It was shown in Schlutow

et al. (2017) that the modulation equations equally hold

for hydrostatic waves, where the horizontal wavelength

is much larger than the vertical, if the dispersion relation

is replaced by v 5 Nkx/jkzj 1 kxu. The prognostic var-

iables determine the asymptotic solution as described

in the previous section and explained in Schlutow

et al. (2017).

The first equation, (9a), essentially describes the

evolution of the phase in (8) as by definition =f [ k

and2›f/›t[ v. Cross differentiating these expressions,

they add up to zero. The second equation, (9b), governs

the conservation of wave action density being the ratio

of wave energy density and the intrinsic frequency. In

terms of the polarization relation the leading-order first

harmonics are computable via

U
0,1

5B

 
2i

k
z

k
x

v2 k
x
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N
, i
v2 k

x
u

N
, 1,2i

k
z

k2
x

(v2 k
x
u)2

N

!T

,

(10)

with B 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v2 kxu)a/2

p
the wave’s buoyancy ampli-

tude. The third equation, (9c), accounts for the accel-

eration of the mean flow.With a slight abuse of notation

(we drop the indices) we obtain the zero harmonics,

U
0,0

5 (u, 0, 0, p)T. (11)

The variable p corresponding to the mean-flow hori-

zontal kinematic pressure is unknown and needs addi-

tional investigation to close the system (9).

The governing equations, (9), can be reformulated in

vector form:

NOVEMBER 2019 S CHLUTOW 3329

Unauthenticated | Downloaded 10/03/22 02:49 PM UTC



›y

›t
1
›F(y)

›z
5G(y) , (12)

with a fluxF and an inhomogeneityGwhere y5 (kz, a, u)
T

is the prognostic vector.

4. General stationary solutions of the modulation
equations

In this section we will explore general stationary

solutions before we focus on particular solutions for

which we will present stability analysis in the up-

coming sections.

In the inviscid limit (i.e., L / 0), the modulation

equations assume stationary solutions where ›p/›x 5 0,

which can be computed analytically by a formula of

Schlutow et al. [2017, their (5.20)]. When we multiply

(9b) by kx and subtract (9c), we obtain

r
›

›t
(k

x
a2 u)5

›p

›x
2 k

x
Ljkj2ra . (13)

Thus, to be consistent with the inviscid limit,

the dissipative modulation equations assume sta-

tionary solutions only if the right-hand side of

(13) vanishes, which provides eventually a closure

for the mean-flow horizontal kinematic pressure

gradient,

›p

›x
5 k

x
Ljkj2ra . (14)

This result implicates that the mean-flow horizontal ki-

nematic pressure gradient balances the viscous forces

acting on the horizontal mean-flow wind. Such a flow

configuration is referred to as antitriptic flow in the lit-

erature (Jeffreys 1922).

Then a general stationary solutionY(z)5 (Kz,A,U)T

depicting a mountain lee wave fulfills

v(K
z
,U)5 0, (15)

›V0rA
›z

52LjKj2rA , (16)

U5U(z) , (17)

with jKj2 5K2
x 1K2

z andV0 5 v0(Kz). Note that we label

the stationary solution by capital letters. Given any well-

behaved, slowly varying mean-flow horizontal wind

U(z), the remaining two variables of the general sta-

tionary solution are given explicitly by

K
z
52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

U2
2K2

x

s
, (18)

A5
F
rV0 exp

 
2

ðz
0

LjKj2
V0 d~z

!
. (19)

with F being the vertical wave action flux at z 5 0.

5. Lindzen-type mountain lee wave and the wave-
Reynolds number

So far, we considered all background variables of

our governing PDE as functions of z. In this section

we will prescribe these functions in a piecewise fash-

ion in order to construct a typical mountain lee wave

that gets saturated by some small-scale instability

process comparable to Lindzen (1981). The com-

plete solution is divided into an unsaturated as well

as a saturated middle-atmospheric part and a deep-

atmosphere part.

a. The unsaturated middle-atmospheric solution

First, we assume that the background atmosphere is

piecewise isothermal. From (5), this assumption implies

that N 5 const, some typical value for the middle

atmosphere. Then (6) gives

r(z)5 r
0
e2z/H , (20)

where H 5 kN22 5 const denotes the dimensionless

(local) pressure scale height. Second, we assume that the

mean-flow horizontal wind is piecewise constant as well,

so U 5 const. These assumptions can be weakened,

which we will discuss in the concluding section 7. It

follows immediately by (18) and horizontal periodicity

that Kz 5 const making it a plane wave.

In the middle atmosphere viscosity is negligible.

