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Should We Expect Each Year in the Next 
Decade (2019–28) to Be Ranked among the 
Top 10 Warmest Years Globally?
Anthony Arguez, Shannan Hurley, Anand Inamdar, Laurel Mahoney, Ahira Sanchez-Lugo, 
and Lilian Yang

A nnual rankings of global temperature are widely cited by media and the general public, 
not only to place the most recent year in a historical perspective, but also as a first-
order metric of recent climate change that is easily digestible by the general public. 

According to observations from NOAA’s Merged Land Ocean Global Surface Temperature 
Analysis Dataset (NOAAGlobalTemp) 5.0, the year 2018 was the fourth warmest year on record 
globally since 1880 (see Table 1). The most recent 5 years in the record (2014–18) comprise 
the 5 warmest years on record, with 2016 currently ranking as the warmest year. Given this 
streak of record or near-record global warmth in recent years, should we expect each year in 
the next decade (2019–28) to be ranked among the top 10 warmest years globally? In other 
words, given historical observations (including the most recent ones), can we assume that 
near-record annual rankings are already “baked into the cake” for the next several years?.

To answer these questions, we analyze the monthly version of NOAAGlobalTemp to select 
a methodology for projecting the end-of-year (i.e., “monitoring year”) annual global ranking 
as well as the rankings for the subsequent 9 years (i.e., years 2–10 or “outlook years”). We 
utilize autoregressive modeling with and without extension of the long-term trend, and also 
consider an adjustment based on real-time ENSO conditions. In addition, to address the pro-
pensity for virtually every recent year to be ranked (at least initially) as a top 10 warmest year, 
we introduce a “temperature score” product that will allow NOAA to better communicate the 
coolness or warmth of a recent year versus the long-term trend. To the best of our knowledge, 
no such projected ranking or temperature score products are currently produced operation-
ally by any other major climate monitoring center around the world, nor are we aware of any 
research documenting the global annual ranking errors associated with projected rankings 
of any type. It is our expectation that these new tools will improve the communication of 
climate change impacts to the general public.
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Methodology
Data. We utilize the monthly operational version of global surface temperature time series 
produced by the NOAAGlobalTemp analysis. NOAAGlobalTemp includes land-based near-
surface air temperatures from the Global Historical Climatology Network Monthly dataset 
(GHCN-M; version 4.0.1) and sea surface temperatures (SSTs) from the Extended Reconstructed 
Sea Surface Temperature dataset (ERSST; version 5). The operational monthly time series are 
accessible online.1 Prior to mid-2019, the operational version of NOAAGlobalTemp was based 
on GHCN-M version 3.3.0 and ERSST version 4. We repeated our analyses using this previous 
operational version of NOAAGlobalTemp, and the results were virtually indistinguishable 
from those presented here. We also utilize the oceanic Niño 
index (ONI), a 3-month running average of SST anomalies in 
the Niño 3.4 region. The current operational version of ONI is 
produced by NOAA’s Climate Prediction Center using ERSST, 
version 5, and is also accessible online.2

Projected rankings. The purpose of our experiment is to select a projected ranking algorithm 
for operational use. We begin by utilizing the monthly global land-only and ocean-only 
NOAAGlobalTemp time series from January 1975 through December 2018. We chose the 1975–
2018 period of record because it provides a 40+-yr baseline for estimating month-to-month 
fluctuations that are likely to be representative of real-time fluctuations, given the largely 
unabated and stable upward trend since the mid-1970s. Moreover, all annual NOAAGlobal-
Temp anomalies from 1880 (the earliest reading 
available) through the mid-1970s are well below 
anomalies of the top 10 warmest years in Table 
1, even when considering the uncertainty of 
the NOAAGlobalTemp time series values. Our 
results exhibit improved performance when 
modeling the land-only and ocean-only series 
separately and subsequently merging the simu-
lations (using effective land–ocean proportions 
of 27.4%/72.6% as derived from the 1975–2018 
time series) versus modeling the merged 
land+ocean time series; only this bifurcated 
modeling approach is considered henceforth.

