Global Oceans is a chapter from the *State of the Climate in 2020* annual report. This chapter is available from https://doi.org/10.1175/ BAMS-D-21-0083.1. Compiled by NOAA's National Centers for Environmental Information, *State of the Climate in 2020* is based on contributions from scientists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instruments located on land, water, ice, and in space. The full report is available from: https://doi.org/10.1175/2021BAMSStateoftheClimate.1.

How to cite this document:

Citing the complete report:

Citing this chapter:

Citing a section (example):
3. Table of Contents

List of authors and affiliations ... S146
a. Overview .. S149
b. Sea surface temperatures ... S150
Sidebar 3.1: The 2019–20 northeast Pacific marine heatwave S154
c. Ocean heat content .. S156
d. Salinity ... S159
 1. Introduction .. S159
 2. Sea surface salinity .. S160
 3. Subsurface salinity .. S162
e. Global ocean heat, freshwater, and momentum fluxes S164
 1. Surface heat fluxes ... S166
 2. Surface freshwater fluxes .. S167
 3. Wind stress .. S168
 4. Long-term perspective .. S168
f. Sea level variability and change ... S169
g. Surface currents ... S172
 1. Pacific Ocean .. S173
 2. Indian Ocean ... S174
 3. Atlantic Ocean .. S175
h. Meridional overturning circulation and heat transport in the
 Atlantic Ocean .. S176
i. Global ocean phytoplankton ... S179
Sidebar 3.2: Ocean acidification status in Pacific Ocean surface seawater in 2020 S184
j. Global ocean carbon cycle ... S185
 1. Introduction .. S185
 2. Air–sea carbon dioxide fluxes .. S186
 3. Large-scale carbon changes in the ocean interior S189
Acknowledgments .. S190
Appendix 1: Chapter - 3 Acronyms .. S191
References .. S193

*Please refer to Chapter 8 (Relevant datasets and sources) for a list of all climate variables and datasets used in this chapter for analyses, along with their websites for more information and access to the data.
3. GLOBAL OCEANS
G. C. Johnson and R. Lumpkin, Eds.

a. Overview—G. C. Johnson and R. Lumpkin

This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form:

La Niña arrives,
shifts winds, rain, heat, salt, carbon:
Pacific—beyond.

Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.

Marine heatwave strikes
northeast Pacific again,
twice in past decade

Anomalously warm SSTs were especially prominent and persistent in the northeast Pacific, coincident with relatively fresh SSS anomalies, both increasing surface buoyancy and strengthening upper-ocean stratification in the remarkable 2019–20 northeast Pacific marine heatwave (MHW; see Sidebar 3.1). The warm SSTs there were over 2 standard deviations above normal in the second half of 2020, on par with the Blob’s peak magnitudes of 2013–15, and were associated with ocean heat loss to the atmosphere in 2020. As SSTs rise, MHWs are likely to increase in size, magnitude, and duration, which brings us to long-term context.

Over the decades,
seas rise, warm, acidify,
Earth’s climate changes.

Global average SST was 0.39°C above the 1981–2010 average and the third-warmest year on record behind 2016 and 2019, consistent with El Niño years being anomalously warm and La Niña years being anomalously cool, relative to an overall warming trend of 0.10 ± 0.01°C decade⁻¹ from 1950 to 2020. Global ocean heat content trends are generally steadier than those of SST, with four out of five analyses indicating a record high for 2020 in the 0–700-m and all five indicating a record high in the 700–2000-m layers, and a total heat increase from 2019 to 2020 in those two layers of 9.3 ± 6.2 ZJ (10²¹ Joules), entirely consistent with the long-term (1993–2020) trend of 0.58 to 0.78 W m⁻² of excess heat energy applied to the surface area of Earth. While the strength of the Atlantic meridional overturning circulation exhibits no significant trends in the North Atlantic,
A blended satellite/in situ analysis suggests a long-term (1993–2020) strengthening of the South Atlantic subtropical gyre since 1993, consistent with warming in that basin. Global mean sea level was also at a record high in 2020, 91.3 mm above the 1993 mean, with a linear trend of 3.3 ± 0.4 mm yr$^{-1}$, and a statistically significant acceleration from 1993 to 2020. Anthropogenic carbon storage in the ocean was estimated at 3.0 Pg C yr$^{-1}$ in 2020, somewhat above the 1999–2019 average of 2.33 ± 0.52 Pg C yr$^{-1}$.

b. Sea surface temperatures—B. Huang, Z.-Z. Hu, J. J. Kennedy, and H.-M. Zhang

Sea surface temperature (SST) and its uncertainty over the global oceans (all water surfaces including seas and lakes) in 2020 are assessed using four updated products of SST. These products are the Extended Reconstruction Sea Surface Temperature version 5 (ERSSTv5; Huang et al. 2017, 2020), Daily Optimum Interpolation SST version 2.1 (DOISST; Huang et al. 2021), and two U. K. Met Office Hadley Centre SST products (HadSST.3.1.1.0 and HadSST.4.0.0.0; Kennedy et al. 2011a,b, 2019). SST anomalies (SSTAs) are calculated for each product relative to its own 1981–2010 climatology. ERSSTv5 uses averages of 500-member ensembles at monthly $2^\circ \times 2^\circ$ resolution; HadSST.3.1.1.0 and HadSST.4.0.0.0 use medians of 100-member ensembles at monthly $5^\circ \times 5^\circ$ resolution; and DOISST has daily $0.25^\circ \times 0.25^\circ$ resolution. Magnitudes of SSTAs are compared against SST standard deviations over 1981–2010.

Averaged over the global oceans, ERSSTv5 analysis shows that SSTAs decreased slightly, but not statistically significantly, by $0.02^\circ \pm 0.02^\circ$C, from $0.41^\circ \pm 0.02^\circ$C in 2019 to $0.39^\circ \pm 0.01^\circ$C in 2020. ERSSTv5 uncertainties are determined by a Student’s t-test using a 500-member ensemble with randomly drawn parameter values within reasonable ranges in the SST reconstructions (Huang et al. 2015, 2020).

Annually averaged SSTAs in 2020 (Fig. 3.1a) were mostly above average, between $+0.5^\circ$C and $+1.5^\circ$C across much of the North Pacific, between $+0.2^\circ$C and $+0.5^\circ$C in the western South Pacific, and between -0.2°C and -0.5°C in the eastern tropical Pacific. In the Atlantic, SSTAs were between $+0.2^\circ$C and $+1.0^\circ$C except south of Greenland (-0.2°C), a pattern linked to a slowdown in the Atlantic meridional overturning circulation (AMOC; Caesar et al. 2018). In the Indian Ocean, SSTAs were $+0.5^\circ$C north of 25°S and between -0.2°C and -0.5°C in the western South Indian Ocean. Along the Arctic coasts, SSTAs were between $+0.5^\circ$C to $+1.0^\circ$C.

In comparison with averaged SST in 2019 (Fig. 3.1b), the averaged SST in 2020 increased by approximately $+0.5^\circ$C in the North Pacific between 30°N and 45°N, the Indo-Pacific surrounding the Maritime Continent, the central South Pacific near 30°S, the western equatorial and tropical North Atlantic, the western North Atlantic near 45°N, and the coasts of the Arctic in the Euro-Asia sector. In
contrast, the SST decreased by approximately −0.5°C in the equatorial tropical Pacific, the western and eastern South Pacific, the North Pacific and the Arctic regions surrounding Alaska, the western Indian Ocean, the North Atlantic regions surrounding Greenland, and the South Atlantic near 30°S. These SST changes are statistically significant at the 95% confidence level based on an ensemble analysis of 500 members.

The cooling in the tropical Pacific is associated with the transition from a weak El Niño in 2018–19 to a moderate La Niña in 2020–21 (see section 4b). The La Niña cooling started to be visible in June–August (JJA; Fig. 3.2c) and continued strengthening throughout September–November (SON; Fig. 3.2d). The near-uniform SSTAs in the Indian Ocean resulted in a near-neutral Indian Ocean dipole (IOD; Saji et al. 1999; see section 4f), in contrast to the strongly positive IOD index seen in late 2019. The Atlantic Niño index (Zebiak 1993) dropped dramatically from +1.5°C in 2018–19 to +0.2°C in the latter half of 2020, indicating a transition from a strong Atlantic Niño in 2018–19 to more neutral conditions.

For the seasonal mean SSTAs in 2020, in most of the North Pacific, SSTAs were +0.2° to +1.0°C (+1 to +2 std. dev.) in December–February (DJF) and March–May (MAM) (Figs. 3.2a,b). The anomalies increased to as high as +2.0°C (+2 std. dev.) in JJA and SON (Figs. 3.2c, d). In contrast, in the tropical and eastern South Pacific, SSTAs were small in DJF and MAM, and decreased to −0.5° to −1.0°C (−1 std. dev.) in JJA and SON. In the western South Pacific, SSTAs decreased from +1.5°C (+2 std. dev.) in DJF to +1.0°C in MAM and +0.5°C in JJA and SON. The pronounced SSTAs in the North Pacific in JJA and SON (Sidebar 3.1; Scannell et al. 2020) and in the western South Pacific east of New Zealand

Fig. 3.2. Seasonally averaged SSTAs of ERSSTv5 (°C; shading) for (a) DJF 2019/20, (b) MAM 2020, (c) JJA 2020, and (d) SON 2020. Normalized seasonal mean SSTA based on seasonal mean std. dev. over 1981–2010 are contoured at values of −2 (dashed white), −1 (dashed black), 1 (solid black), and 2 (solid white).
were associated with marine heatwaves (Hu et al. 2011; Oliver et al. 2017; Perkins-Kirkpatrick et al. 2019; Babcock et al. 2019; see also section 2b3).

In the Euro-Asian coasts of the Arctic, SSTAs were neutral in DJF and MAM due to sea ice holding SSTs at the freezing point, but reached more than +2.0°C (+2 std. dev.) in JJA and SON (Figs. 3.2c,d). In the Indian Ocean and Maritime Continent, SSTAs of approximately +0.5°C (+2 std. dev.) were sustained throughout 2020 (Figs. 3.2a–d). In the tropical Atlantic, SSTAs were approximately +1.0°C (+2 std. dev.) in DJF and MAM and decreased to between +0.2°C and 0.5°C (+1 std. dev.) in JJA and SON. In contrast, in the western North Atlantic, SSTAs increased from between +0.5°C and 1.0°C (+1 std. dev.) in DJF and MAM to between +1.0°C and 1.5°C (+2 std. dev.). In the South Atlantic, SSTAs were near neutral in DJF, became below normal (−0.5°C) in the west and above normal (+0.5°C) in the east in MAM, and became near neutral again in JJA and SON.

The global oceans have exhibited an overall warming trend since the 1950s (Figs. 3.3a,b; Table 3.1), albeit with slightly lower SSTAs in 2020 (+0.39° ± 0.01°C) than in 2019 (+0.41° ± 0.02°C), due in part to La Niña. The year 2020 was the third warmest after the record high of 2016 (+0.44° ± 0.01°C) and 2019, but their separation may not be statistically significant. Linear trends of globally annually averaged SSTAs were 0.10° ± 0.01°C decade⁻¹ over 1950–2020 (Table 3.1). Spatially, the warming was largest in the tropical Indian Ocean (Fig. 3.3e; 0.14° ± 0.02°C decade⁻¹) and smallest in the North Pacific (Fig. 3.3d; 0.08° ± 0.04°C decade⁻¹). Here, the uncertainty of the trends represents the 95% confidence level of the linear fitting uncertainty and 500-member data uncertainty.

In addition, interannual to interdecadal variabilities of SSTAs can be seen in all ocean basins. The variation amplitudes are large in the North Atlantic (Fig. 3.3f), which may be associated with the Atlantic Multidecadal Variability (Schlesinger and Ramankutty 1994) that may have in turn resulted from many internal and external factors such as aerosols and the AMOC (Zhang et al. 2019; Wang and Yang 2017), with warm periods in the early 1950s and from the late 1990s to the 2010s, and a cold period from the 1960s to the early 1990s. Similarly, SSTAs in the North Pacific (Fig. 3.3d) decreased from the 1960s to the late 1980s, followed by an increase from the late 1980s to the 2010s.

We compare SSTAs in ERSSTv5 with those in DOISST, HadSST.3.1.1.0, and HadSST.4.0.0.0, averaging all annually on a 2° × 2° grid (Fig. 3.3). SSTA departures of DOISST, HadSST.3.1.1.0, and HadSST.4.0.0.0 from ERSSTv5 are largely within 2 standard deviations (gray shading, Fig. 3.3). Overall, HadSST.4.0.0.0 is more consistent with ERSSTv5 than HadSST.3.1.1.0 before 1980, owing to its updated corrections to the SST observations from ships (e.g., ship engine room intakes, ship bucket) that had been used in both HadSST.4.0.0.0 and ERSSTv5. In the 2000s–10s, SSTAs were slightly higher in DOISST than in ERSSTv5 in the Southern Ocean, tropical Atlantic Ocean, and tropical Indian Ocean, and therefore

<table>
<thead>
<tr>
<th>Product</th>
<th>Region</th>
<th>2000–2020 (°C decade⁻¹)</th>
<th>1950–2020 (°C decade⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HadSST.3.1.1.0</td>
<td>Global</td>
<td>0.14 ± 0.06</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>HadSST.4.0.0.0</td>
<td>Global</td>
<td>0.18 ± 0.06</td>
<td>0.112 ± 0.02</td>
</tr>
<tr>
<td>DOISST</td>
<td>Global</td>
<td>0.20 ± 0.05</td>
<td>N/A</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>Tropical Pacific (30°S–30°N)</td>
<td>0.18 ± 0.17</td>
<td>0.10 ± 0.03</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>North Pacific (30°–60°N)</td>
<td>0.36 ± 0.14</td>
<td>0.08 ± 0.04</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>Tropical Indian Ocean (30°S–30°N)</td>
<td>0.21 ± 0.09</td>
<td>0.14 ± 0.02</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>North Atlantic (30°–60°N)</td>
<td>0.14 ± 0.09</td>
<td>0.11 ± 0.05</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>Tropical Atlantic (30°S–30°N)</td>
<td>0.15 ± 0.09</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>ERSSTv5</td>
<td>Southern Ocean (30°–60°S)</td>
<td>0.12 ± 0.06</td>
<td>0.10 ± 0.02</td>
</tr>
</tbody>
</table>
SST trends were slightly higher in DOISST over 2000–20 (Table 3.1). These SSTA differences have been mostly attributed to the differences in bias corrections to ship observations in those products (Huang et al. 2015; Kent et al. 2017), and have resulted in a slightly weaker SSTA trend in HadSST.3.1.1.0 but a stronger SSTA trend in HadSST.4.0.0.0 over both 1950–2020 and 2000–20 (Table 3.1).

Fig. 3.3. Annually-averaged SSTAs of ERSSTv5 (solid white) and 2 std. dev. (gray shading) of ERSSTv5, SSTAs of DOISST (solid green), and SSTAs of HadSST.3.1.1.0 (solid red) and HadSST.4.0.0.0 (dotted blue) during 1950–2020 except for (b). (a) Global oceans, (b) global oceans in 1880–2020, (c) tropical Pacific, (d) North Pacific, (e) tropical Indian, (f) North Atlantic, (g) tropical Atlantic, and (h) Southern Oceans. The 2 std. dev. envelope was derived from a 500-member ensemble analysis based on ERSSTv5 (Huang et al. 2020) and centered to SSTAs of ERSSTv5. The year 2000 is indicated by a vertical black dotted line.
Following the warm years of the 2013–15 marine heatwave (MHW) known as “the Blob” (Bond et al. 2015), the northeast Pacific Ocean experienced another devastating MHW, which formed during the summer of 2019 and persisted through 2020 (Amaya et al. 2020; Scannell et al. 2020). An MHW is defined when sea surface temperatures (SSTs) exceed an extremely warm threshold (e.g., the 90th percentile) for an extended period of time (e.g., at least five days; Hobday et al. 2016). In June 2019, an MHW developed in the northeast Pacific Ocean and by August it grew to encompass an ocean area spanning the Gulf of Alaska to the Hawaiian Islands (Fig. SB3.1a). The event was so unusual that the June–August SST anomalies (SSTA), which were >2.5°C above normal, broke a 40-year (1980–2019) summertime record (Amaya et al. 2020). Like the Blob, this event had local and regional impacts on marine ecosystems and fish redistributions (NOAA 2019). During 2019, the MHW along the U.S. West Coast initiated harmful algal blooms and coral reefs near Hawaii started to bleach under high thermal stress (Cornwall 2019). Off Oregon, warmer waters brought albacore tuna closer to shore, making them more accessible to recreational anglers, leading to record-breaking landings in September (Lambert 2019). Although many speculated that this summertime MHW would not last due to its shallow depth, its persistence into 2020 was unrelenting (Fig. SB3.1c).