Therefore, below the breaking height zbreak the integral

in (19) vanishes and the amplitude of the wave grows

exponentially with the inverse density,

A(z)5
A

0

r(z)
in [0, z

break
). (21)

Because of the vanishing dissipation, the mean-flow

horizontal kinematic pressure gradient also vanishes

according to (14).

b. The saturated middle-atmospheric solution

Above zbreak, the wave saturates by some small-scale

instability process producing turbulence, which balances

the anelastic amplification. The exact kinematic eddy

viscosity that keeps the amplitude leveled in (19), such

that A 5 const, is then given by

L5V0H21jKj22 5 const in [z
break

, z
turbo

). (22)
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In this region, the mean-flow horizontal kinematic

pressure gradient depends on z only by the background

density and can be computed inserting (22) into (14),

›P

›x
5K

x
H21V0Ar in [z

break
, z

turbo
). (23)

In particular, it is positive while the mean-flow horizontal

wind is negative, which can be seen from (9e) and (15).

c. The deep-atmosphere solution

The saturated middle-atmospheric solution is valid

below the turbopause at zturbo as in the heterosphere the

molecular viscosity dominates, which is modeled by a

constant dynamic viscosity mmol implying

L(z)5
m
mol

r(z)
in [z

turbo
, 1‘). (24)

In the deep-atmospheric region the integral in (19) has

also an analytic solution for A, which decays quickly for

z / 1‘. Here, typical values N and U for the deep at-

mosphere are used.

d. The wave-Reynolds number

In Fig. 1, such a prototypical mountain wave, which

saturates, is illustrated. By inspection of (22), its be-

havior in the different regions may be characterized by a

‘‘wave-Reynolds’’ number. It can be written as

V0H21jKj22

L
Y1. (25)

When reintroducing the dimensional variables by reversing

the nondimensionalization of Schlutow et al. (2017), so

H5
«

L
r

H
p
*, L5

r
r

m
r

n*, N5
L

r

y
r

N*, K5L
r
K*, (26)

and using the definitions (3), thewave-Reynolds number

reads

Re
wave

[
C

gz
D

n*
. (27)

The dimensional linear vertical group velocity is deno-

ted by Cgz and represents the velocity scale for this type

of Reynolds number. The termD5H*21
p jKj*22 defines

its length scale. Estimates of the wave-Reynolds number

in the different regions are depicted in Fig. 1.

6. Stability of the saturated wave

In this section we will investigate the saturatedmountain

wave with respect to stability. In particular, we are in-

terested in the region where Rewave 5 O(1) as here the

amplitude is at itsmaximumand one can expectmost likely

nonlinear behavior. We assess stability by analyzing the

evolution of small perturbations.Due to their smallness, we

can linearize the governing equations in vector form (12)

around the stationary solution Y. Applying the ansatz

y(z, t)5 ŷ(z)elt (28)

for the perturbation, results in an eigenvalue problem

(EVP):

ly1
›

›z

�
›F

›y

����
Y

y

�
5

›G

›y

����
Y

y , (29)

where we dropped the hat over y. The Jacobian matrices

of the flux and inhomogeneity evaluated atY are given by

›F

›y

����
Y

5

0
B@ V0 0 K

x

V00A V0 0

K
x
V00A K

x
V0 0

1
CA , (30)

›G

›y

����
Y

5

0
B@

0 0 0

H21V00A2 2LK
z
A 0 0

K
x
H21V00A2 2K

x
LK

z
A 0 0

1
CA . (31)

Note that the second and third row of each Jacobian

are linearly dependent. Hence, we can solve the third

equation of (29) for

u5K
x
a , (32)

which reduces the dimension of the system, so with a

slight abuse of notation, y 5 (kz, a)
T and

›F

›y

����
Y

5

�
V0 K2

x

V00A V0

�
, (33)

›G

›y

����
Y

5

�
0 0

H21V00A2 2LK
z
A 0

�
. (34)

If one assumes that the perturbation decays sufficiently

fast toward the edges of the region where Rewave5O(1)

(in Fig. 1 at 70 and 110 km), in other words, that the

edges have no influence on the perturbation, then one

can extend the domain to the infinities. Consequently,

we consider the differential operator associated with the

EVP as closed and densely defined on L2, the space of

vector valued square integrable functions on the real

line equipped with the norm

kyk
L2 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1‘

2‘

k2
z 1 a2 1 u2 dz

s
. (35)

In conclusion, we translated the problem of stability to

finding the spectrum of a linear operator of an EVP.
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Broadly speaking, the spectrum is the set of all l 2 C for

which the EVP has admissible solutions.

The EVP is solved by the Fourier transform

y5

ð1‘

2‘

~yeimzdm , (36)

which yields an algebraic equation

�
l1

›F

›y

����
Y

im2
›G

›y

����
Y

�
~y5 0. (37)

It has nontrivial solutions only if the coefficient matrix is

singular [det(M) 5 0], which happens if

(l1V0im)2 2K2
xA[(2LK

z
2H21V00)im2V00m2]5 0.

