Explaining Extreme Events of 2020 from a Climate Perspective

Special Supplement to the Bulletin of the American Meteorological Society
Vol. 103, No. 3, March 2022
TABLE OF CONTENTS

1. The Life and Times of the Weather Risk Attribution Forecast
 Dáithí A. Stone et al. ... S1

2. Sub-seasonal to Seasonal Climate Forecasts Provide the Backbone of a Near-Real-Time Event Explainer Service
 Pandora Hope et al. ... S7

3. Development of a Rapid Response Capability to Evaluate Causes of Extreme Temperature and Drought Events in the United States
 Joseph J. Barsugli et al. ... S14

4. How to Provide Useful Attribution Statements: Lessons Learned from Operationalizing Event Attribution in Europe
 Friederike E. L. Otto et al. ... S21

5. Record Low North American Monsoon Rainfall in 2020 Reignites Drought over the American Southwest
 Andrew Hoell et al. ... S26

6. Anthropogenic Climate Change and the Record-High Temperature of May 2020 in Western Europe
 Nikolaos Christidis and Peter A. Stott S33

7. Anthropogenic Contribution to the Record-Breaking Warm and Wet Winter 2019/20 over Northwest Russia
 Jonghun Kam et al. ... S38

8. Were Meteorological Conditions Related to the 2020 Siberia Wildfires Made More Likely by Anthropogenic Climate Change?
 Zhongwei Liu et al. ... S44

9. The January 2021 Cold Air Outbreak over Eastern China: Is There a Human Fingerprint?
 Yujia Liu et al. ... S50

10. The Contribution of Human-Induced Atmospheric Circulation Changes to the Record-Breaking Winter Precipitation Event over Beijing in February 2020
 Lin Pei et al. ... S55

11. Attribution of April 2020 Exceptional Cold Spell over Northeast China
 Hongyong Yu et al. ... S61

12. Anthropogenic Influences on 2020 Extreme Dry–Wet Contrast over South China
 Jizeng Du et al. ... S68

13. Was the Record-Breaking Mei-yu of 2020 Enhanced by Regional Climate Change?
 Yuanyuan Ma et al. ... S76
14. Reduced Probability of 2020 June–July Persistent Heavy Mei-yu Rainfall Event in the Middle to Lower Reaches of the Yangtze River Basin under Anthropogenic Forcing
 Haosu Tang et al. ... S83

15. Human Contribution to the 2020 Summer Successive Hot-Wet Extremes in South Korea
 Seung-Ki Min et al. .. S90

 Chunhui Lu et al. .. S98

17. Toward Near-Real-Time Attribution of Extreme Weather Events in Aotearoa New Zealand
 Jordis S. Tradowsky et al. S105

 Cheng Qian et al. .. S111
The Contribution of Human-Induced Atmospheric Circulation Changes to the Record-Breaking Winter Precipitation Event over Beijing in February 2020

Lin Pei, Zhongwei Yan, Deliang Chen, and Shiguang Miao

Precipitation in Beijing during February 2020 was the highest since 1951. Anthropogenic influences contributed to a 52.9% increase in the likelihood of circulation anomalies associated with similar extreme precipitations.

During February 2020, North China observed unusually high precipitation, with many stations receiving total monthly precipitation exceeding 300% more than the 1981–2010 climatology for February (Fig. 1). In particular, Beijing received a historical record of 27.8 mm of precipitation (Fig. S1a), which is 592% more than the long-term mean. The combined influences of snow, low temperatures, and frost hazards in this period posed serious challenges to this megalopolis of over 20 million people, with various socioeconomic impacts and serious effects on transportation and electricity power.