The period 1999–2018 is used as a 20-yr 
reforecasting period over which we calculate 
various error statistics compared to observed 
annual global temperature rankings and 
anomalies; these error statistics will provide 
the basis for selecting which algorithm to use 

1 www.ncei.noaa.gov/data/noaa-global-sur face 

-temperature/access/operational/timeseries
2 www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt

Table 1. The 10 warmest years on record (1880–2018) in 
the NOAAGlobalTemp dataset. Anomalies (°C) are relative 
to the 1971–2000 base period. The running ranking is the 
ranking based on the period of record from 1880 through 
the year in question. The temperature score (a measure 
of relative annual warmth or coolness) is based on the 
1975–2018 period.

Ranking Year Anomaly
Running 
ranking

Temperature 
score

1 2016 0.675 1 10

2 2015 0.615 1 10

3 2017 0.590 3 9

4 2018 0.507 4 5

5 2014 0.423 1 4

6 2010 0.409 1 7

7 2013 0.359 2 2

8 2005 0.355 1 8

9 1998 0.340 1 10

10 2009 0.330 3 4
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from a handful of options. For each monthly prediction step in the 240-month (i.e., 20 year) 
reforecasting period, residuals are calculated by removing the ordinary least squares (OLS) 
trend from the monthly (land only or ocean only) NOAAGlobalTemp anomalies from January 
1975 through the most recent month of observed data. This is a necessary step because of 
the nonstationarity of the global monthly temperature record. Following a Monte Carlo ap-
proach with 10,000 simulations per scenario (i.e., prediction month), the projected residuals 
of 1 to 120 months are then computed via autoregressive (AR) modeling using the Bayesian 
information criterion. For example, simulations for January 1999 through December 2008 
are based on NOAAGlobalTemp residuals from January 1975 through December 1998; in this 
example, December 1998 represents the most recent month of observed data, which would 
have become available operationally in January 1999. This overall Monte Carlo simulation 
approach is repeated for each monthly time step from January 1999 through December 2018.

Three different variations of this methodology are examined. In the first case, denoted 
“AR without trend extension,” we add back in the OLS trend for observed years without 
extending the trend through future values, effectively imposing a mean trend of zero over 
the 10-yr forecast period. In the second case, denoted “AR with trend extension,” the trend 
line is extended through future values, effectively assuming that the mean observed trend 
continues at the same rate during the 10-yr forecast period. Comparing the results from these 
two cases allows us to characterize the skill associated with the trend itself. Following the 
example above with data through December 1998, the AR without (with) trend extension 
approach determines residuals from the OLS trend from January 1975 through December 
1998, simulates month-to-month evolutions for January 1999 through December 2008 via 
autoregressive analysis of these residuals, and adds back the OLS trend without (with) 
extending the trend through the January 1999 to December 2008 period. Last, we also test 
the “AR+ENSO” case, which is equivalent to the AR with trend extension approach, but 
offset by an adjustment to the simulated residuals based on the most recent ONI value(s). 
This adjustment is determined by correlation analysis, which shows maximal correlation 
between the most recent ONI value and the running mean of NOAAGlobalTemp residuals at 
lags of 1–4 months.

The land-only and ocean-only simulations are then merged into land+ocean simulations. 
Annual averages and rankings are then computed from the monthly simulations (plus ob-
served months for the monitoring year) and are compared to the observed averages/rankings 
for 1999–2018. From these differences, we compute the mean absolute rank errors and the 
mean absolute simulation (temperature) errors for each of the three cases and for various 
lead time ranges. The 95% prediction intervals are also reported, from which we calculate 
the prediction interval accuracy and the average prediction interval widths.

Previous studies (see Additional resources) have shown that, in addition to ENSO, the 
Arctic Oscillation (AO) and the Atlantic multidecadal oscillation (AMO) can contribute 
to suitable reconstruction of global surface temperatures. However, the effects are small 
over the 1975–2018 period, especially as compared to ENSO’s impact. Their effects, along 
with the episodic effects associated with major volcanic eruptions, are only indirectly ac-
counted for in our methodology in that the autoregressive relationships are influenced by 
these factors. Moreover, other recent studies have shown that simple autoregressive-based 
modeling of detrended residuals of annual U.S. and global time series produce robust 
estimates for quantifying ranking uncertainties. Therefore, we only consider the NOAA-
GlobalTemp and ONI series in the present investigation, which is adequate for modeling 
global annual rankings.