(38)

This characteristic polynomial has two zeros,

l
1,2
(m)52V0im6K

x

ffiffiffiffi
A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2LK

z
2H21V00)im2V00m2

q
,

(39)

which determine the spectrum of the linear operator of

the EVP as curves in the complex plane parameterized

by the spatial eigenvalue m, which can also be interpreted

as the vertical wavenumber of the perturbation. The real

part of l represents the instability growth rate, if it is

positive, and the imaginary part is a frequency. Thus, (39)

provides also a dispersion relation linking the perturba-

tion’s wavenumber with its frequency.

One can readily show that either l1 or l2 of (39) has

positive real part for reasonable wave solutions implying

that they are unconditionally unstable.We want to point

out that when H / ‘ and L / 0, (39) reduces to the

spectrum of the inviscid nonlinear Boussinesq plane

waves (Schlutow et al. 2019) having the classical mod-

ulational stability criterion V00 . 0 (Grimshaw 1977).

a. Transient (in)stability

In this subsection we want to investigate the charac-

teristics of the instability that is presented in the pre-

vious section. We put the ‘‘in’’ of the section title into

parentheses because there is the possibility that the

primary wave ‘‘survives’’ the instability. One particular

type of those harmless instabilities is called transient

instability. Despite the fact that the instability’s norm

grows exponentially in time, the instability vanishes at

each given point in space if one waits long enough.

To show such characteristics a prerequisite for math-

ematical rigor must be fulfilled: the linear differen-

tial operator of the EVP must be well-posed, which

means its spectrum has a maximum real part or, in other

words, the instability growth rate is bounded. The reader

finds this tedious verification in the appendix. We want

to give an interesting remark at this point. The ‘‘well-

posedness’’ depends on a criterion,V00 . 0, which turns

out to be equivalent to the modulational stability

criterion of plane waves in Boussinesq theory.

The key idea for transient instabilities (Kapitula and

Promislow 2013) is to ask for solutions of the EVP, (29),

in a weighted space L2
a with a 2 R an exponential

weight, such that

kyk
L2
a
5 kyeazk

L2 . (40)

Doing so, we get the same curves as in (39) but with

im / im 2 a, so

la
1,2(m)52V0(im2a)6K

x

ffiffiffiffi
A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2LK

z
2H21V00)(im2a)1V00(im2a)2

q
. (41)

When we choose

a,
1

2

2LK
z
2H21V00ffiffiffiffiffiffi

V00p
V0 1V00 , 0, (42)

provided V00 . 0 the spectrum is stabilized, so

Re(la
1,2)# 0 for all m 2 R. The negative exponential

weight penalizes solutions at 2‘. To converge in the

weighted norm, the perturbation in L2 must therefore

FIG. 1. Schematic of a saturated plane mountain lee wave (thin

gray line) with amplitude profile (thick black line) and effective

kinematic viscosity (thick blue line) being characterized by the

wave-Reynolds number.
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decay exponentially at 2‘ for all times. But simulta-

neously, itsL2 norm grows exponentially in time. This

seeming paradox resolves when the perturbation

propagates sufficiently fast toward 1‘ (i.e., upward).

Perturbations of this behavior are called transient

instabilities (Sandstede and Scheel 2000). For illus-

trative purpose, the unweighted and weighted spec-

trum of an example wave, which we will discuss

in more detail in the following section, are plotted

in Fig. 2.

b. Numerical investigation of the transient instabilities

We use the finite-volume numerical solver presented

in Schlutow et al. (2019) for the governing equations,

(9), to compute the evolution of a tiny Gaussian initial

perturbation of the saturated wave in the region where

Rewave 5 O(1). The results are shown in Fig. 3. The

simulation is set up by N 5 1 and Kx 5 1. We discretize

the equations on 2000 grid points in z and integrate in t

over 6000 time steps. As can be seen in the figure, the

perturbation amplifies exponentially and propagates to

the right (i.e., upward), as theory suggests. We can also

observe that the perturbation’s wavelength compares

with the scale height. Or in other words the instability

varies on the large scale. The corresponding spectra

to this case as computed by (39) and (41) are plotted

in Fig. 2. The amplitude and the vertical wavenumber

undergo strong modulations due to the exponentially

growing perturbation. Furthermore, the initially con-

stant mean-flow horizontal wind experiences acceler-

ation. The analytic maximum instability growth rate

according to (A6) is 2.2 for this particular case. In

terms of an approximated L2 norm that we compute

numerically, the actual growth rate of the Gaussian

perturbation is found to be 1.6. The difference be-

tween theoretical and observed rate occurs because

the perturbation is not optimal.

7. Summary and discussion

In this paper we investigated nonlinear mountain

waves, which are governed by Grimshaw’s dissipative

modulation equations being asymptotically consis-

tent with the compressible Navier–Stokes equations

and the dissipative pseudoincompressible equations

likewise.