Fig. SB3.1. Seasonal 2.5-m temperature anomaly average (°C) over (a) JJA in 2019 and (b) SON in 2020. Time–depth plots of subsurface (c) temperature (°C), (d) salinity (g kg⁻¹), and (e) density (kg m⁻³) anomalies averaged within the northeast Pacific (35.5°–51.5°N, 135.5°–154.5°W; black box in (a) and (b) from Jan 2004 through Dec 2020. Subsurface observations were taken from the updated Roemmich-Gilson Argo Climatology (Roemmich and Gilson 2009) and monthly anomalies were computed with respect to the 2004–20 monthly means.
and its spatial scale rivaled its predecessor—the Blob (Bond et al. 2015).

The factors contributing to the onset of the 2019–20 northeast Pacific MHW are described by Amaya et al. (2020) and are summarized here. SSTAs that formed during summer 2019 were atmospherically forced. Remote influence from warm SSTAs near the central equatorial Pacific contributed to a weakening of the North Pacific (atmospheric pressure) High and associated surface winds from April through August. A reduction in wind-driven, upper-ocean mixing resulted in a record shallow mixed layer depth. Summertime surface heat fluxes more efficiently warmed the anomalously thin mixed layer, contributing to the rapid rise in SST. Downward heat fluxes were dominated by a reduction in latent heat loss from weakened surface winds and an increase in downwelling shortwave radiation due to diminished low-level clouds. In particular, the reduction in low cloud cover initiated a positive low-cloud-SST feedback, which amplified the intensity of the 2019 summer MHW and contributed to its overall persistence.

The spatial pattern of surface warming evolved in the northeast Pacific over the course of 2019 and 2020. This evolution was facilitated by remote influences from the tropics and extratropics. As described previously, warm anomalies in the central equatorial and subtropical Pacific in 2019 (Fig. SB3.1a) helped weaken the mean state of the atmosphere over northern latitudes, leading to the MHW onset. A positive Pacific Meridional Mode also likely helped modulate the surface heat fluxes over the North Pacific by shifting the Intertropical Convergence Zone farther north and further weakening the North Pacific High (Amaya et al. 2020). The transition to La Niña conditions in 2020 reversed the sign of anomalies near the equator. However, the northeast Pacific remained in a MHW-like state (Fig. SB3.1b). La Niña can disrupt weather patterns in the Northern Hemisphere midlatitudes through a teleconnection associated with the negative phase of the Pacific/North American (PNA) pattern (Wallace and Gutzler 1981). The negative PNA can establish more atmospheric ridging over the northeast Pacific Ocean, which diverts normal upper-level flow and is conducive to warming SSTs during boreal winter.

Once the surface mixed layer is heated from the atmosphere, those temperature anomalies can be redistributed within the ocean and begin to propagate horizontally or downward (Scannell et al. 2020). The upper 200 m of the water column was anomalously warm throughout 2020, with maximum intensities contained within the upper 70 m (Fig. SB3.1c). An unusual fresh anomaly that extended to 120 m (Fig. SB3.1d) accompanied the near-surface warming and likely originated from a net freshwater input from precipitation in the Gulf of Alaska in 2018 (Reagan et al. 2019; Yu et al. 2019). The salinity anomaly from 2018 through 2020 was the longest lasting, most intense, and deepest reaching fresh event observed since at least 2004. In contrast, the Blob in 2013–15 had the warmest and most salty near-surface anomalies since at least 2004. The subsurface freshwater anomaly in 2019–20 increased the buoyancy of the surface layer (Fig. SB3.1e). The decrease in surface density and resulting increase in stratification prevented the warm surface anomalies from penetrating as deeply as the Blob in 2013–15. However, the surface MHW anomalies in 2019–20 mixed into the subsurface across both isobars and isopycnals (Scannell et al. 2020). The subsurface burial and storage of surface MHW anomalies contributes to the long-lived persistence and memory of these events in the northeast Pacific Ocean, and their possible seasonal reemergence.

The northeast Pacific Ocean has warmed significantly over the past half-century due to anthropogenic climate change (Bulgin et al. 2020). Increased ocean temperatures not only make MHWs more likely to occur in the North Pacific (Scannell et al. 2016), they also increase the intensity and duration of these events over time (Oliver 2019; Laufkötter et al. 2020). Ocean warming has significantly contributed to a shoaling trend in North Pacific summertime mixed layers (~15% decrease) from 1980 to 2015 (Amaya et al. 2021). Shallower mixed layers reduce the effectiveness of detraining surface MHW anomalies into the subsurface and trap them near the surface (Amaya et al. 2020; Scannell et al. 2020). As a result, it is expected that MHWs will intensify in the coming decades as surface stratification increases and summertime mixed layers continue to shoal (Amaya et al. 2021; Li et al. 2020; Alexander et al. 2018).

The 2019–20 MHW was the latest event in a recent trend of increasing temperature extremes that has dominated the northeast Pacific. Second to the Blob in 2013–15, this event was the most expansive MHW since 1982, covering an ocean area roughly six times the size of Alaska in September 2020 (NWFSC 2020). However, the 2019–20 event really stands out for developing during the summer, when mixed layers were anomalously shallow and the subsurface was extremely fresh (Amaya et al. 2020; Scannell et al. 2020). The combination of these factors likely helped to amplify the intensification of this event. It is an open question whether the physical mechanisms responsible for this MHW are broadly applicable to summer-initiated events. The northeast Pacific Ocean has remained anomalously warm and fresh heading into 2021, and the subsurface has warmed substantially, likely as a result (Fig. SB3.1). This event’s persistence is being closely monitored as La Niña conditions continue to dominate the tropics.

The oceans have been warming for decades owing to increases in greenhouse gases in the atmosphere (Rhein et al. 2013), storing massive amounts of heat energy and expanding as they warm to contribute about 40% of the increase in global average sea level (WCRP Global Sea Level Budget Group 2018). This warming, while surface intensified, is not limited to the upper ocean, having been widely observed from 4000 to 6000 m in the coldest, densest bottom waters (Purkey and Johnson 2010). The El Niño–Southern Oscillation effects strong regional variations in ocean temperature and also modulates the rate of global ocean heat uptake (Johnson and Birnbaum 2017). The overall warming trend has increased the frequency and intensity of marine heatwaves (Laufkötter et al. 2020; see section 3b and Sidebar 3.1), which in turn have substantial effects on ecosystems (Smale et al. 2019). Additionally, warmer upper ocean waters can drive stronger hurricanes (Goni et al. 2009). Ocean warming has also been shown to increase melting rates of ice sheet outlet glaciers around Greenland (Castro de la Guardia et al. 2015) and Antarctica (Schmidtko et al. 2014).

Maps of annual (Fig. 3.4) upper (0–700 m) ocean heat content anomaly (OHCA) relative to a 1993–2020 baseline mean are generated from a combination of in situ ocean temperature data and satellite altimetry data following Willis et al. (2004), but using Argo (Riser et al. 2016) data downloaded from an Argo Global Data Assembly Centre in January 2021. Near-global average monthly temperature anomalies (Fig. 3.5) versus pressure from Argo data (Roemmich and Gilson 2009, updated) since 2004 and in situ global estimates of OHCA (Fig. 3.6) for three pressure layers (0–700 m, 700–2000 m, and 2000–6000 m) from five different research groups are also discussed.

The 2020 minus 2019 difference of 0–700-m OHCA (Fig. 3.4b) in the Pacific shows an increase in the western tropical Pacific and a decrease in the central to eastern equatorial Pacific, consistent
with the onset of a La Niña in 2020. La Niña induces this pattern with a shoaling of the equatorial thermocline in the central and eastern equatorial Pacific and a deepening of the western tropical Pacific warm pool as a response to strengthened easterly trade winds (see Fig. 3.13a), which also generate anomalous westerly surface currents on the equator (see Figs. 3.18, 3.19b–d). As a result, in the equatorial Pacific, the 2020 anomalies (Fig. 3.4a) are negative in the east and positive in the west. Outside of the tropics, the 2020 minus 2019 difference is toward higher values in the centers of the North and South Pacific basins, with some lower values in the eastern portions of the basin, consistent with an intensified cool (negative) phase of the Pacific Decadal Oscillation index in 2020 (see Fig. 3.1). Upper OHCA in the Pacific in 2020 is generally above the long-term average (Fig. 3.1), with the most prominent negative values limited to the central tropical Pacific and the Southern Ocean south of 60°S.

In the Indian Ocean, the 2020 minus 2019 difference of 0–700-m OHCA

Fig. 3.5. (a) Near-global (65°S–80°N, excluding continental shelves, the Indonesian seas, and the Sea of Okhostk) average monthly ocean temperature anomalies (°C; updated from Roemmich and Gilson [2009]) relative to record-length average monthly values, smoothed with a 5-month Hanning filter and contoured at odd 0.02°C intervals (see colorbar) versus pressure and time. (b) Linear trend of temperature anomalies over time for the length of the record in (a) plotted versus pressure in °C decade⁻¹ (blue line).

Fig. 3.6. (a) Annual average global integrals of in situ estimates of upper (0–700 m) OHCA (ZJ; 1 ZJ = 10²¹ J) for 1993–2020 with standard errors of the mean. The MRI/JMA estimate is an update of Ishii et al. (2017). The PMEL/JPL/JIMAR estimate is an update and refinement of Lyman and Johnson (2014). The NCEI estimate follows Levitus et al. (2012). The Met Office Hadley Centre estimate is computed from gridded monthly temperature anomalies (relative to 1950–2019) following Palmer et al. (2007). The IAP/CAS estimate is reported in Cheng et al. (2020). See Johnson et al. (2014) for details on uncertainties, methods, and datasets. For comparison, all estimates have been individually offset (vertically on the plot), first to their individual 2005–20 means (the best sampled time period), and then to their collective 1993 mean. (b) Annual average global integrals of in situ estimates of intermediate (700–2000 m) OHCA for 1993–2020 with standard errors of the mean, and a long-term trend with one standard error uncertainty shown from 1992.4–2011.6 for deep and abyssal (z > 2000 m) OHCA following Purkey and Johnson (2010) but updated using all repeat hydrographic section data available from https://cchdo.ucsd.edu/ as of Jan 2021.
(Fig. 3.4b) exhibits increases in the eastern third of the basin, from the Bay of Bengal to the Antarctic Circumpolar Current (ACC) and decreases in the center of the basin from the equator to the ACC. Upper OHCA values for 2020 were above the 1993–2020 mean over almost all of the Indian Ocean (Fig. 3.4a), with the higher values in the western half of the basin. The low 2020 upper OHCA values in the vicinity of the ACC in the west and the high values in the east suggest a northward excursion of that current in the west and a southward excursion in the east in 2020. The 2020 minus 2019 differences of 0–700-m OHCA (Fig. 3.4b) in the Atlantic Ocean are toward cooling around the Caribbean Islands and Florida, offshore of some of the east coast of North America, and in the Greenland–Iceland–Norwegian Seas. In much of the rest of the ocean, the tendency is weakly, but generally toward, warming. In 2020, almost the entire Atlantic Ocean exhibited upper OHCA above the 1993–2020 average (Fig. 3.4a) with especially warm conditions in the Gulf of Mexico, off the east coast of North America, and across the southern subtropical South Atlantic.

The large-scale statistically significant (Fig. 3.4c) regional patterns in the 1993–2020 local linear trends of upper OHCA are quite similar to those from 1993–2019 (Johnson et al. 2020). The longer the period over which these trends are evaluated, the more of the ocean surface area is covered by warming trends, either statistically significant or not, and the less it is covered by cooling trends (Johnson and Lyman 2020). The most prominent area with statistically significant negative trends is found mostly south of Greenland in the North Atlantic, a pattern that has been linked, together with the very strong warming trend off the east coast of North America, to a decrease in the Atlantic meridional overturning circulation (Dima and Lohmann 2010; Caesar et al. 2018), although there are contributions from variations in local air–sea exchange (strong winter cooling in the years around 2015) and shortwave cloud feedbacks as well (Josey et al. 2018). Another cooling trend is found near the ACC in the central South Pacific. As noted in previous State of the Climate reports, the warming trends in the western boundary currents and extensions (Gulf Stream, Kuroshio, Agulhas, East Australia Current, and Brazil Current) are all quite prominent and may be associated with poleward shifts of these currents driven by changes in surface winds (Wu et al. 2012). Much of the Atlantic Ocean, the Indian Ocean, and the western and central Pacific Ocean exhibit statistically significant warming trends as well.

Near-global average seasonal temperature anomalies (Fig. 3.5a) from the start of 2004 through the end of 2020 exhibit a clear surface-intensified, record-length warming trend (Fig. 3.5b) that exceeds 0.2°C decade⁻¹ at the surface. The reduction of warm anomalies during 2020 in the upper 100 dbar, with increases in warming from 100 to 400 dbar, is consistent with the transition to a La Niña in 2020. This pattern in the global average reflects a prominent large-scale regional change, as the equatorial Pacific thermocline shoals in the east and deepens in the west (e.g., Roemmich and Gilson 2011; Johnson and Birnbaum 2017). The pattern can be seen in other La Niña periods (e.g., 2007–08 and 2010–12). The opposite pattern is evident during El Niño years (e.g., 2009–10 and 2015–16) when the east–west tilt of the equatorial Pacific thermocline reduces as easterly trade winds subside, and even reverse at times.

As noted in previous reports, the analysis is extended back in time from the Argo period to 1993, and expanded to examine greater depths, using sparser, more heterogeneous historical data collected mostly from ships (e.g., Abraham et al. 2013). The different estimates of annual globally integrated 0–700-m OHCA (Fig. 3.6a) all reveal a large increase since 1993, with four of the five analyses reporting 2020 as a record high. The globally integrated 700–2000-m OHCA annual values (Fig. 3.6b) vary somewhat among analyses, but all five analyses report 2020 as a record high, and the long-term warming trend in this layer is also clear. Globally integrated OHCA values in both layers vary more both from year-to-year for individual years and from estimate-to-estimate in any given year prior to the achievement of a near-global Argo array around 2005. The water column from 0–700 and 700–2000 m gained 5.4 (±4.8) and 3.9 (±3.9) ZJ, respectively.
AUGUST 2021 | State of the Climate in 2020

3. GLOBAL OCEANS

S159

Causes of differences among estimates are discussed in Johnson et al. (2015).

