EXPLAINING EXTREME EVENTS OF 2020 FROM A CLIMATE PERSPECTIVE

Editors
Stephanie C. Herring, Nikolaos Christidis, Andrew Hoell, and Peter A. Stott

BAMS Special Editors for Climate
Andrew King, Thomas Knutson, John Nielsen-Gammon, and Friederike Otto

Special Supplement to the
Bulletin of the American Meteorological Society
Vol. 103, No. 3, March 2022

American Meteorological Society
Corresponding Editor:
Stephanie C. Herring, Ph.D.
NOAA National Centers for Environmental Information
325 Broadway, E/CC23, Rm 1B-131
Boulder, CO 80305-3328
E-mail: stephanie.herring@noaa.gov

Cover: Low water bathtub ring on sandstone cliffs around Lake Powell in Glen Canyon National Recreation Area in Arizona. (credit: trekandshoot/Shutterstock.com)

HOW TO CITE THIS DOCUMENT

Citing the complete report:

Citing a section (example):
TABLE OF CONTENTS

1. The Life and Times of the Weather Risk Attribution Forecast
 Dáithí A. Stone et al. .. S1

2. Sub-seasonal to Seasonal Climate Forecasts Provide the Backbone of a Near-Real-Time Event Explainer Service
 Pandora Hope et al. .. S7

3. Development of a Rapid Response Capability to Evaluate Causes of Extreme Temperature and Drought Events in the United States
 Joseph J. Barsugli et al. .. S14

4. How to Provide Useful Attribution Statements: Lessons Learned from Operationalizing Event Attribution in Europe
 Friederike E. L. Otto et al. .. S21

5. Record Low North American Monsoon Rainfall in 2020 Reignites Drought over the American Southwest
 Andrew Hoell et al. .. S26

6. Anthropogenic Climate Change and the Record-High Temperature of May 2020 in Western Europe
 Nikolaos Christidis and Peter A. Stott S33

7. Anthropogenic Contribution to the Record-Breaking Warm and Wet Winter 2019/20 over Northwest Russia
 Jonghun Kam et al. .. S38

8. Were Meteorological Conditions Related to the 2020 Siberia Wildfires Made More Likely by Anthropogenic Climate Change?
 Zhongwei Liu et al. .. S44

9. The January 2021 Cold Air Outbreak over Eastern China: Is There a Human Fingerprint?
 Yujia Liu et al. .. S50

10. The Contribution of Human-Induced Atmospheric Circulation Changes to the Record-Breaking Winter Precipitation Event over Beijing in February 2020
 Lin Pei et al. ... S55

11. Attribution of April 2020 Exceptional Cold Spell over Northeast China
 Hongyong Yu et al. .. S61

12. Anthropogenic Influences on 2020 Extreme Dry–Wet Contrast over South China
 Jizeng Du et al. .. S68

13. Was the Record-Breaking Mei-yu of 2020 Enhanced by Regional Climate Change?
 Yuanyuan Ma et al. .. S76
14. Reduced Probability of 2020 June–July Persistent Heavy Mei-yu Rainfall Event in the Middle to Lower Reaches of the Yangtze River Basin under Anthropogenic Forcing
 Haosu Tang et al. .. S83

15. Human Contribution to the 2020 Summer Successive Hot-Wet Extremes in South Korea
 Seung-Ki Min et al. .. S90

 Chunhui Lu et al. .. S98

17. Toward Near-Real-Time Attribution of Extreme Weather Events in Aotearoa New Zealand
 Jordis S. Tradowsky et al. .. S105

 Cheng Qian et al. .. S111
Anthropogenic Climate Change and the Record-High Temperature of May 2020 in Western Europe

Nikolaos Christidis and Peter A. Stott

The extremely warm May of 2020 in western Europe was favored by persistent high pressure, but human influence is also estimated to have made such events 40 times more likely.