We introduced a wave-Reynolds number charac-

terizing the stationary solution. When this dimen-

sionless quantity is of order unity, the wave amplitude

saturates by small-scale instabilities and assumes a

maximum as anelastic amplification by the thinning

background air is exactly balanced by the turbulent

damping. We analyzed this regime with respect to

modulational stability as nonlinearities dominate

for large-amplitude waves. It turned out that transient

instabilities emerge that propagate upward. We tested

this analysis solving the modulation equations nu-

merically and found excellent agreement with the

theory.

In the framework of saturated nonlinear wave theory,

which we presented in this paper, the saturated moun-

tain wave does initially not accelerate the mean-flow

horizontal wind. Instead, a mean-flow horizontal kine-

matic pressure gradient emerges that keeps the hori-

zontal wind constant by balancing the viscous forces.

The wave persists structurally and loses energy directly

to turbulence, which in turn damps altitudinal amplifi-

cation. Eventually, the mean flow is accelerated by a

FIG. 2. (a) Unstable spectrum (blue lines) inL2 and (b) stable spectrum in the exponentially

weightedL2
a for the saturatedwave of Fig. 3. The exponential weight is the largesta as defined

by (42).
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transient instability in the saturation zone propagating

upward while growing and transferring kinetic energy to

the mean flow.

Our investigations have two implications being of in-

terest for gravity wave parameterizations in numerical

weather prediction and climate modeling. First, the

induced mean flow behaves wavelike. Its evolution

is governed by a dispersion relation for the linear pertur-

bation. In conclusion, it may be interpreted as an

upward-traveling secondary wave of larger scale than

the primary wave. Secondary waves with wavelengths

comparable to the primary modulation scale were in-

vestigated by Vadas and Fritts (2002), Vadas et al.

(2003), and Becker and Vadas (2018). The authors

propose a generating mechanism based on body forces

produced by the dissipating primary wave. In contrast to

this model, our secondary wave is generated by direct

wave–mean-flow interaction that compares to Wilhelm

et al. (2018).

Second, this novel picture of saturatedmountain waves

may explain the bias between the onset of small-scale

instability and the actually observed mean-flow accel-

eration (Achatz 2007). We give an extension to the es-

tablished picture where waves become unstable at the

breaking height and deposit their momentum and en-

ergy onto themean flow at this level. As it turns out, only

in combination with modulational instability does an

initially saturated nonlinear wave induce a mean flow.

This modulational instability has its own transient ve-

locity and growth rate, which we can compute explicitly.

Then the mean-flow acceleration depends on these two

quantities.

In our derivations we assumed piecewise analytic so-

lutions being matched. This assumption can be weakened

to almost arbitrary background, fulfilling hydrostatics and

the ideal gas law, as well as almost any mean-flow hori-

zontal wind. However, these functions of height must be

restricted to converge to constant values at the infinities.

The resulting spectrum describing the temporal evolution

of the perturbation would bemuchmore complicated but

still analytically assessable by Fredholm operator theory

(Schlutow et al. 2019). In conclusion, our results are valid

in a much more realistic atmosphere.
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APPENDIX

Well-Posedness: Are the Instability Growth Rates
Finite?

In this appendix we demonstrate that the linear dif-

ferential operator of the EVP, (29), is well-posed. This

property is essential for existence, uniqueness and

continuous dependency of the solution for the per-

turbation on the initial data. In section 6 we showed

that the spectrum of the operator extents into the

right half of the complex plane rendering the

FIG. 3. Numerical corroboration of the governing equations, (9). Evolution of an initial

Gaussian perturbation of the saturated wave centered at 78 km (blue lines).
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saturated wave unconditionally unstable. But is the

spectrum bounded from above on the real axis? Let

us denote the discriminant of the square root ap-

pearing in l1,2 of (39) by DY(m). The real part being

the instability growth rate may be expressed by

Re(l
1,2
(m))56K

x

ffiffiffiffi
A

p jD
Y
(m)j1/2 cos

�
1

2
arg(D

Y
(m))

�
,

(A1)
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(m)j1/2 5 jmj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The functionRe(l1,2(m)) has no poles. Thus, we are only

concerned with its behavior at the infinities. We have

jD
Y
(m)j1/2 5O(jmj) as m/6‘ , (A4)

cos
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2
arg(D

Y
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�
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8><
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Therefore,

Re(l
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(m))/

8><
>:

6‘ , V00 , 0

6
1

2

2LK
z
2H21V00ffiffiffiffiffiffi
V00p , V00 . 0

as m/6‘ . (A6)

In conclusion the operator is well-posed (Kapitula and

Promislow 2013) if V00 . 0 and ill-posed otherwise.
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