In this study, we are focused on the “running ranking,” which we define as the ranking an 
individual year attains when it is first ranked versus all prior years (see Table 1). For example, 
the year 1998 was at one point in time the warmest year on record, and therefore registered a 
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running ranking of 1 using data through 1998, although its record has been eclipsed several 
times and exhibits a “retrospective ranking” of 9 using the current operational dataset through 
2018. Similarly, our results are a snapshot given the existing methodology used to effectuate 
NOAAGlobalTemp. While we expect the algorithm’s performance to be largely independent of 
any changes made to the way that NOAAGlobalTemp (or any other annual global temperature 

Fig. 1. (a)–(j) Monthly evolution of the median projected ranking (solid gray curve) and the 95% 
prediction interval (dashed gray curve) during the monitoring year for individual years between 
2009 and 2018. The month indicates the month during which the projection was performed 
using monthly data through the previous month. The black tick mark indicates the observed 
end-of-year ranking.
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time series) is calculated, we do envision monitoring the algorithm’s performance and propos-
ing future fine tuning of the algorithm if warranted.

Annual temperature scores. Since virtually all newly ended years since 1988 would have 
had a top 10 running ranking, it would be useful to distinguish between warmer and colder 
years relative to the sustained long-term trend for communicating climate monitoring im-
pacts. For example, the years 2008 and 2011 were considerably cooler than surrounding 
years and below the overall trend line, whereas 1998 and 2016 were not only considered 
the warmest years on record when first reported, but their values were also warmer than 
surrounding years. We propose a simple new annual “temperature score” algorithm that 
provides such context of natural variability relative to long-term trends, and complements 
the associated ranking.

First, the OLR trend was removed from the annual land+ocean NOAAGlobalTemp time series 
from 1975 to 2018 to identify residuals. These residuals are then divided by the group standard 
deviation to arrive at values analogous to standard scores (or z scores). Finally, these standard 
scores are transformed to a scale from 1 to 10, such that each score had a 10% probability of 
occurrence based on the cutoff values of the Gaussian distribution. These temperature scores 
provide a real-time perspective relative to the long-term trend, with a value of 1 representing 
a very cold year and a value of 10 representing a very warm year.

Table 2. Skill statistics associated with the AR without trend extension, AR with trend extension, 
and AR+ENSO approaches based on a 1999–2018 reforecasting period.

Lead time → Year 1 (months)
Year 2 Year 5 Year 10

Method Statistics ↓ 1–3 4–6 7–9 10–12

AR without trend 
extension

Mean absolute rank 
error

0.4 0.6 1.1 1.2 1.8 2.6 5.9

Mean absolute simula-
tion error (°C)

0.011 0.019 0.033 0.048 0.067 0.103 0.156

Prediction interval  
accuracy (%)

98.3 100.00 100.0 100.0 98.2 93.8 90.9

Average prediction 
interval width

1.8 4.1 6.4 9.0 10.9 14.3 18.4

AR with trend 
extension

Mean absolute rank 
error

0.4 0.6 1.1 1.2 1.8 2.1 2.2

Mean absolute simula-
tion error (°C)

0.011 0.019 0.033 0.046 0.065 0.078 0.084

Prediction interval  
accuracy (%)

98.3 100.0 100.0 100.0 100.0 100.0 100.0

Average prediction 
interval width

1.8 4.1 6.3 8.6 10.0 11.1 10.8

AR+ENSO

Mean absolute rank 
error

0.4 0.7 0.9 1.1 1.8 2.1 2.2

Mean absolute simula-
tion error (°C)

0.011 0.021 0.036 0.055 0.065 0.079 0.084

Prediction interval  
accuracy (%)

98.3 100.0 100.0 100.0 100.0 100.0 100.0

Average prediction 
interval width

1.9 4.3 6.7 9.0 10.1 11.1 10.9
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Results
Projected rankings. During the monitoring year, all three methods perform similarly (see 
Table 2). While the AR+ENSO approach appears to slightly outperform in terms of rank errors 
during lead times of 7–12 months, that is, January–June of the monitoring year, the differ-
ences are not statistically significant. Similarly, the AR with trend extension approach (and 
the AR without trend extension approach to a lesser extent) appears to slightly outperform 
the AR+ENSO approach in terms of simulation error and prediction interval width, but again 
the differences are not statistically significant.