Extremely warm temperature anomalies over western Europe in May 2020 (Fig. 1a) were characterized by summer-like extremes, with several French cities recording temperatures above 30°C for the first time in May, while in Spain temperatures locally exceeded 35°C. The event was linked to an omega blocking ridge pattern associated with significant warm advection over the region. Anomalies of the 500-hPa geopotential height (Z500) from the NCEP–NCAR reanalysis (Kalnay et al. 1996) illustrate the prevalent anticyclonic conditions over western Europe in May 2020 (Fig. 1b). The anticyclonic pattern was embedded in a Rossby wave train extending over the whole Northern Hemisphere (see the online supplemental material), which was also linked to the severe heatwave in Siberia (Ciavarella et al. 2021). Interestingly, the month of May also had record warmth on a global scale (Di Liberto 2020). Here we present an attribution study that assesses how anthropogenic forcings may have changed the likelihood of extreme May temperatures in western Europe (10°E–5°W, 35°–55°N), both in the general case (i.e., under any possible synoptic conditions; unconditional analysis) and under the influence of a persistent anticyclonic circulation pattern (conditional analysis).
We use the HadCRUT4 observational surface temperature dataset (Morice et al. 2012) to compute regional mean May temperature anomalies. As in other attribution studies (Bindoff et al. 2013), we define anomalies relative to a period earlier than the common 1961–90 (here we use years 1901–30 as a baseline), since the earlier baseline is closer to the pre-industrial climate and thus allows us to capture most of the anthropogenic effect. HadCRUT4 time series since 1900 are illustrated in Fig. 1c and demonstrate that May 2020 is the warmest May in the record. We also construct distributions of monthly actual temperatures over a recent period with NCEP–NCAR reanalysis data for May and June (Fig. 1d). The distributions reveal that the May 2020 temperature is extreme for the month of May, but typical for June, which could manifest a change in seasonality in a warming climate (Christidis et al. 2007; Ruosteenoja et al. 2015).

We next compute temperature anomalies with data from 11 models (see the supplemental material) that contributed to the phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al. 2016). We select models that provide ensembles of simulations with all historical forcings (ALL) and natural forcings only (NAT) that enable us to compare the likelihood of extremes in the real world and in a hypothetical natural world without the effect of human activity, following the popular risk-based attribution framework (Stott et al. 2016). The ALL simulations were extended to 2100 with the “middle-of-the-road” emissions scenario SSP2–4.5 (Riahi et al. 2017). We use in total 56 ALL and 62 NAT simulations. We apply standard evaluation tests for multimodel ensembles (Christidis et al. 2021; also see the supplemental material), which show that the modeled historical trends of the regional May mean temperature are consistent with HadCRUT4, but the modeled variability is somewhat larger. We therefore bias-correct the modeled data following the approach of Christidis and Stott (2021), whereby we remove the smoothed ensemble mean from the individual ALL time series, adjust their variability, and reintroduce the ensemble mean. After bias correction the modeled variability and temperature distribution agree well with HadCRUT4 (supplemental material). We highlight the bias correction as a caveat in our analysis, which may adversely affect future likelihood estimates, if future changes in variability are incorrectly represented by the models. Nevertheless, neither the observations nor the models suggest major changes.
in variability with time. Time series of the model simulations are depicted in Fig. 1c. Unlike the largely stationary NAT climate, the ALL experiment shows a steady temperature increase since the late twentieth century, leading to a warming of over 2°C by 2100 under SSP2–4.5.

Unconditional attribution.

We first compare the present-day likelihood of exceeding the 2020 observed anomaly (2.3°C) irrespective of the atmospheric circulation with what it might have been in the NAT climate. We construct the ALL distribution of May mean temperature anomalies using simulated data in years 2015–25 (56 simulations × 11 years). As the natural climate is stationary in the long run, we utilize simulated NAT anomalies of all available years. We find a major shift of the distribution toward warmer temperatures (Fig. 2a), leading to an estimated increase in the likelihood of the 2020 event of about 40-fold (Fig. 2b, Table 1). Its return time (inverse probability) is estimated to decrease from several centuries in the NAT world to about a decade in the present climate (Table 1), while by 2100 such an event could occur almost every year (estimate based on ALL data in years 2090–2100). As in previous work, extreme probabilities are calculated with the generalized Pareto distribution and associated uncertainties with a simple Monte Carlo bootstrap procedure (Christidis et al. 2013).

The available CMIP6 models contributed unequal number of simulations to our analysis, which introduces an uncertainty to our results. For example, the large number of CanESM5 simulations gives more weight to a model with a high climate sensitivity. We assess the associated uncertainty by removing the CanESM4 simulations from the ALL and NAT ensembles and repeating the analysis. We find that the ALL return time (best estimate) increases from 8.9 to

![Fig. 2. (a) Normalized distributions of the May mean temperature anomaly with (pink) and without (blue) human influence from the unconditional analysis. The vertical black line marks the May 2020 anomaly. (b) Risk ratio showing the increase in probability due to human influence. The vertical orange line marks the best estimate (50th percentile). (c),(d) As in (a),(b), but for the conditional analysis with probabilities estimated for months with a similar circulation to May 2020. (e) Normalized distributions of the May mean temperature in the present-day climate for seasons with high (pink) and low (gray) correlations to the May 2020 circulation pattern. (f) Risk ratio showing the increase in probability due to the atmospheric circulation effect.](image-url)
Table 1. Attribution results. Best estimates of the return time, the risk ratio, and their associated 5%–95% uncertainty range (in brackets). Results shown for the unconditional analysis, the analysis conditioned on the circulation pattern and for the assessment of the circulation effect. Return times are shown with (ALL) and without (NAT) the effect of human influence. Conditional estimates use modeled months with high (>0.6) and low (<0.6) correlations with the 2020 circulation pattern.