The estimated linear rates of heat gain for each of the five global integral estimates of 0–700-m OHCA from 1993 through 2020 (Fig. 3.6a) range from 0.37 (±0.05) to 0.41 (±0.04) W m\(^{-2}\) applied over the surface area of Earth, as is customary in climate science (Table 3.2). These results are not much different from those in previous reports, although with an increasing record length trend uncertainties tend to decrease and differences among analyses tend to grow smaller. Linear trends from 700 to 2000 m over the same time period range from 0.15 (±0.04) to 0.31 (±0.05) W m\(^{-2}\). Trends in the 0–700-m layer all agree within their 5%–95% confidence intervals. However, as noted in previous reports, one of the trends in the 700–2000-m layer, which is quite sparsely sampled prior to the start of the Argo era (circa 2005), does not. Different methods for dealing with under-sampled regions likely cause this disagreement. Using repeat hydrographic section data collected from 1981 to 2020 to update the estimate of Purkey and Johnson (2010) for 2000–6000 m, the linear trend is 0.06 (±0.03) W m\(^{-2}\) from May 1992 to August 2011 (these dates are global average times of first and last sampling of the sections). Summing the three layers (despite their slightly different time periods as given above), the full-depth ocean heat gain rate ranges from 0.58 to 0.78 W m\(^{-2}\) applied to Earth’s entire surface.

1) Introduction

Salinity is the measure of the mass of dissolved salts in a unit mass of seawater. Temperature and salinity vary spatially and temporally in the ocean. Atmospheric freshwater fluxes (namely evaporation and precipitation), advection, mixing, entrainment, sea ice melt/freeze, and river runoff all modify salinity (e.g., Qu et al. 2011; Ren et al. 2011). Sea surface salinity (SSS) and evaporation minus precipitation (\(E - P\)) have long been known to be highly correlated (Wüst 1936). SSS patterns are maintained through a balance among advection, mixing, and \(E - P\) fluxes (Durack 2015). Roughly 86% of global evaporation and 78% of global precipitation occurs over the ocean (Baumgartner and Reichel 1975; Schmitt 1995), making the ocean Earth’s largest rain gauge (Schmitt 2008). Evaporation-dominated regions, such as the subtropical North Atlantic, are generally saltier, whereas precipitation-dominated regions like the Intertropical Convergence Zone (ITCZ) are generally fresher. Furthermore, changes in the hydrological cycle can be estimated by salinity changes (e.g., Durack and Wijffels 2010; Durack et al. 2012; Skliris et al. 2014).

Table 3.2. Trends of ocean heat content increase (in W m\(^{-2}\) applied over the 5.1 × 10\(^{14}\) m\(^2\) surface area of Earth) from seven different research groups over three depth ranges (see Fig. 3.6 for details). For the 0–700- and 700–2000-m depth ranges, estimates cover 1993–2020, with 5%–95% uncertainties based on the residuals taking their temporal correlation into account when estimating degrees of freedom (Von Storch and Zwiers 1999). The 2000–6000-m depth range estimate, an update of Purkey and Johnson (2010), uses data from 1981 to 2020, while the global average is from May 1992 to Aug 2011, again with 5%–95% uncertainty.

| Global ocean heat content trends (W m\(^{-2}\)) for three depth ranges |
|-----------------------------|------------------|------------------|------------------|
| Research Group | 0–700 m | 700–2000 m | 2000–6000 m |
| MRI/JMA | 0.37 ± 0.05 | 0.24 ± 0.05 | |
| PMEL/JPL/JIMAR | 0.39 ± 0.12 | 0.31 ± 0.05 | |
| NCEI | 0.39 ± 0.05 | 0.19 ± 0.05 | |
| Met Office Hadley Centre | 0.38 ± 0.12 | 0.15 ± 0.04 | |
| IAP/CAS | 0.41 ± 0.04 | 0.18 ± 0.01 | |
| Purkey and Johnson | | 0.06 ± 0.03 | |

Seawater density at a given pressure is a function of temperature and salinity. In cold water, salinity variations tend to dominate density (Pond and Pickard 1983). Therefore, changes in salinity at high latitudes can have large impacts on ocean stratification and even alter the global thermohaline circulation (e.g., Gordon 1986; Broecker 1991). For example, the Atlantic meridional overturning circulation (section 3h) is vulnerable to changes in salinity (e.g., Liu et al. 2017). Ocean stratification (i.e., the vertical density gradient) has been found to be increasing over the past 50 years (Li et al. 2020), which has likely reduced ocean ventilation. Thus, diagnosing changes in surface and subsurface salinity is critical for monitoring potential changes in the hydrological cycle and ocean dynamics.

To investigate interannual changes of subsurface salinity, all available salinity profile data are quality controlled following Boyer et al. (2018) and then used to derive 1° monthly mean grid-ded salinity anomalies relative to a long-term monthly mean for years 1955–2012 (World Ocean Atlas 2013 version 2 [WOA13v2]; Zweng et al. 2013) at standard depths from the surface to 2000 m (Boyer et al. 2013). In recent years, the largest source of salinity profiles is the profiling floats of the Argo program (Riser et al. 2016). These data are a mix of real-time (preliminary) and delayed-mode (scientific quality controlled) observations. Hence, the estimates presented here may be subject to instrument biases such as Argo conductivity, temperature, depth devices with “fast salty drift,” and could change after all data are subjected to scientific quality control. The SSS analysis relies on Argo data downloaded in January 2021, with annual anomaly maps relative to a seasonal climatology generated following Johnson and Lyman (2012) as well as monthly maps of bulk (as opposed to skin) SSS data from the Blended Analysis of Surface Salinity (BASS; Xie et al. 2014). BASS blends in situ SSS data with data from the Aquarius (Le Vine et al. 2014; mission ended in June 2015), Soil Moisture and Ocean Salinity (Font et al. 2013), and the Soil Moisture Active Passive (Fore et al. 2016) satellite missions. Despite the larger uncertainties of satellite data relative to Argo data, their higher spatial and temporal sampling allows higher spatial and temporal resolution maps than are possible using in situ data alone at present. All salinity values used in this section are dimensionless and reported on the Practical Salinity Scale-78 (PSS-78; Fofonoff and Lewis 1979).

2) Sea surface salinity—G. C. Johnson and J. M. Lyman

As noted in previous reports, since salinity has no direct feedback to the atmosphere, large-scale SSS anomalies can be quite persistent. This persistence contrasts with sea surface temperature (SST) anomalies, which are often damped by air–sea heat exchange (e.g., an anomalously warm ocean loses heat to the atmosphere, so SST cools). For example, one of the largest fresh SSS anomalies in 2020, located in the northeastern Pacific (Fig. 3.7a), began around 2016 in the central North Pacific (near 40°N between Hawaii and the Aleutian Islands), shifting eastward over time and strengthening overall (see previous State of the Climate reports). This upper ocean fresh anomaly increased density stratification and stabilized the upper ocean, which, together with surface-intensified warming of marine heat waves in the area that occurred in 2013–15 (e.g., Gentemann et al. 2017) and again in 2019–20 (Scannell et al. 2020), perhaps prolonging and amplifying especially the second event (Scannell et al. 2020; Sidebar 3.1).

Elsewhere in the Pacific Ocean, the fresh 2020 SSS anomaly (Fig. 3.7a) observed over much of the ITCZ and South Pacific Convergence Zone and extending north of Hawaii in the Central Pacific began around 2015 (see previous State of the Climate reports). In contrast, the more recent strong increase in salinity along the equator from 150°E to the dateline from 2019 to 2020 (Fig. 3.7b) is owing to the westward migration of the fresh pool with the advent of La Niña in 2020 (section 4b), linked to the anomalous westward currents across the equator in 2020 (see Fig. 3.18a), as well as westward shifts in precipitation in the region (see Fig. 3.12d).

There was mostly freshening of SSS from 2019 to 2020 in the tropical Atlantic ITCZ (punctuated by areas of strong salinification north of Brazil and Colombia) and in the Gulf of Guinea (Fig. 3.7b). Elsewhere in the Atlantic in 2020, as in many previous years, the relatively fresh regions...
AUGUST 2021 | State of the Climate in 2020

3. GLOBAL OCEANS

(subpolar North Atlantic and under the ITCZ) were fresher than climatology, and the relatively saltier regions (the subtropics) were saltier than climatology (Fig. 3.7a). These salty signals appear to be especially strong just off the east coasts of North and South America.

Freshening in much of the tropical Indian Ocean from 2019 to 2020 (Fig. 3.7b) left most of that region fresher than climatology in 2020 (Fig. 3.7a). In a warming climate, the atmosphere can hold more water, leading to expectations of more evaporation in regions where evaporation is dominant over precipitation and more precipitation where precipitation exceeds evaporation (Held and Soden 2006; Durack and Wijffels 2010). In the ocean this translates to “Salty gets saltier and fresh gets fresher.” This pattern has been evident in State of the Climate reports going back as far as 2006, the first year of the SSS section. In 2020, salty SSS anomalies are associated with the subtropical salinity maxima in the South Indian, the South Pacific, and the North and South Atlantic Oceans (Fig. 3.7a), with fresh SSS anomalies in the subpolar North Pacific, the eastern subpolar North Atlantic, and the ITCZs of the Pacific and Atlantic. The 2005–20 SSS trends (Fig. 3.7c) reflect this pattern to some extent as well, although the portions with trends statistically different from zero at the 5%–95% confidence limits (Fig. 3.7c, unstippled areas) are somewhat limited. Still, there are statistically significant freshening trends evident in the subpolar North Pacific and North Atlantic, the Bay of Bengal, and the Pacific ITCZ. There are also statistically significant salty trends in parts of the subtropics in all basins. The salty trends in the stratocumulus deck regions west of California and Chile are interesting, as they are, to the best of our knowledge, unexplained.

In 2020, the seasonal BASS (Xie et al. 2014) SSS anomalies (Fig. 3.8) show the year-round persistence of fresh SSS anomalies in the North Pacific subpolar and tropical regions and salty SSS anomalies in the subtropics of all the other basins. The western equatorial Pacific starts

Fig. 3.7. (a) Map of the 2020 annual surface salinity anomaly (colors, PSS-78) with respect to monthly climatological 1955–2012 salinity fields from WOA13v2 (yearly average—gray contours at 0.5 intervals, PSS-78). (b) Difference of 2020 and 2019 surface salinity maps (colors, PSS-78 yr$^{-1}$). White ocean areas are too data-poor (retaining <80% of a large-scale signal) to map. (c) Map of local linear trends estimated from annual surface salinity anomalies for 2005–20 (colors, PSS-78 yr$^{-1}$). Areas with statistically insignificant trends at 5%–95% confidence are stippled. All maps are made using Argo data.
out anomalously fresh, but becomes increasingly anomalously salty throughout the year with the advent of La Niña. Similarly, much of the tropical Indian Ocean becomes progressively less anomalously fresh during 2020. In the tropical Atlantic, fresh anomalies build in the Gulf of Guinea in boreal spring 2020 and north and east of the Orinoco and Amazon Rivers in boreal summer and autumn 2020. With their higher spatial and temporal resolution, BASS data also reveal some features like the fresh anomaly near the North Atlantic Current that are not as readily apparent in the Argo maps.

3) Subsurface salinity—J. Reagan, T. Boyer, C. Schmid, and R. Locarnini

Salinity anomalies originating near the surface of the ocean often propagate into the ocean’s interior through mixing or through the sinking of water masses along isopycnals. Thus, subsurface salinity anomalies can often be used as a tracer for what has happened at the surface. Here we analyze salinity in the three main ocean basins (Atlantic, Pacific, and Indian) from 64.5°S to 65.5°N with definitions following World Ocean Atlas 2018 conventions (https://www.ncei.noaa.gov/data/oceans/woa/WOA18/MASKS/basinmask_01.msk).

The 0–1000-m Atlantic basin-average monthly salinity anomalies for 2011–20 exhibit large positive anomalies (>0.05) near the surface that weaken with depth to ~0.01 at 600 m (Fig. 3.9a), a pattern that has persisted for over a decade and continued in 2020. From 2019 to 2020 there was salinification (≥0.015) from 50 to 125 m (Fig. 3.9b), with little change above and below. Thus, the surface salinification between 2018 and 2019 (Reagan et al. 2020) appears to have deepened to ~100 m between 2019 and 2020. Statistically significant (>1 std. dev.) changes in zonally averaged salinity anomalies in the Atlantic (Fig. 3.9c) between 2018 and 2020 reveal large freshening (~0.15) around 8°N in the upper 30 m and weaker freshening (~0.03) in the upper 100 m near 35°S. Significant salinification (>0.03) is centered at 40°S and extends from the surface to 500 m. Additional salinification (>0.06) extends from the surface to 100-m depth centered at 45°N with subsurface pockets of salinification (>0.03) from 50 to 150 m between 5°N and 30°N.

Fig. 3.8. Seasonal maps of SSS anomalies (PSS-78; colors) from monthly blended maps of satellite and in situ salinity data (BASS; Xie et al. 2014) relative to monthly climatological 1955–2012 salinity fields from WOA13v2 for (a) DJF 2019/20, (b) MAM 2020, (c) JJA 2020, and (d) SON 2020. Areas with maximum monthly errors exceeding 10 PSS-78 are left white.
The 2020 basin-average monthly salinity anomalies for the Pacific continued the persistent pattern that has been evident since mid-2014 (Fig. 3.9d). In 2020, fresh anomalies (<−0.01) dominated the upper 100 m, with salty anomalies (>0.01) between 125 and 250 m, and fresh anomalies (<−0.01) between 350 and 550 m. Changes from 2019 to 2020 (Fig. 3.9e) reveal salinification in the upper 75 m (peak of ~0.015 at 30 m) with freshening from 75 to 200 m (peak of ~−0.0075 at 125 m). The zonally averaged salinity changes from 2019 to 2020 (Fig. 3.9f) in the Pacific reveal significant salinification (>0.06) in the upper 100 m centered at three latitudes: 0°, 15°N, and 62°N. Significant freshening (<−0.03) occurred between the surface and 175 m between 27°N and 37°N and in a subsurface pocket between 175- and 275-m depths at 60°N.

Throughout 2020 in the Indian basin there were large (<−0.025) fresh anomalies in the upper 75 m with salty anomalies (>0.005) between 100- and 200-m depths (Fig. 3.9g). Similar to the salinity tendency exhibited from 2018 to 2019 (Reagan et al. 2020), there was strong freshening in the upper 100 m (peak of ~−0.028 at 50 m) from 2019 to 2020 (Fig. 3.9h). Additionally, there was salinification between 100- and 200-m depths (peak ~0.0065 at 150 m) and more freshening between 200- and 500-m depths (peak ~−0.0065 at 300 m). The 2019 to 2020 changes in zonally averaged salinity anomalies in the Indian basin reveal significant freshening (<−0.06) in the upper 100 m from ~6°S to 23°N, which was likely the result of enhanced precipitation over the eastern Indian basin associated with the 2020 La Niña event (see Fig. 3.12). Additional significant freshening (<−0.03) near 45°S from the surface to 100 m is also evident. Significant salinification (>0.03) occurred between 0 and 125-m depths between 25°S and 15°S and in two subsurface
pockets centered at 100 m and ~7°N and at 200 m and 22°N, respectively. Figure 3.10 shows the 2005–20 basin average salinity trends for the three oceans. The Atlantic reveals significant salinification trends throughout the 0–1000-m water column, with maximum values of 0.04 decade\(^{-1}\) at the surface. The Pacific experienced significant freshening trends from 0 to 50 m (peak of ~0.02 decade\(^{-1}\) at 20 m), with salinification trends between 75 and 250 m (peak of ~0.018 decade\(^{-1}\) at 150 m). The Indian Ocean experienced significant subsurface salinification trends with a peak at 125 m (0.01 decade\(^{-1}\)). The near-surface freshening in the Pacific (precipitation-dominated basin) and salinification in the Atlantic (evaporation-dominated basin) supports the idea that the hydrological cycle is amplifying in a warming world (Held and Soden 2006) and can be traced by changes in salinity (Durack 2015). Furthermore, a recent study by Li et al. (2020) shows that the ocean has become increasingly stratified over the last half century, which has been primarily due to ocean temperatures rising faster at the surface than below, creating less dense surface water. Based on the 2005–20 trend analysis, the Atlantic salinity trends have worked to destabilize the water column as salinity (and therefore density) increases the most at the surface, whereas the Pacific and Indian salinity trends have worked in conjunction with the temperature trends to stabilize the water column as there is freshening at the surface (decreasing density) and salinification below (increasing density).

e. Global ocean heat, freshwater, and momentum fluxes—L. Yu, P. W. Stackhouse, A. C. Wilber, C. Wen, and R. A. Weller

The ocean and atmosphere exchange heat, freshwater, and momentum at the surface. These air–sea fluxes are the primary mechanisms for keeping the global climate system in balance with the incoming insolation at Earth’s surface. Most of the shortwave radiation (SW) absorbed by the ocean’s surface is vented into the atmosphere by three processes: longwave radiation (LW), turbulent heat loss by evaporation (latent heat flux, or LH), and conduction (sensible heat flux, or SH). Heat is stored in the ocean and transported by the ocean circulation, forced primarily by wind stress. Evaporation connects heat and moisture transfers, and the latter, together with precipitation, determines the local surface freshwater flux. Identifying changes in air–sea fluxes is essential in deciphering observed changes in ocean water properties and transport of mass, freshwater, and heat.