During outlook years, there are no appreciable differences between the AR+ENSO and the 
AR with trend extension approaches. The mean absolute rank errors remain near 2.0 from lead 
times of 2–10 years, whereas the mean absolute simulation errors vary from about 0.065°C 
at year 2 to about 0.084°C at year 10. However, both of these methods far outperform the AR 
without trend extension approach for years 5 through 10, suggesting a high degree of predict-
ability associated with extrapolation of the instantaneously determined trend. By year 10, 
the mean absolute rank error of the AR without trend extension approach is 5.9 and the mean 
absolute simulation error is about 86% higher than in the other approaches. Moreover, even 
as the prediction intervals widen considerably with lead time, the accuracy of the prediction 
intervals degrades with an error rate of ~6% at year 5 and ~9% at year 10, whereas the ap-
proaches with extrapolation retain an error rate at or near 0%.

Figure 1 shows the evolution of projected (median) rankings and the prediction interval 
during the monitoring year for 2009–18 for the AR with trend extension approach. In half 
of the cases, the expected (median) end-of-year ranking was correctly forecast at lead times 
of 9–12 months. The observed end-of-year ranking fell within the prediction interval, and 
matched the projected ranking determined in December (using data through November), in 
all cases but one: December 2012. This case was associated with a rather large month-over-
month change of about −0.3°C from November to December 2012.

Annual temperature scores. 
Figure 2 shows the annual tem-
perature scores for the globe 
from 1975 to 2018. Notably, the 
very strong El Niño events of 
1982/83, 1997/98, and 2015/16 
are associated with temperature 
scores of 10 (in 1983, 1998, and 
2016, respectively), indicating 
exceptionally warm years rela-
tive to the trend. In contrast, the 
strong La Niña events of 2007/08 
and 2010/11 are both associated 
with temperature scores of 1 (in 
2008 and 2011, respectively). Al-
though 2008 and 2011 were cold 
years relative to the trend, they 
were over 0.2°C warmer than 
1983 (which exhibits a running 
ranking of first warmest and 
temperature score of 10) and 
are warmer than all years prior 
to 1998. More recently, the years 

Fig. 2. Global annual temperature scores based on the annual NOAA-
GlobalTemp time series from 1975 to 2018. The ordinate indicates the 
NOAAGlobalTemp anomaly relative to the 1971–2000 base period. The 
inscribed value indicates the temperature score. Blue shading indicates 
“cool” scores from 1 to 4, gray shading indicates “near neutral” scores 
from 5 to 6, and red shading indicates “warm” scores from 7 to 10. The 
dashed line indicates the OLS regression line from 1975 to 2018.
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2014 and 2013 were initially ranked as the first and second warmest years on record, yet their 
corresponding temperature scores are 4 and 2, respectively, both lying on the colder side of 
the trend line. Thus, Fig. 2 graphically demonstrates how what we consider to be a “warm 
year” or “cold year” has changed over time.

We performed sensitivity analysis of the temperature score metric to determine whether 
the metric is stable. This was verified by repeating the temperature score calculation incre-
mentally over the last 20 years (1999–2018). Thus, the temperature score for 1999 was com-
puted 20 times—first using data from 1975 to 1999, then 1975 to 2000, and so forth through 
the 1975–2018 computation—whereas only one temperature score was computed for 2018, 
with a linearly decreasing sample size in between years 1999 and 2018. Overall, the median 
absolute year-over-year score difference is ~0.15. Moreover, no year-over-year temperature 
score change exceeds ±1, and no individual year’s score range over the 1999–2018 test period 
is greater than 2, suggesting that the temperature score metric is indeed rather stable.