<table>
<thead>
<tr>
<th></th>
<th>Return time (yr)</th>
<th>Return time (yr)</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditional attr.</td>
<td>ALL</td>
<td>NAT</td>
<td>Pr(ALL)/Pr(NAT)</td>
</tr>
<tr>
<td>(General case)</td>
<td>8.90 (7.65–10.78)</td>
<td>367 (281–527)</td>
<td>41.27 (29.47–60.36)</td>
</tr>
<tr>
<td>Conditional analysis</td>
<td>ALL-high</td>
<td>NAT-high</td>
<td>Pr(ALL-h)/Pr(NAT-h)</td>
</tr>
<tr>
<td>(2020-like circulation)</td>
<td>4.15 (3.45–5.29)</td>
<td>119 (35.23–180)</td>
<td>28.37 (8.72–44.42)</td>
</tr>
<tr>
<td>Circulation effect</td>
<td>ALL-high</td>
<td>ALL-low</td>
<td>Pr(ALL-h)/Pr(ALL-low)</td>
</tr>
<tr>
<td></td>
<td>4.15 (3.45–5.29)</td>
<td>12.94 (10.43–16.57)</td>
<td>3.10 (2.29–4.28)</td>
</tr>
</tbody>
</table>

about 15 years, while the NAT probability is less affected and changes from 367 to 393. The risk ratio is thus reduced from 41 to 26. Despite these differences, we conclude there is a broadly consistent indication of the estimated anthropogenic impact in terms of its order of magnitude but acknowledge the uncertainty in our results linked to the ensemble construction.

We also conduct an independent assessment with HadCRUT4 observations using the approach of Christidis and Stott (2021). We first remove the smoothed forced change from the observational time series, based on the ALL ensemble mean (white line in Fig. 1c). The remaining anomalies in years 1900–2020 provide the NAT probability. We then add back the forced response corresponding to year 2020, estimated again from the ALL ensemble mean, and compute the ALL probability. The ALL probabilities from HadCRUT4 are in good agreement with CMIP6 (return time: 9 years, uncertainty range: 6–15 years). The smaller NAT probabilities have large uncertainties as they cannot be adequately estimated with the smaller observational sample. Nevertheless, the lower bound of the NAT return time is also of the order of a few hundred years, similar to what the models suggest.

Conditional attribution.

We next derive ALL and NAT probabilities for the extreme event under anticyclonic conditions similar to those in May 2020. As in previous work (Christidis et al. 2018), we sub-sample the model anomalies by selecting months that have similar or different circulation patterns to May 2020 over the reference region, as determined by correlation coefficients above or below 0.6. We confirm that estimating correlations over wider areas would not considerably change our attribution results. Pattern correlations between the reanalysis 2500 anomalies in May over western Europe (Fig. 1b) and simulated May anomalies are thus computed. We then use the high-correlation samples (ALL-high and NAT-high) to infer conditional probabilities (Table 1). We find again that human influence clearly shifts the distribution to warmer temperatures (Fig. 2b), making the 2020 event about 30 times more likely to occur (Fig. 2c, Table 1). As expected, the return times of warm extremes are lower in the conditional case compared to the general case, since the presence of anticyclonic conditions favors warm anomalies. However, the estimated risk ratio is of the same order as in the general case. We finally assess how much more likely the event becomes in the present-day climate under persistent anticyclonic conditions compared to other circulation states. We do this by comparing the ALL-high and ALL-low probabilities (Figs. 2d,e, Table 1) and estimate that May months at least as warm as 2020 become 2–4 times more likely.
Discussion.

Using a suite of 11 state-of-the-art climate models we show that the unprecedented May temperature of 2020 in western Europe is becoming increasingly common under the influence of anthropogenic forcings. There are of course uncertainties in model-based assessments (e.g., biases, model limitations, future emission scenarios), but the level of agreement with simpler approximate probability estimates from observations is reassuring. The models suggest that the return time of May heatwaves with temperatures at least as high as in 2020 has been reduced from centuries to under a decade, although the precise estimated change is sensitive to the ensemble used, as already discussed. While spring heatwaves may generally be expected to have less adverse impacts than summer heatwaves, continuous warming in western Europe means that May would gradually bear a closer resemblance to summer months with possibly serious socio-economic repercussions (e.g., increased heat stress and mortality spikes, strain on energy and water availability, increased wildfire risk, agricultural losses, etc.). Therefore, attribution studies like ours provide valuable information to help communities reduce their vulnerability to anthropogenic climate change.

Acknowledgments. This work was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra.

References