We examined air–sea heat flux, freshwater flux, and wind stress in 2020 and their relationships with ocean surface variables. The net surface heat flux is: \(Q_{net} = SW+LW+LH+SH\). The net surface freshwater flux into the ocean (neglecting riverine and glacial fluxes from land) is precipitation (\(P\)) minus evaporation (\(E\)). Wind stress is computed from satellite wind retrievals using the bulk parameterization Coupled Ocean-Atmosphere Response Experiment (COARE) version 3.5 (Fairall et al. 2003). We produce global maps of \(Q_{net}\), \(P-E\), and wind stress (Figs. 3.11–3.13) and the long-term perspective of the change of the forcing functions (Fig. 3.14) by integrating efforts of multiple groups. Ocean-surface LH, SH, \(E\), and wind stress are from the Objectively Analyzed air-sea Fluxes (OAFlux) project’s high-resolution products (Yu and Weller 2007). Surface SW and LW radiative fluxes are from the Clouds and the Earth’s Radiant Energy Systems (CERES) Fast Longwave And Shortwave Radiative Fluxes (FLASHFlux) version
Fig. 3.11. (a) Surface heat flux (Qnet) anomalies for 2020 relative to the 2001–15 climatology. Positive values denote ocean heat gain. (b) 2020 minus 2019 difference for Qnet, (c) surface radiation (SW+LW), and (d) turbulent heat fluxes (LH+SH), respectively. Positive changes denote more ocean heat gain in 2020 than in 2019, consistent with the reversal of the color scheme in (d). All units are given in W m$^{-2}$. LH+SH are from OAFlux, and SW+LW is the NASA FLASHFlux version 4A.

Fig. 3.12. (a) Surface freshwater ($P - E$) flux anomalies for 2020 relative to the 1988–2015 climatology. 2020 minus 2019 difference for (b) $P - E$, (c) evaporation (E), and (d) precipitation (P). Green colors denote anomalous ocean moisture gain, and browns denote loss, consistent with the reversal of the color scheme in (c). All units are given in cm yr$^{-1}$. P is the GPCP version 2.3rB1 product, and E is from OAFlux.
3. GLOBAL OCEANS

1) Surface heat fluxes

The ocean received anomalous net heat (Qnet anomalies) in 2020 (Fig. 3.11a) from the atmosphere (positive anomalies) in the eastern equatorial Indian Ocean (>30 W m⁻²), the central and eastern equatorial Pacific (~10 W m⁻²), the western North Pacific around 30°N (~10 W m⁻²), the northwest subtropical Atlantic (~10 W m⁻²), and the midlatitude Southern Ocean 30°–50°S (~10 W m⁻²). The regions where the ocean had pronounced anomalous heat loss to
the atmosphere include the Arabian Sea (~−25 W m\(^{-2}\)), the western tropical Pacific (~−20 W m\(^{-2}\)), the subtropical eastern North Pacific (~−20 W m\(^{-2}\)), and the tropical South Atlantic Ocean (~−15 W m\(^{-2}\)).

The 2020 minus 2019 Qnet differences (Fig. 3.11b) in the tropical Pacific reflect the transition from a weak El Niño in 2019 to a moderate La Niña in 2020 (see section 4b; compare Fig. 3.11b to sea surface temperature [SST] differences in Fig. 3.1b). Cool SST anomalies were damped by increased ocean heat uptake. In general, Qnet differences were dominated by the LH+SH difference (Fig. 3.11d), though both LH+SH and SW+LW (Fig. 3.11c) showed similar structures over most of the global ocean. Furthermore, SW+LW increases were dominant in the western equatorial Pacific and the central South Pacific, with increases in the region extending from the western equatorial Pacific to the southeastern Pacific, but maximum magnitude (~10 W m\(^{-2}\)) confined in a northwest-southeast tilted band between the dateline and 120°W. LH+SH showed a similar warming tendency in the central equatorial Pacific and the center of the South Pacific, induced primarily by a weakened LH heat loss (~−10 W m\(^{-2}\)).

Outside of the equatorial Pacific, both SW+LW and LH+SH 2020 minus 2019 differences produced an anomalous warming along 40°–50°S in the Southern Ocean, in the vicinity of the Kuroshio–Oyashio Extension in the North Pacific, and in a large area in the eastern North Pacific (170°E–150°W, 20°–40°N). In the latter, the band of SW+LW warming tendencies (~5 W m\(^{-2}\)) was likely caused by a reduction of clouds in 2020 relative to 2019. This location was on the southern edge of the 2019–20 northeast Pacific marine heatwave (MHW; Fig. 3.1; Sidebar 3.1), where LH+SH also showed warming tendencies (~10 W m\(^{-2}\)) due to the weakened LH loss.

In the tropical Indian Ocean, the 2020 minus 2019 Qnet differences revealed anomalous ocean cooling. As the 2020 minus 2019 SST differences (Fig. 3.1b) were mostly negative in the western half of the Indian Ocean, there seems to be a causality relationship between the Qnet forcing and SST. On the other hand, the SST differences in the eastern Indian Ocean did not have the same sign as Qnet.

In the Atlantic Ocean, there was a tripole-like difference pattern of Qnet featuring Qnet increases in the Gulf Stream and extension and Qnet decreases elsewhere between 30°S and 60°N (Fig. 3.11d). The subpolar North Atlantic (north of 60°N) and the South Atlantic (south of 30°S) gained heat (~10–15 W m\(^{-2}\)) from the atmosphere in 2020. The source of heating was attributable primarily to the reduced LH+SH and secondly to the net radiative heating (<5 W m\(^{-2}\)) in these regions.

2) **Surface freshwater fluxes**

The 2020 \(P – E\) anomalies (Fig. 3.12a) reflect a basin-wide increase in the net freshwater input (~20 cm yr\(^{-1}\) on average) to the tropical Indian Ocean (positive anomalies with green colors; a freshening effect on the ocean), consonant with a local reduction of sea surface salinity (SSS; see Fig. 3.7a). The net freshwater input reduced (negative anomalies with brown colors; salinification effect on the ocean) in the eastern North Pacific and the western North Atlantic and increased in a few other regions, such as the zonal freshening band just south of the equator in the Pacific and the tilted southwest-northeast freshening bands in the central North Pacific and North Atlantic. The maximum \(P – E\) reduction (~80 cm yr\(^{-1}\)) occurred in the western equatorial Pacific where SSS increased dramatically (see Fig. 3.7b).

The 2020 minus 2019 \(P – E\) difference pattern in the tropical Pacific (Fig. 3.12b) resembles that of the net surface radiation (SW+LW) difference pattern (Fig. 3.11b), with the bands of the reduced \(P – E\) value coinciding with the bands of increased SW+LW values. The \(P – E\) tendencies are attributable to the \(P\) tendencies (Fig. 3.12d), showing that SW+LW increased in areas of reduced rainfall and conversely, SW+LW reduced in areas of increased rainfall. Outside of the tropics, the largest evaporative tendencies occurred in the eastern subtropical North Pacific (~80 cm yr\(^{-1}\)), resulting from the reduction of \(P\). This freshwater deficit was concurrent with increased SW+LW tendencies (Fig. 3.11c).
3) Wind stress

Midlatitude westerly winds became weaker (negative wind stress anomalies; Fig. 3.13a) in 2020 in both Northern and Southern Hemispheres (NH and SH). In the North Pacific and North Atlantic Oceans, marked reduction of westerly winds occurred along 30°–40°N and the magnitude of negative anomalies was <0.04 N m$^{-2}$. In the SH, negative wind anomalies developed on the southern edge of the westerly winds along 50°–60°S in the eastern Pacific, and the Atlantic and Indian sectors (from 120°W to 120°E), with anomalies reaching ~0.04 N m$^{-2}$ in several locations. However, the change of the westerly winds was not uniform across the circumpolar region; for instance, the westerly winds actually became stronger in the western Pacific sector. Winds also became stronger in the subpolar North Atlantic Ocean, where winds are predominantly easterlies.

The trade winds in 2020 strengthened (<0.025 N m$^{-2}$) in the central tropical Pacific as expected with the transition to La Niña (see section 4b), as well as the southern tropical Pacific and Atlantic. In the North Indian Ocean, winds over the Arabian Sea accelerated while winds over the Bay of Bengal slowed down.

The 2020 minus 2019 wind stress difference map (Fig. 3.13b) further shows that the most noted changes in winds are the strengthening of the trade winds in the three tropical basins, the weakening of the westerly winds in the midlatitude NH and SH, and the strengthening of the easterly winds in the subpolar North Atlantic. Surface winds were stronger in the Gulf of Alaska associated with the evolving MHW (Sidebar 3.1).

Winds vary considerably in space. The spatial variations of winds cause divergence and convergence of the Ekman transport, leading to a vertical velocity, denoted by Ekman pumping (downward) or suction (upward) velocity W_{EK}, at the base of the Ekman layer. Computation of W_{EK} follows the equation: $W_{EK} = 1/\rho \nabla \cdot (\tau/f)$, where ρ is the water density and f the Coriolis force. The 2020 W_{EK} anomaly pattern (Fig. 3.13c) is dominated by large downwelling (negative) anomalies in the tropical South Indian Ocean and tropical South Pacific Ocean, with maximum magnitude of ~−16 cm yr$^{-1}$. The change indicates a weakening of the typical upwelling conditions in the former and a strengthening of the typical downwelling conditions in the latter. Outside of the tropical region, the 2020 W_{EK} anomalies were generally weak and less organized. The 2020 minus 2019 W_{EK} difference pattern (Fig. 3.13d) suggests the resuming of the typical upwelling conditions in the equatorial Indian Ocean after the end of the major 2019 positive Indian Ocean dipole event (see Fig. 3.1b), with its anomalously warm waters in the western Indian Ocean, and cool waters in the east.

4) Long-term perspective

A long-term perspective on the change of ocean surface forcing functions in 2020 is examined in the context of multi-decade annual mean time series of Qnet, $P - E$, and wind stress averaged over the global ice-free oceans (Figs. 3.14a–c). The Qnet time series commences in 2001, when CERES EBAF4.1 surface radiation products begin. The $P - E$ and wind stress time series are each 33 years long, starting from 1988 when higher quality global flux fields can be constructed from Special Sensor Microwave/Imager (SSM/I) satellite retrievals. Qnet anomalies are relative to the 2001–15 climatology, and positive anomalies denote increased net downward heat flux into the ocean that has a warming effect on the ocean. $P - E$ anomalies are relative to the 1988–2015 climatology, and positive anomalies denote increased freshwater flux into the ocean that causes sea surface freshening. Wind stress anomalies are relative to the 1988–2015 climatology, and positive anomalies denote increased wind stress magnitude over the ocean.

Qnet did not change significantly between 2001 and 2007 but had large interannual fluctuations thereafter. The total downward heat flux into the global ocean increased by about 3 W m$^{-2}$ during 2011–16, when the tropical Pacific switched from a strong La Niña event in 2011 to a strong El Niño event in 2015–16. This period of increasing oceanic heat gain coincided with an increase of the global mean SST by about 0.35°C (Fig. 3.3a). Qnet went up slightly in 2019 after a
sharp reduction of about 4 W m\(^{-2}\) during the 2017–18 La Niña, and the 2020 Qnet remained at a similar level to its 2019 value. The \(P - E\) time series shows similar interannual variability to that of the Qnet time series, with the 2020 level more or less the same as the 2019 level. The time series of wind stress was flat in the recent two decades after a regime shift around 1999, and the 2020 winds were slightly but not significantly down from the 2019 level. The error bars in the time series represent one standard deviation of year-to-year variability.

Global mean sea level (GMSL) during 2020 had the highest annual average in the satellite altimetry record (1993–2020), 91.3 mm above 1993 (Fig. 3.15a). This marks the ninth consecutive year (and 25th out of the last 27) that GMSL increased relative to the previous year. The new high reflects an ongoing multi-decadal trend of 3.3 ± 0.4 mm yr\(^{-1}\) in GMSL during the satellite altimetry era (Fig. 3.15a). A quadratic fit with corrections for the eruption of Mt. Pinatubo (Fasullo et al. 2016) and El Niño-Southern Oscillation effects (Hamlington et al. 2020) yields an average (1993–2020) climate-driven trend of 3.0 ± 0.4 mm yr\(^{-1}\) and acceleration of 0.081 ± 0.025 mm yr\(^{-2}\) (updated from Nerem et al. 2018).

Variations in GMSL (Fig. 3.15a) result from changes in both the mass and density of the global ocean (Leuliette and Willis 2011; Chambers et al. 2017). The steric (i.e., density-related) sea level rise rate observed by the Argo profiling float array during 2005–20, 1.4 ± 0.2 mm yr\(^{-1}\), which is mostly due to ocean warming, accounted for about one-third of the GMSL trend of 3.7 ± 0.4 mm yr\(^{-1}\) since 2005. Increasing global ocean mass observed by the NASA Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions, contributed the remaining two-thirds, 2.6 ± 0.4 mm yr\(^{-1}\), of the GMSL trend during 2005–20. The positive trend in ocean mass primarily resulted from melting of glaciers and ice sheets (see sections 5e, 6d, 6e) with a small contribution, 0.3 ± 0.1 mm yr\(^{-1}\), from terrestrial water storage (Frederikse et al. 2020; a decrease in terrestrial storage will cause an increase in sea level).

Annually averaged GMSL from satellite altimetry increased by 3.5 mm from
2019 to 2020 (Fig. 3.15a) while annual global mean steric sea level observed by Argo (0–2000 m) decreased by 0.75 mm from 2019 to 2020 (Fig. 3.15a). The decrease in global mean steric sea level contrasts with the estimated year-over-year increase in the globally integrated ocean heat content anomaly (OHCA; 0–2000 m) from an ensemble of OHCA products (see section 3c). One of the five estimates (e.g., the NCEI estimate, Fig. 3.6) shows little globally integrated OHCA change from 2019 to 2020 and is not inconsistent with the year-over-year reduction in total steric sea level given a modest salinification of the global ocean. Annual global ocean mass from GRACE-FO decreased by 1.0 mm from 2019 to 2020, which was primarily due to anomalous precipitation in eastern Africa during 2020 and associated terrestrial water storage there (see sections 2d4, 2d9, 7e4).

The sea level budget based on observations from altimetry, Argo, and GRACE-FO did not close during 2020 as annually averaged GMSL measured by satellite altimeters diverged from the sum of the independently estimated steric and mass contributions by more than 5 mm (Fig. 3.15a). Previous discrepancies in the global sea level budget coincided with the failure of an accelerometer onboard the original GRACE mission (Chen et al. 2020). A similar issue may be affecting recent observations from GRACE-FO, because one accelerometer has not functioned properly since launch. However, the reduction in global ocean mass during 2020 can be directly attributed to terrestrial water storage, which is known to produce fluctuations in global ocean mass (Boening et al. 2012). For 2020 specifically, the reduction in global ocean mass is linked to increased water storage in eastern Africa (see sections 2d, 7e4). Given this link, errors in altimetry and/or salty drift in Argo observations cannot be ruled out in accounting for recent discrepancies in the global sea level budget (Chen et al. 2020).