Discussion and conclusions
Based on our results, we propose using the AR with trend extension approach operationally 
for characterizing the annual ranking probabilities during the course of the monitoring year 
as well as for the outlook years. Projections of the next ten years using NOAAGlobalTemp 
data through December 2018 suggest a greater than 99% (a 75.3%) probability that most (all) 
of the years between 2019 and 2028 will also be top 10 warmest years (see Table 3) under the 
“running ranking” perspective. Notably, even when utilizing the AR without trend extension 
method, the results indicate a strong likelihood that most (>99% probability) of these years 
will be among the top 10 warmest years, and there is an 82.0% probability that all 10 years 
will rank in the top 15 warmest years. Thus, accounting for historical month-to-month vari-
ability in global surface temperatures, it would likely take an abrupt climate shift for even a 
few years within the next decade to register outside the top 10 warmest years. This is a testa-
ment to the exceptional warmth experienced over the last few decades, punctuated by the 
last 4 years (2015–18), which have separated themselves from “the pack.”

Although global temperatures are generally trending upward over the past several decades 
(exhibiting a high signal-to-noise ra-
tio), there are still meaningful fluctu-
ations of global surface temperature 
associated with natural variabil-
ity and variations in anthropogenic 
forcing, especially over decadal or 
intradecadal periods (lower signal-
to-noise ratio). Given the strong 
likelihood for future years to remain 
near record levels, we recommend 
that global monitoring analyses 
incorporate the temperature score 
to better communicate the differen-
tiation of warmer and colder years 
relative to the long-term trend. Taken 
in tandem, the new approaches for 
temperature scores and projected 
rankings provide the general public 
with additional context for charac-
terizing recent and expected global 
temperature conditions.

Table 3. Projected (median) rankings for 2019–28 based on the NO-
AAGlobalTemp dataset from 1975 to 2018 for the AR without trend 
extension and AR with trend extension methods. The 95% prediction 
intervals are indicated by the 2.5% and 97.5% levels of the Monte 
Carlo simulations.

Year

AR without trend extension AR with trend extension

 2.5% 
level Median

97.5% 
level

 2.5% 
level Median

97.5% 
level

2019 1 4 7 1 4 7

2020 1 5 8 1 4 8

2021 1 5 10 1 4 9

2022 1 6 12 1 4 9

2023 1 6 13 1 4 9

2024 1 7 14 1 4 10

2025 1 7 15 1 4 11

2026 1 8 16 1 3 12

2027 1 8 17 1 3 12

2028 1 9 18 1 3 13
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Additional resources
For examples of global annual temperature rankings utilized in climate monitoring reporting 
and in general media, see NOAA (2019) and Schwartz and Popovich (2019), respectively. The 
description of NOAAGlobalTemp and its constituent components can be found in Vose et al. 
(2012), Menne et al. (2018), Huang et al. (2017), Lawrimore et al. (2011), Huang et al. (2015), 
Liu et al. (2015), and Huang et al. (2016). More information about the Niño 3.4 region (used to 
construct the ONI) is given in Bamston et al. (1997). For more information on the stability of 
the upward trend in the global annual temperature time series since the mid-1970s, please 
see Karl et al. (2015) and Lewandowsky et al. (2015). Arguez et al. (2013) analyze the effects of 
statistical uncertainty on global annual temperature rankings, including comparisons with 
other major datasets. For more information regarding standard autoregressive modeling with 
the Bayesian information criterion, please consult Wilks (2006). Folland et al. (2013, 2018) 
describe how ENSO, AO, AMO, volcanic eruptions, and other factors contribute to suitable 
reconstruction of global surface temperatures time series. Guttorp and Kim (2013) and Arguez 
et al. (2013) show that autoregressive-based modeling provides accurate and robust estimates 
of ranking uncertainties for U.S. and global temperature time series, respectively. Santer et 
al. (2011) quantify the impact of time scale on signal-to-noise ratios of air temperature.
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