Spatial structure in sea level change over the 28-year altimeter record (Fig. 3.15b) is due to a combination of natural fluctuations in coupled modes of atmosphere–ocean variability (Han et al. 2017) and spatial structure in the response of the ocean to anthropogenic radiative forcing (Fasullo and Nerem 2018). It is difficult to disentangle these contributions to regional differences in sea level change (Hamlington et al. 2019), but salient features can be attributed to specific processes. For example, the east–west difference in sea level change across the Pacific (e.g., the more than 100 mm difference between Palau and Los Angeles) is associated with multidecadal variability in the strength of Pacific trade winds (e.g., Merrifield 2011). The region of enhanced sea level change in the high-latitude South Pacific can be attributed to regional warming of the ocean above 2000 m (Llovel and Terray 2016) and below 2000 m (Volkov et al. 2017). Sea level change relative to land (i.e., relative sea level, the quantity measured by tide gauges; red circles, Fig. 3.15b) is most relevant for societal impacts and can differ substantially from satellite-derived changes in tectonically active regions (e.g., Japan) and areas strongly affected by glacial isostatic adjustment (e.g., Alaska; Fig. 3.15b).

Due to long-term trends in GMSL (Fig. 3.15), annual sea level anomalies during 2020 were positive nearly everywhere (Fig. 3.16a). In the global tropics, the highest sea level anomalies were in the western Indian Ocean (10–15 cm above normal), whereas the lowest anomalies were in the central equatorial Pacific Ocean (0–5 cm). Sea level anomalies were positive across most of the subtropics (i.e., approximately within 20°–30° of the equator), except for small areas in the subtropical southern Indian Ocean, northwestern Pacific, and Gulf of Mexico Loop Current System where the 2020 sea levels were below normal. Each region of negative anomalies was near where some of the highest positive anomalies occurred in the tropical and subtropical latitudes (e.g., northeast of Madagascar, around Hawaii, and along the entire Gulf of Mexico Coast; anomalies 10–15 cm above normal). The 2020 annual mean anomalies were even higher in parts of the midlatitudes, such as in the extension regions of the Kuroshio and Gulf Stream Currents, although upwelling mesoscale eddy activity also contributed to small-scale areas of negative sea level anomalies.

Development of La Niña conditions during 2020 (see section 4b) explains most of the large-scale changes in the sea level compared to 2019 (Fig. 3.16b). Year-to-year sea level increases exceeding 15 cm occurred around parts of Indonesia and the Philippines (i.e., in the equatorial eastern
Indian Ocean and tropical northwestern Pacific Ocean, respectively), whereas in the central and eastern tropical Pacific, sea levels during 2020 were 5–10 cm lower relative to 2019. Elsewhere in the North Pacific Ocean, tendencies from 2019 to 2020 were for higher sea levels in a broad region centered around Hawaii (15 cm year-over-year increase) that extended both southwestward to the Philippines and northeastward to near the U.S. West Coast. The shape of high sea level anomalies around Hawaii resembles the SST pattern associated with a positive Pacific Meridional Mode (Chiang and Vimont 2004), which is also indicative of weaker-than-normal trade winds in the region (Long et al. 2020), consistent with 2020 observations of wind stress (Fig. 3.13b). The 2020 minus 2019 sea level difference was also positive in the southwestern and south-central Pacific Ocean (greatest near 30°S), throughout most of the Atlantic Ocean including along almost the entire U.S. Gulf and East Coasts, and in the northern Indian Ocean (especially in the Bay of Bengal). Overall, these sea level changes from 2019 to 2020 (Fig. 3.16b) are representative of the underlying OHCA changes in these locations (Fig. 3.4b) but also incorporate the sea level response to year-to-year variability of oceanic warming (Widlansky et al. 2020).

Besides development of La Niña and the associated falling sea levels that occurred in the eastern half of the equatorial Pacific during 2020, the largest intra-seasonal changes (Figs. 3.16c,d) occurred in the tropical Indian Ocean. The year began with well above-normal sea levels in the western Indian Ocean and well below-normal sea levels to the east (a gradient of almost 30 cm during the December–February [DJF] season; Fig. 3.16c). By the September–November (SON) season, the zonal gradient of sea level anomalies in the Indian Ocean had mostly disappeared (Fig. 3.16d). This relaxation of the Indian Ocean sea level anomalies was concurrent with the transition of the Indian Ocean dipole (IOD) index from positive at the beginning of 2020 to near neutral for the remainder of the year (see section 4f). The 2020 minus 2019 sea level difference (Fig. 3.16b) in the tropical Indo-Pacific more closely resembles the end-of-year pattern (Fig. 3.16d; SON), compared to the early-year pattern (Fig. 3.16c; DJF), which is consistent with the abrupt termination of the positive IOD.

Fig. 3.16. (a) Annual average sea level anomaly during 2020 relative to average sea level at each location during 1993–2020. (b) Average 2020 minus 2019 sea level anomaly. (c) Average sea level anomaly during DJF 2020 relative to 1993–2020 average. (d) Same as (c), but for SON. All units are given in cm. GMSL was subtracted from panels (c),(d) to emphasize regional, non-secular change. Altimetry data were obtained from the gridded, multi-mission product maintained by Copernicus Marine and Environment Monitoring Service.
Ongoing trends and year-to-year changes in sea level impact coastal communities by increasing the magnitude and frequency of positive sea level extremes that cause flooding and erosion. In many areas, coastal infrastructure is exposed to minor high-tide flooding when water levels exceed a threshold defined by the top 1% of observed daily maxima (Sweet et al. 2014). Such thresholds are expected to be exceeded three to four times per year but the heights of the thresholds vary geographically (Fig. 3.17a). The greatest numbers of 1%-threshold exceedances during 2020 occurred in regions that experienced the highest sea level anomalies (Fig. 3.17b): the equatorial and northern Indian Ocean and coasts along the western Pacific, the Hawaiian Islands, along the Gulf of Mexico, the southeast United States, and northern Europe. The number of threshold exceedances decreased by more than five days from 2019 to 2020 at 17 of the 122 locations analyzed and increased by more than five days at 31 locations (Fig. 3.16c). The largest year-over-year increases occurred in the equatorial Indian Ocean, Hawaii, and northern Europe, while elevated numbers of exceedances in the eastern Gulf of Mexico and southeast United States mostly represented a continuation of (or decrease from) elevated exceedances during 2019.

g. Surface currents

R. Lumpkin, R. Domingues, and G. Goni

This section describes ocean surface current changes, transports derived from ocean surface currents, and features such as rings inferred from surface currents. Surface currents are obtained from in situ (global arrays of drogued drifters and moorings) and satellite (altimetry and wind stress) observations. Transports are derived from a combination of sea surface height anomalies (from altimetry) and hydrographic climatologies. See Lumpkin et al. (2011) for details of these calculations. Zonal surface current anomalies are calculated with respect to a 1993–2007 climatology and are discussed for individual ocean basins as follows.

![Fig. 3.17. (a) Nuisance-level flooding thresholds defined by the level of the top 1% of observed daily maxima during 2000–18 from tide gauge records. Units are in meters above mean higher high water (MHHW) calculated over 2000–18. (b) Number of daily maximum water levels exceeding the thresholds in (a) during 2020. (c) Same as in (b), but for 2020 minus 2019. Daily maximum water levels were calculated from hourly tide gauge observations obtained from the University of Hawaii Sea Level Center Fast Delivery database. Only records with at least 80% completeness during 2000–18 and 80% completeness during 2020 were analyzed.](image)
1) Pacific Ocean

In 2020, the Pacific exhibited basin-wide annual mean zonal westward (negative) current anomalies of 14–16 cm s\(^{-1}\) from 150°E to 100°W (Fig. 3.18a) and the equator to 1°N, associated with the 2020 La Niña (see sections 3b, 4b). These were driven by strengthened easterly trade winds (Fig. 3.13a) and produced equatorial upper ocean heat anomalies that were negative in the east and positive in the west (Fig. 3.4a). To the north, eastward anomalies of 5 cm s\(^{-1}\) at 150°E–120°W, 8°–10°N indicated a stronger and northward-shifted North Equatorial Countercurrent (NECC; e.g., Johnson et al. 2002), which had a maximum eastward speed of 28 cm s\(^{-1}\) (total, not anomaly) at 6.6°N. This northward shift has been seen since 2018, when the NECC was similar in strength to 2020; because it was slightly weaker in 2019, the 2020 minus 2019 anomaly difference (Fig. 3.18b) indicates weaker eastward anomalies along this band.

Eastward anomalies of ~25 cm s\(^{-1}\) were present in the western equatorial Pacific in December–February (DJF), but reversed to strong (25 cm s\(^{-1}\)) westward anomalies across the basin by March–May (MAM; Fig. 3.19), leading sea surface temperature anomalies (see Fig. 3.2) by a season.

![Fig. 3.18. Annually averaged geostrophic zonal current anomalies (cm s\(^{-1}\)) for (a) 2020 and (b) 2020 minus 2019 difference derived from a synthesis of drifters, altimetry, and winds. Values not shown where they are not significantly from zero.](image)

![Fig. 3.19. Seasonally averaged zonal geostrophic anomalies (cm s\(^{-1}\)) with respect to seasonal climatology, for (a) DJF 2019/20, (b) MAM 2020, (c) JJA 2020, and (d) SON 2020. Values not shown where they are not significantly different from zero.](image)
These zonal surface current anomalies were strongest (25 cm s\(^{-1}\)) on the equator but were present from 6°S–4°N. Also in MAM, the NECC accelerated and exhibited eastward anomalies of ~10 cm s\(^{-1}\) along 6°–7°N. By June–August (JJA), the equatorial westward anomalies were primarily confined to the western third of the basin, while NECC anomalies weakened except in a narrow longitude range 125°–150°W. During these months, the core of the NECC was shifted north from its climatological location of 6.6°N to 8°N. As the year waned (September–November [SON]), westward anomalies reappeared west of 100°W from 6°N to 5°S, with maxima of ~25 cm s\(^{-1}\) on the equator.

In 2020, the global anomaly map (Fig. 3.18a) featured strong positive anomalies north of and strong negative anomalies south of the mean Kuroshio Extension location, indicating a shift to the north of 1.3° latitude (from 35.3°N to 36.6°N; Figs. 3.20a,b), the most northern annually-averaged location since 1993 (the start of satellite altimeter records). Long-term shifts in the location of the Kuroshio Extension are associated with a decadal stable/unstable oscillation (Qiu and Chen 2005). The Kuroshio Extension shifts to the north when it intensifies and becomes stable thus lowering eddy kinetic energy (EKE). Averaged in the downstream Kuroshio Extension region (141°–153°E, 32°–38°N; Qiu and Chen 2005), EKE was low in 1993–95, elevated in 1999–2001, low in 2002–04, high in 2005–08, and low in 2015–18 (Fig. 3.20c). EKE was close to its long-term average during 2019 and 2020. As noted in the *State of the Climate in 2019* report, the northern location of the Kuroshio Extension and near-climatological levels of EKE are so far inconsistent with a phase shift of the decadal mode described by Qiu and Chen (2005).

2) Indian Ocean

Annually-averaged zonal currents in the Indian Ocean exhibited 10–20 cm s\(^{-1}\) eastward anomalies at 6°S–2°N, 70°–95°E and, in the same longitude range, westward anomalies of 10–15 cm s\(^{-1}\) at 8°–14°S (Fig. 3.18a). The eastward anomalies are consistent with strong La Niña conditions and a southward migration of the South Equatorial Current (SEC; Lumpkin and Johnson 2013), while the westward anomalies indicate a strengthening of the SEC in that latitude band. Differences from 2019 (Fig. 3.18b) reflect the strong westward anomalies at 55°–95°E, 2°S–1°N seen in 2019 (and hence are positive anomalies in the 2020 minus 2019 difference map). The 2020 eastward anomalies indicate an acceleration of the seasonally varying eastward Wyrtki Jet, which climatologically is most prominent in May and November (e.g., Nagura and McPhaden 2010). These anomalies developed in JJA after the westward La Niña-related Pacific anomalies were established (Fig. 3.19c), when the Wyrtki Jet typically weakens to a weakly reversed state (Lumpkin and Johnson 2013). They persisted through SON (Fig. 3.19d) consistent with La Niña conditions (Lumpkin and Johnson 2013).
3) **Atlantic Ocean**

Annual mean zonal currents in the tropical Atlantic Ocean in 2020 exhibited a similar pattern to those in the Pacific, but zonal velocity anomalies were much weaker (Fig. 3.18a). Averaged across the basin, eastward anomalies of 3–4 cm s\(^{-1}\) at 6°–7°N indicate a slightly accelerated and northward-shifted NECC, while westward anomalies of 3–5 cm s\(^{-1}\) from the equator to 4°N indicate an acceleration of the westward northern core of the SEC. These westward anomalies rapidly developed in March–May (Fig. 3.19b) to maxima of ~10 cm s\(^{-1}\), weakened through JJA (Fig. 3.19c), and were gone by SON (Fig. 3.19d).

The variability of key Atlantic Ocean currents is continuously monitored in near-real time by leveraging relationships between in situ and satellite altimetry observations (https://www.aoml.noaa.gov/phod/indexes/index.php). In the South Atlantic, the Agulhas Current shed five rings, within the 1993–2020 average of four to six rings in a given year. The annual transport of the Agulhas Current was slightly below the average by −1.4 Sv in a cross section at ~28°E and between 34°S and 40°S. In the southwestern Atlantic, the Brazil–Malvinas Confluence was for the fourth consecutive year displaced to the south with respect to its mean location during 1993–2020. Since 1993, the Brazil–Malvinas Confluence has shifted southward at decadal time scales (cf., Lumpkin and Garzoli 2011; Goni et al. 2011). During 2020, the confluence was on average 0.5 degrees of latitude south of its 1993–2019 mean location, and over 1.5 degrees of latitude south of its average location in the early 1990s. This is important because the Brazil Current is the mechanism by which waters of subtropical origin are transported into subpolar regions.

In the North Atlantic, the 2020 volume transports of the North Brazil Current, Yucatan Current, and Florida Current (FC) were all below their 1993–2020 averages. The North Brazil Current serves as an interhemispheric conduit for water masses and heat from the South Atlantic into the North Atlantic. It also often sheds rings (Goni and Johns 2003) that can enter the Caribbean Sea while carrying low-salinity Amazon River waters (Ffield 2007), which are known for creating barrier layer conditions that can often contribute to hurricane intensification (e.g., Balaguru et al. 2012; Domingues et al. 2015). The North Brazil Current exhibited a mean negative transport anomaly of −1.4 Sv in 2020, which is within the lowest 25th percentile in terms of its annual mean transport, with anomalies as low as −5 Sv observed mostly during the first half of 2020. Farther to the north, the Yucatan Current and FC exhibited mean negative anomalies of −0.3 Sv and −0.7 Sv, respectively, with positive anomalies reaching ~2 Sv in the first half of 2020 and negative anomalies as low as −4 Sv during the second half of the year. Interestingly, the negative anomalies observed in the North Brazil Current during the first quarter of 2020 are of similar magnitude to the negative anomalies observed both in the Yucatan Current and FC in the latter half of the year. Because these currents are a critical part of the Atlantic meridional overturning circulation’s surface pathway (section 3h), negative transport anomalies first seen in the North Brazil Current may have subsequently propagated westward through the Caribbean Sea, were then transported into the Gulf of Mexico by the Yucatan Current, and then into the Florida Straits by the FC in the latter half of 2020. A lower-than-usual FC transport is closely tied to higher coastal sea level and “sunny day” flooding events along the southeast U.S. coast (Ezer and Atkinson 2014; Domingues et al. 2016; Volkov et al. 2020a), which may partly explain the 2020 increased number of high-tide flooding days in the Gulf of Mexico and southeast U.S. (Fig. 3.16b). Further studies addressing the delayed North Brazil Current to FC connection may help develop early warnings for such flooding events.

The zonally integrated component of surface and deep currents, known as the meridional overturning circulation (MOC), plays an important role in Earth’s climate because it provides a mechanism for ocean meridional heat transport (MHT). The observing system for the Atlantic MOC/MHT consists of several basin-wide moored arrays as well as the combination of satellite altimetry and in situ (mainly Argo and expendable BathyThermograph [XBT]) measurements (Fig. 3.21a; e.g., Frajka-Williams et al. 2019). The currently active basin-wide moored arrays are the Rapid Climate Change/MOC and Heatflux Array/Western Boundary Time Series (RAPID/MOCHA/WBTS) array at 26.5°N (Moat et al. 2020a), the South Atlantic MOC Basin-wide Array (SAMBA) at 34.5°S (Meinen et al. 2013, 2018), the Overturning in the Subpolar North Atlantic Program (OSNAP) array between about 55° and 60°N (Lozier et al. 2017, 2019), and the Tropical Atlantic Circulation and Overturning array at 11°S (TRACOS; Herrford et al. 2021).

The State of the Climate in 2019 report included MOC/MHT estimates derived from mooring measurements up to 2018 (Volkov et al. 2020b). The COVID-19 pandemic negatively impacted the servicing of moorings, because most research cruises scheduled in 2020 were either postponed or canceled. Therefore, no updates are available as of this writing for the basin-wide arrays in the North Atlantic (Figs. 3.21b,c). In this report, however, we present novel MOC upper- and lower- (“abyssal”) cell transport estimates from the extended number of SAMBA moorings (Fig. 3.21e; Kersalé et al. 2020) and new results for the TRACOS array (Fig. 3.21d; Herrford et al. 2021). Then we discuss the state of the Florida Current (FC) at 27°N (Fig. 3.22a) and provide the new estimates of the North Atlantic Current (NAC) volume transport (Fig. 3.22b; Lankhorst and Send 2020), which

![Image](https://example.com/figure321.png)

Fig. 3.21. (a) The Atlantic Ocean meridional overturning circulation (MOC) observing system: moored arrays (dashed black lines) and sections (yellow lines) across which the MOC is estimated by combining in situ measurements (Argo, XBT, bottom pressure) with satellite altimetry data. (b) Monthly time series of the MOC northward volume transport (black) and meridional heat transport (MHT; red) across the OSNAP array (Lozier et al. 2019). (c) Monthly time series of the MOC northward volume transport (black) and MHT (red) across the RAPID/MOCHA/WBTS array (Moat et al. 2020b). (d) Monthly time series of the MOC northward volume transport anomaly across the TRACOS array (Herrford et al. 2021). (e) Monthly time series of the MOC northward upper (black) and abyssal cell (blue) volume transport anomalies across the SAMBA (Kersalé et al. 2020). Units for (b)–(e) are given in Sv.
both constitute the bulk of the upper limb northward MOC transport in the subtropical and subpolar North Atlantic, respectively. Finally, we present updated MOC/MHT estimates derived from blended in situ and satellite observations at different locations through 2020 (Fig. 3.23).

The Atlantic MOC consists of an upper cell and an abyssal cell. Preliminary SAMBA efforts focused solely on the upper cell using two pressure-equipped inverted echo sounder (PIES) moorings at 1350-dbar isobath on either side of the basin (Meinen et al. 2013, 2018). Recently, both constitute the bulk of the upper limb northward MOC transport in the subtropical and subpolar North Atlantic, respectively. Finally, we present updated MOC/MHT estimates derived from blended in situ and satellite observations at different locations through 2020 (Fig. 3.23).

The Atlantic MOC consists of an upper cell and an abyssal cell. Preliminary SAMBA efforts focused solely on the upper cell using two pressure-equipped inverted echo sounder (PIES) moorings at 1350-dbar isobath on either side of the basin (Meinen et al. 2013, 2018). Recently,
both the upper and abyssal cell volume transports at 35.5°S from September 2013 to July 2017 were obtained using nine PIES (Fig. 3.21e; Kersalé et al. 2020). Both the upper and abyssal cells exhibit a high degree of variability at time scales ranging from a few days to a few weeks. The upper-cell transport variability obtained from nine PIES is about twice as strong as the variability observed with only two PIES (std. devs. are 15.5 and 8.2 Sv, respectively), due to a better representation of barotropic flows and mesoscale eddies. The rather low (−0.4) correlation between the upper and abyssal cell daily transports suggests that transport variability in the abyssal cell is largely independent of the variations in the upper cell. Both cells exhibit positive, but statistically insignificant, transport trends.

TRACOS array data at 11°S were analyzed in Herrford et al. (2021). This array consists of a western boundary current transport array (Hummels et al. 2015), an eastern boundary current meter mooring (Kopte et al. 2017), and two sets of pressure gauges deployed at 300-m and 500-m depth across the Brazilian continental slope and at the eastern boundary off Angola. The MOC transport estimate is based on the combination of bottom pressure measurements with satellite altimetry and wind stress data, and covers 2013–18 (Fig. 3.21d). Given the limitations of instruments and the shortness of time series, only the seasonal variability of the MOC at 11°S was investigated. The seasonal peak-to-peak amplitude of the MOC transport is 14 Sv, which is contributed by the upper-ocean geostrophic and Ekman transport fluctuations with peak-to-peak amplitudes of 12 Sv and 7 Sv, respectively. The seasonal variability of the geostrophic contribution to the MOC at 11°S is mainly modulated by oceanic adjustment to local and remote wind forcing.

The oldest MOC trans-basin array at 26.5°N (RAPID/MOCHA/WBTS) consists of tall moorings between the Bahamas and Africa and measurements of the FC volume transport with a submarine cable. Although the COVID-19 pandemic made it impossible to retrieve the mooring data and update the MOC estimates in 2020, cable measurements of the FC (Fig. 3.22a) were not affected. In 2020, the annual mean FC transport (31.2 ± 0.3 Sv) was stronger than in 2019 (30.1 ± 0.3 Sv), and close to the record mean transport (31.8 ± 0.2 Sv). The FC transport has been rather stable over the entire observational record, exhibiting only a small, statistically insignificant, negative trend (−0.03 ± 0.03 Sv yr⁻¹). Given the extremely high value of the FC measurements for monitoring the Atlantic MOC at 26.5°N, backup observing systems have been investigated in case the cable someday becomes inoperable. Transports estimated from bottom pressure measurements (8 July 2008–17 September 2014) on both sides of the Straits of Florida at 27°N explain roughly 55% of the daily cable transport variability (Meinen et al. 2020). Similarly, FC transports derived from cross-stream sea level differences measured by satellite altimetry (blue curve in Fig. 3.22a) account for up to 60% of the cable transport subsampled at the days of satellite overpasses (Volkov et al. 2020a). Although pressure gauges provide unrivaled temporal resolution, satellite altimetry yields a longer homogeneous data record (back to 1993) filling in the existing gaps in cable data (e.g., 1998–2000).

While no updates are available for the OSNAP array in the subpolar North Atlantic since the past year’s report (Fig. 3.21b), an estimate of the NAC volume transport across a section between the central Irminger Sea and the Porcupine Abyssal Plain (NAC section in Fig. 3.21a) was computed from in situ density profiles and satellite altimetry sea level anomalies (Lankhorst and Send 2020). Similar to the FC in the subtropical gyre, the NAC is an important contributor to the upper-ocean MOC transport in the subpolar gyre. The six-monthly NAC transport estimates (Fig. 3.22b) suggest that there is a likely multi-decadal oscillation exhibiting high values in the early 1990s, lower values throughout the 2000s, and higher transports again in recent years (2015–20). Values in recent years are below the recent maximum and may indicate the beginning of a downward tendency.

The only basin-integrated transports that were updated through 2020 are the blended estimates derived from the combination of satellite altimetry and in situ hydrography (XBT, Argo, etc.; Sanchez-Franks et al. 2021; McCarthy et al. 2020; Majumder et al. 2016; Dong et al. 2015). An MOC time series at 26.5°N, generated from the combination of altimetry and Argo data using the
method of Majumder et al. (2016), has been updated through 2020 (McCarthy et al. 2020; green curve in Fig. 3.23a). Another dynamically based method was recently developed for estimating the MOC at 26.5°N using satellite altimetry, in situ density profiles, and the ERA5 zonal wind stress (Sanchez-Franks et al. 2021). This latter MOC estimate (black curve in Fig. 3.23a) captures 69% of the interannual MOC variability observed by the RAPID/MOCHA/WBTS array (blue curve in Fig. 3.23a). The two satellite-based estimates reasonably agree only after the advent of Argo data in 2004, which indicates sensitivity to the amount of in situ data available for calibration and methodology used to derive them. Both estimates suggest that the MOC in 2020 was 1–2 Sv stronger than in 2019, but weaker than in 2018. It is too early to draw conclusions about the longer MOC tendencies, in particular in relation to a possible MOC strengthening since 2010 reported in Moat et al. (2020a).

Yearly blended MOC/MHT estimates at 20°S, 25°S, 30°S, and 34.5°S (Figs. 3.23b–e) obtained following Dong et al. (2015) estimate that in 2020, the MOC and MHT were somewhat lower than in 2019 at all latitudes. However, this change was statistically significant only at 34.5°S and 20°S for the MOC and at 20°S for the MHT. Significant positive trends in both the MOC and MHT over the entire observational period are observed at 34.5°S (0.48 ± 0.29 Sv decade$^{-1}$ and 0.04 ± 0.02 PW decade$^{-1}$, respectively). Significant negative trends in the MOC are observed at 30°S (−0.26 ± 0.16 Sv decade$^{-1}$) and 20°S (−0.37 ± 0.23 Sv decade$^{-1}$), with no significant trends in the MHT at other latitudes. These trends suggest that there has been a strengthening of the South Atlantic subtropical gyre and associated heat convergence in 1993–2020, consistent with the warming trend observed in the region (e.g., Dong et al. 2020; Fasullo and Gent 2017; Fig. 3.4c).

Comparisons of the various blended satellite/in situ MOC estimates among each other and the results from moored arrays (at 26.5°N and 34.5°S) usually yield low correlations and different variances (not shown), suggesting that the estimates are sensitive to the methodology used to derive them. In addition, differences between the MOC estimates from the pilot (two PIES) and extended (nine PIES) SAMBA moorings suggest sensitivity to the design of the observing array. To better determine the state of the MOC and understand its variability, it is necessary to reconcile different estimates and investigate the sources of uncertainties.

i. Global ocean phytoplankton—B. A. Franz, I. Cetinić, J.P. Scott, D. A. Siegel, and T.K. Westberry

Photosynthetic production of carbon by marine phytoplankton fuels oceanic ecosystems and drives biogeochemical cycles (e.g., Falkowski et al. 1998; Field et al. 1998), contributing roughly 50% of global net primary production (NPP). Phytoplankton distribution, growth, and diversity are governed by the availability of light and nutrients (e.g., nitrogen, phosphorous, and iron) in the upper ocean euphotic zone, which in turn are influenced by physical factors such as ocean temperature and circulation processes (e.g., Behrenfeld et al. 2006). Satellite ocean color sensors such as Sea-viewing Wide Field-of-view-Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias et al. 1998) allow detection of spatial and temporal changes in the distribution of phytoplankton through measurements of near-surface concentrations of the phytoplankton pigment chlorophyll-α (Chlα; mg m$^{-3}$) or phytoplankton carbon (C$_{\text{phy}}$, mg m$^{-3}$). While C$_{\text{phy}}$ is a direct measure of phytoplankton biomass, Chlα is an indicator of variability in both biomass and phytoplankton physiology. Discrepancies between their distributions (shifts in Chlα:C$_{\text{phy}}$ ratios) thus provide valuable insight into physiological variability within the cells (due to the changes in light and nutrient conditions) or variability in species composition (Westberry et al. 2016; Siegel et al. 2013; Dierssen 2010; Geider et al. 1997). Taken together, these measurements provide a synoptic view of phytoplankton biomass, composition, and health in the ocean, as well as its response to climate-driven changes in the marine environment.

Here we evaluate global Chlα and C$_{\text{phy}}$ distributions for the one-year period from October 2019 through September 2020 (the analysis year), within the context of the continuous 23-year record provided through the combined observations of SeaWiFS (1997–2010) and MODIS on *Aqua*
(MODIS-A, 2002–present). The MODIS-A daytime sea surface temperature (SST; °C) is also assessed for the same time period to provide context on the physical state of the oceans. The Chl\(a\) product was derived using the Ocean Color Index algorithm of Hu et al. (2012), while C\(_{phy}\) was derived from the particle backscattering coefficient, \(b_{bp}\), at 443 nm (Generalized Inherent Optical Properties algorithm; Werdell et al. 2013) and a linear relationship between \(b_{bp}\) and C\(_{phy}\) as described in Graff et al. (2015). In combining the ocean color records, the overlapping period from 2003 through 2010 was used to assess and correct for residual bias between the two mission datasets.

Changes in phytoplankton distribution were evaluated by subtracting monthly climatological means for MODIS-A (October 2002–September 2019) from their monthly mean values for MODIS-A Chl\(a\) and C\(_{phy}\) in the analysis year. These monthly anomalies were then averaged to produce the global Chl\(a\) and C\(_{phy}\) annual mean anomaly maps (Figs. 3.24a,b). Similar calculations were performed on MODIS-A SST data to produce an equivalent SST annual mean anomaly for the same time period (Fig. 3.24c). The permanently stratified ocean (PSO) is defined as the region, spanning the tropical and subtropical oceans, where annual average SST is greater than 15°C and surface mixed layers are typically low in nutrients and shallower than the nutricline (black lines near 40°N and 40°S in Fig. 3.24; Behrenfeld et al. 2006).

Fig. 3.24. Spatial distribution of average monthly (a) MODIS-A Chl\(a\) anomalies, (b) MODIS-A C\(_{phy}\) anomalies, and (c) MODIS-A SST anomalies, where monthly differences were derived relative to a MODIS-A 17-year climatological record (Oct 2002–Sep 2019). Chl\(a\) and C\(_{phy}\) are stated as % difference from climatology, while SST is shown as an absolute difference. Also shown in each panel is the location of the mean 15°C SST isotherm (black lines) delineating the permanently stratified ocean (PSO). Differences in the SST anomalies here versus in Fig. 3.1a are owing to differences in climatological periods, smoothing, and data sources.
A striking feature of the phytoplankton Chlα anomaly distributions for this year is a strong hemispherical difference, with elevated concentrations in the south and depressed concentrations in the north, and with C_{phy} distributions showing a weaker but inverse hemispherical difference (Figs. 3.24a,b). Within the PSO, Chlα concentrations (Fig. 3.24a) were consistently elevated 20%–40% throughout much of the subtropical Southern Hemisphere (SH), with the largest positive anomalies in the southern Indian Ocean followed by the subtropical South Pacific and South Atlantic. These regions were generally characterized by anomalously cold water conditions, characteristic of the La Niña phase of the El Niño-Southern Oscillation ([ENSO] with SST depressed -0.6° to -0.8°C; Fig. 3.24c). Negative SST anomalies in these stratified ocean regions typically correspond with a deepening of the surface mixed layer (Deser et al. 2010), which decreases the effective light exposure per unit of phytoplankton biomass within that mixed layer. The response of the phytoplankton to this decreased insolation is to increase cellular chlorophyll concentration and thus light-use efficiency (Behrenfeld et al. 2015). In combination with the physiological response to low-nutrient conditions in the PSO, this leads to increased cellular chlorophyll-to-carbon ratios (Westberry et al. 2016) and thus a decoupling of the Chlα and C_{phy} anomalies. The C_{phy}...
anomalies (Fig. 3.24b) show a reduction in phytoplankton biomass of 5%–10% in these elevated Chla (Fig. 3.24a) regions of the subtropical southern PSO, supporting this hypothesis. A weaker but opposite change in Chla and C PHY is observed in the subtropical North Pacific PSO region, with Chla generally depressed (0%–10%) and C PHY concentrations neutral to elevated (0%–5%) within anomalously warmer ocean waters (Fig. 3.24c; Sidebar 3.1). Large increases in C PHY were also observed in the Arabian Sea and Bay of Bengal, as well as the tropical Atlantic. In the tropical Pacific, both Chla and C PHY were weakly elevated, consistent with a transition to La Niña conditions. Outside the PSO, phytoplankton anomalies (Figs. 3.24a, b) showed larger spatial variability and patchiness, including some large patches of highly elevated (>50%) phytoplankton biomass anomalies in the Southern Ocean, but with Chla and C PHY generally covarying in these well-mixed waters, consistent with previous studies (e.g., Franz et al. 2020). The higher spatial variability typically observed poleward of the PSO is indicative of the episodic and intense nature of phytoplankton blooms in these regions, but the relatively poor sampling at high latitudes due to clouds and polar night also contributes to higher noise in the ocean color signal, thus limiting confidence in the interpretation of inter-annual changes.

Seasonal changes in phytoplankton biomass in the PSO typically display two pronounced peaks, reflecting vernal increases in biomass in the Northern Hemisphere (NH) and SH (Fig. 3.25). Peaks in monthly climatological C PHY tend to lag peaks in Chla by roughly two to three months, reflecting a reduction in phytoplankton chlorophyll-to-carbon ratios as the seasonal bloom progresses (e.g., Westberry et al. 2016). During 2020, the NH peak in Chla (Fig. 3.25c) occurred in March, followed by C PHY maximum in June (Fig. 3.25d), consistent with previous observations (Franz et al. 2020). Generally, monthly mean values of Chla and C PHY fell within the range of climatological norms, with the exception of depressed Chla concentrations observed during March–June. In the SH, however, Chla concentrations were well above the climatological norms for much of the analysis period, with a delayed transition from the austral spring peak in October (2019) to the autumn minimum in March, while a weaker but inverse deviation from the climatology was observed in the C PHY seasonal cycle. These SH seasonal trend deviations from the climatology are consistent with the

![Graph showing seasonal changes in phytoplankton biomass](image-url)

Fig. 3.26. 23-year, multi-mission record of Chla (mg m⁻³) and C PHY (%) averaged over the PSO for SeaWiFS (blue), MODIS-A (red), and combined (black). (a) Chla from each mission, with the horizontal line indicating the multi-mission mean Chla concentration for the region. (b) Monthly Chla anomalies from SeaWiFS and MODIS-A after subtraction of the 22-year multi-mission climatological mean (Fig. 3.25). (c), (d) Same as (a), (b), respectively, but for C PHY. Green diamonds show the Multivariate ENSO Index, inverted and scaled to match the range of the Chla and C PHY anomalies.
mean anomalies observed in Fig. 3.24, and provide additional context for the progression of the anomaly through the year.

Over the 23-year time series of spatially integrated monthly mean Chlα within the PSO (Fig. 3.26a), concentrations vary by ~15% (±0.02 mg m$^{-3}$) around a long-term average of 0.142 mg m$^{-3}$ (Fig. 3.26a). This variability includes significant seasonal cycles in Chlα distributions and responses to climatic events, as has been observed previously (e.g., Behrenfeld et al. 2006; Franz et al. 2020). C$_{phy}$ over the same 23-year period varies by ~7% (±1.5 mg m$^{-3}$) around an average of 23.7 mg m$^{-3}$ (Fig. 3.26c). Seasonal cycles in C$_{phy}$ are more clearly defined than those of Chlα, consistent with the assertion that C$_{phy}$ better represents variability of phytoplankton biomass, independent of the confounding influence of physiology.

Chlα monthly anomalies within the PSO (Fig. 3.26b) vary by ±10% (±0.015 mg m$^{-3}$) over the multi-mission time series, with the largest deviations generally associated with ENSO events, as demonstrated by the correspondence of Chlα anomaly variations with the Multivariate ENSO Index (MEI; Wolter and Timlin 1998; presented in the inverse to illustrate the covariation). Pearson correlation coefficients between MEI and the Chlα and C$_{phy}$ monthly anomalies calculated for the 23-year record were 0.36 and 0.30, respectively. Over the last year, variability in monthly Chlα anomalies was modest (~2% to +10%) and generally elevated, consistent with weak La Niña conditions (Fig. 3.26b). Similar observations cannot be made of the C$_{phy}$ anomalies, which were more constrained than the Chlα anomalies and generally do not follow the MEI over the last year (Fig. 3.26d). Our findings suggest that the effect of the 2020 La Niña on phytoplankton populations within the PSO was generally to increase Chlα:C$_{phy}$ ratios while leaving phytoplankton biomass largely unchanged.

Observed trends and variability in C$_{phy}$ reflect changes in phytoplankton biomass, while Chlα variability can indicate changes in biomass, physiology, and community composition (e.g., Dierssen 2010). These properties are mechanistically linked to physical conditions of the upper ocean, as well as to ecological interactions between phytoplankton and their zooplankton predators. Our ability to track subtle variations in the distribution of Chlα and C$_{phy}$ on the global scale can help unravel the diversity and covariation of climate-driven changes in phytoplankton distributions. Future satellite missions, such as the upcoming hyperspectral Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, will enable a more precise identification of phytoplankton absorption features (Werdell et al. 2019) and separation of those features from non-algal optical contributions (Siegel et al. 2005), and thereby facilitate the assessment of changes in phytoplankton species or community composition. Such data will further advance our ability to disentangle the impacts of climate forcing on global phytoplankton communities that drive biogeochemical processes, govern the role of the oceans in the global carbon cycle, and through their productivity exert a controlling influence on marine ecosystems, food webs, and fisheries.

While the Pacific Ocean north of ~20°S has the lowest column inventory of anthropogenic carbon dioxide (CO₂) outside of the Southern Ocean (Gruber et al. 2019), background dissolved inorganic carbon content is high as a result of respiration that occurs in the ocean’s interior and old “ages” of deep Pacific waters. Consequently, the northern Pacific Ocean, where deep water resurfaces, has naturally steep vertical gradients in buffering capacity (Egleston et al. 2010; Jiang et al. 2019), CO₂ fugacity (fCO₂; see section 3j), pH—a measure of acidity (Jiang et al. 2019), and calcium carbonate saturation states (Jiang et al. 2015) with many Pacific marine ecosystems vulnerable to ocean acidification impacts (Christian and Ono 2019). In combination with projected deoxygenation, sea surface temperature (SST) change, and a recent propensity for strong, lasting, large-scale marine heatwaves (Bopp et al. 2013; Sidebar 3.1), ocean acidification in the northern Pacific Ocean poses an accelerating threat to marine species and ecosystems that underpin economically important industries from fishing to tourism.

Underway CO₂ observations collected by M/V Bluefin provide a synoptic look at carbonate chemistry and pH status in surface waters of the Pacific Ocean north of 15°S during 2020 (Alin et al. 2021). Here we combined the underway fCO₂, temperature, and salinity measurements with total alkalinity estimates generated using the locally interpolated alkalinity regression (LIARv2) method to calculate pH on the total scale (pH_total) using CO₂SYS (Carter et al. 2018; van Heuven et al. 2011), creating a 2020 snapshot of ocean acidification status in Pacific surface waters (Fig. SB3.2b). We compared calculated values with published climatological average fCO₂ and pH_total values to 2020 observations to determine how 2020 acidification conditions around the Pacific compared to climatological conditions and variability typical of each region.

Because it is an upwelling system, the California Current System (CCS) has high spatial variability in biogeochemical parameters. The Strait of Juan de Fuca (SJDF) is a major source of freshwater to the northern CCS. Winter, spring, and autumn 2020 observations in CCS and SJDF regions revealed average surface fCO₂ values in the CCS below atmospheric values, with relatively high variability, and SJDF fCO₂ averages and variability both higher than in the CCS due to strong mixing of the water column (Feely et al. 2010). Average winter SJDF fCO₂ and pH_total values were higher and lower, respectively, than climatological averages but just within seasonal amplitudes for the region; spring observations agreed with climatological averages for both parameters; and autumn average values were substantially lower than climatological averages.
higher for fCO_2 and lower for pH_{total} than monthly averages (Fassbender et al. 2018). Seasonal CCS observations for fCO_2 and pH_{total} variability fell within historical bounds as calculated by Fassbender et al. (2018) and Sutton et al. (2019). Most of the highest highs and lowest lows in this 2020 dataset occurred in the CCS or SJDF.

In the subarctic waters (>48°N) of the Gulf of Alaska and south of the Aleutian Archipelago (to 165°E), summer 2020 observations showed moderate to high variability in carbonate chemistry, with average fCO_2 values below atmospheric levels and average pH_{total} values >8.0. Outside of the CCS and SJDF, the lowest and highest fCO_2 and pH_{total} values were recorded near the Aleutians, which reflect strong physical mixing of the water column and resulting biological productivity as water masses pass from the North Pacific into the Bering Sea. Regional average values of fCO_2 and pH_{total} were on the high and low ends, respectively, of published climatological values for summer (Takahashi et al. 2014; Jiang et al. 2019; Sutton et al. 2019).

During mid-summer, the Oyashio Current was a region of strong undersaturation of CO$_2$ relative to the atmosphere, with the lowest average fCO_2 and highest average pH_{total} values during this synoptic 2020 survey. However, these values were relatively high for fCO_2 and low for pH_{total} compared to climatological values for this region, which is known for strong primary production (Jiang et al. 2019; Midorikawa et al. 2010; Ono et al. 2019), suggesting that the positive 2020 SST anomalies of the northwestern Pacific (cf. Figs. 3.2 and SB3.1) may have resulted in either earlier phytoplankton bloom timing than normal and/or an increase of fCO_2 driven by thermodynamics. The reduced drawdown during these mid-summer observations is consistent with the slightly reduced air–sea CO_2 flux anomaly for 2020 relative to 2019 in this region (cf. Fig. 3.28b).

In the western tropical–subtropical Pacific, relatively low variability in fCO_2 and pH_{total} values were typical of the region, with average values above and below annual climatological values, respectively (Jiang et al. 2019). However, on central equatorial Pacific transects (10°S–10°N, 165°E–140°W), steep meridional gradients in surface carbonate chemistry due to equatorial upwelling resulted in moderately high variability in both fCO_2 and pH_{total}. Peak fCO_2 and minimum pH_{total} were centered near or just south of the equator on each transect. The equatorial upwelling of high-CO_2, low-pH water during La Niña conditions that developed late in 2020 extended farther westward than normal (see section 4b).

In the oligotrophic subtropical North Pacific Gyre (NPG), the lowest fCO_2 and pH variability was recorded during all 2020 cruises. Waters surrounding Hawaii (10°–30°N) and in the northeastern subtropical to temperate Pacific had fCO_2 cruise averages mostly below or near atmospheric values, and pH_{total} averages >8.0. While spring NPG fCO_2 and pH_{total} were within range of climatological values, autumn values of fCO_2 and pH_{total} were somewhat elevated and depressed, respectively, relative to climatological values, likely also reflecting the late 2020 onset of La Niña conditions (Takahashi et al. 2014; Jiang et al. 2019; Sutton et al. 2019).

Overall, 2020 fCO_2 and pH_{total} observations around the northern Pacific Ocean were consistent with historical observations in showing the highest variability and averages in northeastern Pacific ecosystems, followed by the central and eastern equatorial Pacific, and the lowest variability and moderate averages in the western Pacific low latitudes and the subtropical NPG. These differences in mean conditions and variability largely reflect the buffering effects of higher alkalinity in the southwestern Pacific compared to the northeastern North Pacific. Moderately anomalous ocean acidification conditions associated with SST anomalies and La Niña conditions were observed during the second half of 2020.

j. Global ocean carbon cycle

—R. A. Feely, R. Wanninkhof, P. Landschützer, B. R. Carter, J. A. Triñanes, and C. Cosca

1) Introduction

The oceans play major roles in the global carbon cycle, including taking up a substantial fraction of the excess carbon dioxide (CO$_2$) that humans release into the atmosphere. As a consequence of humankind’s collective CO_2 emissions into the atmosphere, referred to as “anthropogenic CO_2” (C_{anth}), emissions, atmospheric CO_2 concentrations have risen from pre-industrial levels of about 278 ppm (parts per million) to 412 ppm in 2020. Marine C_{anth} is the major cause of anthropogenic ocean acidification, with riverine C_{anth} and other atmospheric trace gases (e.g., nitrogen and sulfur gases) being other sources. Over the last decade, the global ocean has continued taking up a substantial fraction of the C_{anth} emissions and therefore is a major mediator of global climate change. Of the 11.5 (±0.9) Pg C yr$^{-1}$ C_{anth} released from 2010 to 2019, about 2.5 (±0.6) Pg C yr$^{-1}$ (23%) accumulated in the ocean, 3.4 (±0.6) Pg C yr$^{-1}$ (29%) accumulated on land, and 5.1 (±0.02) Pg C yr$^{-1}$ (44%) remained in the atmosphere with an imbalance of −0.1 Pg C yr$^{-1}$ (4%); Table 6 in Friedlingstein...
et al. 2020). This decadal ocean carbon uptake consensus estimate combines measured decadal CO₂ inventory changes, models, and global air–sea CO₂ flux estimates based on surface ocean fugacity of CO₂ \((f\text{CO}_2w) \) measurements\(^1\) from ships and moorings. The oceanic anthropogenic carbon sink has grown from 1.0 (±0.3) Pg C yr\(^{-1}\) in the decade of the 1960s to 2.6 (±0.6) Pg C yr\(^{-1}\) in 2019 (Friedlingstein et al. 2020).

2) Air–sea carbon dioxide fluxes

Ocean uptake of CO₂ is estimated from the net air–sea CO₂ flux derived from the bulk flux formula with air (a) minus surface seawater (w) differences in CO₂ fugacity \((\Delta f\text{CO}_2 = f\text{CO}_2w - f\text{CO}_2a) \) and gas transfer coefficients as input. Gas transfer is parameterized with wind as described in Wanninkhof (2014). This provides a net flux estimate. To determine the \(C_{\text{anth}} \) fluxes into the ocean, several other processes need to be considered. A steady contribution of carbon from riverine runoff, originating from organic and inorganic detritus from land, with estimates ranging from 0.45 to 0.78 Pg C yr\(^{-1}\) (Resplandy et al. 2018) needs to be included. We use 0.6 Pg C yr\(^{-1}\) as the riverine adjustment. We assume other factors such as natural carbon deposition into the sea floor and margins are small. \(C_{\text{anth}} \) flux is therefore defined here as the sum of the net flux minus the riverine adjustment. The data sources for \(f\text{CO}_2w \) are annual updates of observations from the Surface Ocean CO₂ Atlas (SOCAT) composed of mooring, uncrewed surface vehicle, and ship-based observations (Bakker et al. 2016), and the database with ship-based observations (Takahashi et al. 2020). The increased observations and improved mapping techniques, including neural network methods summarized in Rödenbeck et al. (2015), now provide global \(f\text{CO}_2w \) fields on a 1° latitude × 1° longitude grid at monthly time scales. This allows investigation of variability on monthly to decadal time scales.

The monthly 2020 \(\Delta f\text{CO}_2 \) maps are based on the observation-trained neural network (NN; artificial intelligence) approach of Landschützer et al. (2013, 2014). The 2020 values are projections using the NN predictor variables based on sea surface temperatures (SST), sea surface salinity (SSS), satellite chlorophyll-a (Chl\(a \)), and atmospheric CO₂ for 2020; a climatological mixed layer depth product (de Boyer Montegut et al. 2004); and an NN approach for \(f\text{CO}_2w \) developed using SOCAT data from 1982 through December 2019. The 2020 estimate uses the monthly ERA5 wind fields for the fluxes, as the cross-calibrated multi-platform winds (Atlas et al. 2011) used for previous years are not available (Fig. 3.27).

The NN results show an increasing ocean sink in the first part of the record from 1982 to 1994, followed by a period of rapidly decreasing uptake from 1995 to 2000 with no definite attribution. Thereafter, the NN results show a strong increase.

\(^1\) The fugacity is the partial pressure of CO₂ \((p\text{CO}_2) \) corrected for non-ideality. They are numerically similar for surface waters with \(f\text{CO}_2 = 0.997 p\text{CO}_2 \).

Fig. 3.27. Global annual (thick blue line) and monthly (thin blue line) net CO₂ fluxes (Pg C yr\(^{-1}\)) for 1982–2020 using a Neural Network (NN) approach. The red line is the anthropogenic CO₂ flux, that is the net flux including a riverine adjustment of −0.6 Pg C. Negative values indicate CO₂ uptake by the ocean.
increase in the ocean sink from 2001 onward that continues through 2020 with a 0.03 Pg C yr\(^{-1}\) increase for the NN in 2020 over 2019. The amplitude of seasonal variability for the NN approach is \(\approx 1\) Pg C with minimum uptake from June to September, with a seasonal cycle amplitude exceeding interannual uptake variations. The \(C_{\text{anth}}\) flux of 3.0 Pg C yr\(^{-1}\) for 2020 from the NN approach in 2020 is 29% above the 1999–2019 average of 2.33 (±0.52) Pg C yr\(^{-1}\).

The annual average flux map for 2020 (Fig. 3.28a) shows the characteristic pattern of effluxes (ocean-to-air CO\(_2\) fluxes) in the tropics as well as coastal and open ocean upwelling zones. Coastal upwelling regions include the Arabian Sea and off the west coasts of North and South America. The western Bering Sea in the northwest Pacific was a strong CO\(_2\) source as well in 2020. The region with the largest efflux is the upwelling region of the eastern and central equatorial Pacific. Cumulatively, the regions of effluxes are significant CO\(_2\) sources to the atmosphere (\(\approx 1\) Pg C). The primary uptake regions are in the subtropical and subpolar regions. The largest sinks are observed poleward of the subtropical fronts. The frontal positions determine the location of the maximum uptake. This sink is weaker in the Pacific sector of the Southern Ocean compared to the other basins.

In the Northern Hemisphere, there is a significant asymmetry in fluxes in the sub-Arctic gyres, with the North Atlantic being a large CO\(_2\) sink while the North Pacific’s Bering Sea is a CO\(_2\) source. This difference is partly due to the position of the western boundary currents whose cooling waters are known to contribute to CO\(_2\) sinks at high latitudes: the Gulf Stream/North Atlantic Drift in the Atlantic extends farther north than the Kuroshio in the Pacific (Takahashi et al. 2009).

The ocean carbon uptake anomalies (Fig. 3.28b) in 2020 relative to the 1997–2018 average are attributed to the increasing ocean CO\(_2\) uptake with time due to atmospheric CO\(_2\) increases (Fig. 3.27) and to variations in large-scale climate modes. The long-term air–sea flux trend since the minimum uptake in 2000 is \(-0.72\) Pg C decade\(^{-1}\) (blue shading in Fig. 3.28c). Despite this trend, there are several large regions showing positive anomalies for 2020. Notably large positive anomalies are seen in the central equatorial Pacific; in a broad band running northwest across the subtropical northwest Pacific (from \(\approx 20^\circ\) to 40\(^{\circ}\)N) attributed in the northeastern edge of the band to the North Pacific marine heat wave (Sidebar 3.1, see section 2b3); and in the western central to eastern subtropical Atlantic. The increased effluxes in the central equatorial Pacific are related to...
the Oceanic Niño Index (ONI) turning negative in 2020, indicating La Niña conditions following a period of predominantly positive ONI (i.e., more El Niño-like conditions) in the preceding two years. The negative SST anomalies (Fig. 3.1a) indicate increased upwelling of waters with high CO₂ content in the central Pacific returning after a period of lower-than-normal upwelling. Of note, the eastern equatorial Pacific southeast of the Galapagos shows a negative CO₂ flux anomaly. The positive anomalies in fluxes (i.e., more efflux/less influx in 2020 compared to the long-term mean) in the sub-tropics closely correspond to positive temperature anomalies (Fig. 3.1), showing that the flux anomalies in these regions are temperature driven. The difference in fluxes between 2020 and 2019 (Fig. 3.28c) are similar to the anomalies (Fig. 3.28b).

The oceanic variability of the air–sea exchange fluxes in the tropical Pacific are largely controlled by the surface ocean variability and wind forcing influenced by the type and phasing of the El Niño-Southern Oscillation events (e.g., Feely et al. 1999, 2002, 2006, 2019; Ishii et al. 2009, 2014, 2020; Takahashi et al. 2009; Wanninkhof et al. 2013; Landschützer et al. 2014, 2016). The central and eastern equatorial Pacific is a major source of CO₂ to the atmosphere during neutral and La Niña periods, a weak source during weak El Niño periods, and near-neutral during strong El Niño periods. El Niño is characterized by a large-scale weakening of the trade winds, a decrease in upwelling of CO₂ and nutrient-rich subsurface waters, and a corresponding warming of SST in the eastern and central equatorial Pacific. La Niña is characterized by strong trade winds, cold tropical SSTs, and enhanced upwelling along the equator. During the strong eastern Pacific El Niño events of 1982–83, 1997–98, and 2015–16, the cold waters of the eastern equatorial Pacific disappear and fCO₂ values are close to equilibrium with the atmosphere (FIG. 3.29), whereas during the weaker central Pacific El Niños of 1991–94, 2002–05, 2006–07, and 2009–10, the equatorial...
cold tongue is present but less pronounced, and fCO_2 values are higher than atmospheric values but lower than corresponding values for non-El Niño periods. The strong 1997–98 El Niño has SST anomalies exceeding 4°C and the lowest fCO_2 values throughout most of the equatorial Pacific. In contrast, the 2015–16 El Niño has SST anomalies that are similar to those seen during the 1997–98 event, yet the fCO_2 values were significantly higher because the upwelling-favorable winds were stronger in the easternmost and westernmost parts of the region. La Niña conditions returned in summer and autumn of 2020 (see section 4b) and were characterized by low SST and high fCO_2 levels throughout the entire tropical Pacific, but were mostly enriched in the central portion of the equatorial belt relative to previous years.

3) Large-scale carbon changes in the ocean interior

Global-scale CO_2 emissions from human activities are causing ocean interior C_{anth} increases and acidification. Delineating how the biogeochemical processes in the ocean interior will be affected by the changing heat content and C_{anth} uptake is essential for developing future mitigation and adaptation responses to climate change. Anthropogenic carbon accumulation occurs against a backdrop of vigorous natural marine carbon cycling. In the well-lit surface ocean, photosynthesizing organisms take up dissolved inorganic carbon to form organic matter, and some organisms form their shells and hard parts out of carbonate minerals. A portion of the organic matter and carbonate mineral matter that is formed or precipitated sinks into the interior ocean where it is remineralized, releasing the carbon back into the interior ocean. This biological transport of dissolved inorganic carbon from the surface ocean into the interior ocean is called the “soft” and “hard” tissue pumps. Several recently produced data products—i.e., interior ocean data products (Olsen et al. 2016, 2020), seawater property estimation algorithms (Carter et al. 2017), and circulation fields based on model simulations that assimilate interior-ocean observations (DeVries et al. 2017)—were combined to produce a new carbon data product containing estimates of the properties that seawater would have in the absence of this natural interior ocean biogeochemical cycling (Fig. 3.30; Carter et al. 2021). The dissolved inorganic carbon accumulated from the hard and soft tissue pumps can be quantified as the difference between the observed values and those estimated from several seawater properties. These estimates suggest the ocean holds 1300 Pg C of carbon from remineralized organic matter and 560 Pg C from dissolution of carbonate mineral phases. This is ~500 Pg C less carbon from organic matter than would be calculated using the assumption that all interior ocean water masses were initially 100% saturated with oxygen. The carbonate mineral dissolution accumulations found in this study are more evenly spread across the water column than those from previous estimates, suggesting a more uniform carbonate mineral dissolution rate with depth than was previously found.

Fig. 3.30. Maps of the accumulation of dissolved inorganic carbon (μmol kg$^{-1}$) from (a–d) remineralized organic matter (C_{bio}) and from (e–h) dissolution of carbonate minerals (C_{inorg}) at (a,e) 200 m, (b,f) 1000 m, (c,g) 2500 m, and (d,h) 4000 m.
Acknowledgments

- Sandra Bigley provided invaluable editorial support for Chapter 3. Internal reviewers, external reviews, and report editors all provided comments that helped to improve the chapter.
- Argo data used in the chapter were collected and made freely available by the International Argo Program and the national programs that contribute to it. (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is part of the Global Ocean Observing System. Many authors of the chapter are supported by NOAA Research, the NOAA Global Ocean Monitoring and Observing Program, or the NOAA Ocean Acidification Program.
- L. Cheng is supported by National Natural Science Foundation of China (42076202) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42040402).
- R. E. Killick is supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. PMEL contribution numbers 5214, 5215, 5216, 5217, and 5247.
Chapter 3 – Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Antarctic Circumpolar Current</td>
</tr>
<tr>
<td>AMOC</td>
<td>Atlantic meridional overturning circulation</td>
</tr>
<tr>
<td>BASS</td>
<td>Blended Analysis of Surface Salinity</td>
</tr>
<tr>
<td>C_{anth}</td>
<td>anthropogenic CO$_2$</td>
</tr>
<tr>
<td>CCS</td>
<td>California Current System</td>
</tr>
<tr>
<td>CERES</td>
<td>Clouds and the Earth’s Radiant Energy System</td>
</tr>
<tr>
<td>Chla</td>
<td>chlorophyll-a</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COARE</td>
<td>Coupled Ocean-Atmosphere Response Experiment</td>
</tr>
<tr>
<td>C_{phy}</td>
<td>phytoplankton carbon</td>
</tr>
<tr>
<td>DJF</td>
<td>December–February</td>
</tr>
<tr>
<td>DOISST</td>
<td>Daily Optimum Interpolation ST version 2.1</td>
</tr>
<tr>
<td>E</td>
<td>evaporation</td>
</tr>
<tr>
<td>$E-P$</td>
<td>evaporation minus precipitation</td>
</tr>
<tr>
<td>EBAF</td>
<td>Energy Balanced and Filled</td>
</tr>
<tr>
<td>EKE</td>
<td>eddy kinetic energy</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño–Southern Oscillation</td>
</tr>
<tr>
<td>ERSSSTv5</td>
<td>Extended Reconstruction Sea Surface Temperature version 5</td>
</tr>
<tr>
<td>FC</td>
<td>Florida Current</td>
</tr>
<tr>
<td>FLASHFlux</td>
<td>Fast Longwave And Shortwave Radiative Fluxes</td>
</tr>
<tr>
<td>GMSL</td>
<td>global mean sea level</td>
</tr>
<tr>
<td>GPCP</td>
<td>Global Precipitation Climatology Project</td>
</tr>
<tr>
<td>GRACE</td>
<td>Gravity Recovery and Climate Experiment</td>
</tr>
<tr>
<td>GRACE-FO</td>
<td>Gravity Recovery and Climate Experiment Follow-On</td>
</tr>
<tr>
<td>HadSST</td>
<td>Hadley Centre SST</td>
</tr>
<tr>
<td>IO</td>
<td>Indian Ocean</td>
</tr>
<tr>
<td>IOD</td>
<td>Indian Ocean dipole</td>
</tr>
<tr>
<td>ITCZ</td>
<td>Intertropical Convergence Zone</td>
</tr>
<tr>
<td>JJA</td>
<td>June–August</td>
</tr>
<tr>
<td>LH</td>
<td>latent heat</td>
</tr>
<tr>
<td>LIARv2</td>
<td>Locally Interpolated Alkalinity Regression</td>
</tr>
<tr>
<td>LW</td>
<td>longwave</td>
</tr>
<tr>
<td>MAM</td>
<td>March–May</td>
</tr>
<tr>
<td>MEI</td>
<td>Multivariate ENSO Index</td>
</tr>
<tr>
<td>MHHW</td>
<td>mean higher high water</td>
</tr>
<tr>
<td>MHT</td>
<td>meridional heat transport</td>
</tr>
<tr>
<td>MHW</td>
<td>marine heat wave</td>
</tr>
<tr>
<td>MOC</td>
<td>meridional overturning circulation</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODIS-A</td>
<td>MODIS on Aqua</td>
</tr>
<tr>
<td>NAC</td>
<td>North Atlantic Current</td>
</tr>
<tr>
<td>NECC</td>
<td>North Equatorial Countercurrent</td>
</tr>
<tr>
<td>NH</td>
<td>Northern Hemisphere</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>NPG</td>
<td>North Pacific Gyre</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary production</td>
</tr>
<tr>
<td>OAFlux</td>
<td>Objectively Analyzed air-sea Fluxes</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OHCA</td>
<td>ocean heat content anomaly</td>
</tr>
<tr>
<td>ONI</td>
<td>Oceanic Niño Index</td>
</tr>
<tr>
<td>OSNAP</td>
<td>Overturning in the Subpolar North Atlantic Program</td>
</tr>
<tr>
<td>P</td>
<td>precipitation</td>
</tr>
<tr>
<td>PACE</td>
<td>Plankton, Aerosol, Cloud, ocean Ecosystem</td>
</tr>
<tr>
<td>P−E</td>
<td>precipitation minus evaporation</td>
</tr>
<tr>
<td>PIES</td>
<td>Pressure-equipped inverted echo sounder</td>
</tr>
<tr>
<td>PNA</td>
<td>Pacific/North American</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSO</td>
<td>permanently stratified ocean</td>
</tr>
<tr>
<td>RAPID/MOCHA/WBTS</td>
<td>Rapid Climate Change/MOC and Heatflux Array/Western Boundary Time Series</td>
</tr>
<tr>
<td>RF</td>
<td>Random Forest</td>
</tr>
<tr>
<td>SAMBA</td>
<td>South Atlantic MOC Basin-wide Array</td>
</tr>
<tr>
<td>Sea-WiFS</td>
<td>Sea-viewing Wide Field-of-view Sensor</td>
</tr>
<tr>
<td>SEC</td>
<td>South Equatorial Current</td>
</tr>
<tr>
<td>SH</td>
<td>sensible heat flux</td>
</tr>
<tr>
<td>SH</td>
<td>Southern Hemisphere</td>
</tr>
<tr>
<td>SJDF</td>
<td>Strait of Juan de Fuca</td>
</tr>
<tr>
<td>SMAP</td>
<td>Soil Moisture Active Passive</td>
</tr>
<tr>
<td>SMOS</td>
<td>Soil Moisture and Ocean Salinity</td>
</tr>
<tr>
<td>SOCAT</td>
<td>Surface Ocean CO₂ Atlas</td>
</tr>
<tr>
<td>SON</td>
<td>September–November</td>
</tr>
<tr>
<td>SPCZ</td>
<td>South Pacific Convergence Zone</td>
</tr>
<tr>
<td>SSM/I</td>
<td>Special Sensor Microwave/Imager</td>
</tr>
<tr>
<td>SSS</td>
<td>sea surface salinity</td>
</tr>
<tr>
<td>SST</td>
<td>sea surface temperature</td>
</tr>
<tr>
<td>SST\text{A}</td>
<td>sea surface temperature anomaly</td>
</tr>
<tr>
<td>std. dev.</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SW</td>
<td>shortwave</td>
</tr>
<tr>
<td>TRACOS</td>
<td>Tropical Atlantic Circulation and Overturning at 11°S</td>
</tr>
<tr>
<td>XBT</td>
<td>eXpendable BathyThermograph</td>
</tr>
</tbody>
</table>