Few attribution analyses have considered regional extreme precipitation events during winter in China (Zhao 2020). The extreme precipitation in February 2020 over Beijing raises questions about whether anthropogenic influences have affected the frequency of such events. However, there are some common deficiencies in reproducing extreme precipitation indices over China in global climate models (GCMs). For example, in the

AFFILIATIONS: Pei and Miao—Institute of Urban Meteorology, China Meteorological Administration, Beijing, China; Yan—Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, University of Chinese Academy of Sciences, Beijing, China; Chen—Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

CORRESPONDING AUTHOR: Deliang Chen, deliang@gvc.gu.se

DOI: 10.1175/BAMS-D-21-0153.1

A supplement to this article is available online (10.1175/BAMS-D-21-0153.2)

©2022 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.
CMIP5 simulations, the areal-mean biases for total precipitation, heavy precipitation, and precipitation intensity over China are 127%, 87%, and 22%, respectively (Zhu et al. 2020). It is difficult to directly attribute such local extreme precipitation events using model outputs at coarse resolution (Trenberth et al. 2015; Zhai et al. 2018; Chen et al. 2020; Sun et al. 2021). However, recent studies have conducted attribution analyses of regional extreme events from the perspective of the dominant circulation patterns, also finding human influences to be mainly responsible for changes in these extremes (Horton et al. 2015; Pei and Yan 2018; Zhou et al. 2020). Harrington et al. (2016) demonstrate the utility of an approach in characterizing the meteorological conditions conducive for an extreme drought event in 2013 over New Zealand and identify a robust increase in the likelihood of the observed circulation patterns like
those of the 2013 drought in the recent-climate simulations. In a large ensemble of climate model simulations, Schaller et al. (2016) find that anthropogenic warming causes a small but significant increase in the number of January days with the westerly flow, which increases extreme precipitation over southern England. Therefore, this study examines the change in frequency of circulation patterns related to extreme precipitation during February in Beijing.

Data and method.

The observed and reanalysis datasets used in this study are as follows. 1) Monthly homogenized precipitation observations at 2414 stations in China for 1951–2020 provided by the China Meteorological Administration (http://data.cma.cn/); there are 20 stations in the Beijing area. 2) Monthly circulation data comprising wind speed, geopotential height, and relative humidity covering 1951–2020, obtained from NCEP–NCAR at 2.5° resolution (Kalnay et al. 1996). 3) Monthly circulation data for 1900–2010 from the Twentieth Century Reanalysis version 2 (20CR) at 2° resolution (Compo et al. 2011) and from the ECMWF Atmospheric Reanalysis for the twentieth century (ERA20C) at 1° resolution (Poli et al. 2016).

Monthly circulation simulated by 20 runs of 7 CMIP5 models contributing to the All-Hist, Nat-Hist, and RCP8.5 experiments (see Table S1 in the online supplemental material) obtained from CMIP5 (Taylor et al. 2012) are also used. The All-Hist simulations are forced by natural (solar radiation and volcanic aerosols) and anthropogenic agents (greenhouse gases, aerosols, ozone, and land use), while the Nat-Hist simulations are forced only by natural agents. The RCP8.5 simulations are run with the projected increases in the atmospheric concentration of greenhouse gases, representing the uncontrolled high-emissions scenario.

We applied an approach used in similar studies (Ren et al. 2020; Zhou et al. 2020). We identify the circulation anomaly related to extreme winter precipitation in Beijing using the atmospheric reanalyses and examine how anthropogenic influences alter the probability of such circulation patterns using the ensembles of CMIP5 models.

Results.

Atmospheric circulation conditions related to extreme winter precipitation over Beijing and its changes in the twentieth century. We calculated the correlation between precipitation over Beijing and anomalies in atmospheric circulation for February in the period from 1951 to 2020. Strong correlation is found in geopotential height at 500 hPa, meridional wind at 850 hPa, and relative humidity near the surface (Figs. 1d–f). When precipitation over Beijing is anomalously high, there is an anomalous anticyclonic system over the western Pacific, resulting in a shallow East Asian trough, which represents a weakened East Asia winter monsoon (EAWM) (Jhun and Lee 2004; Pei et al. 2018). This anomalous anticyclonic system can be seen in the regional mean of the geopotential height within 29°–46°N, 123–171°E (green box in Fig. 1d), hereafter referred to as H500. Under these conditions, the western Pacific region along the east coast of China experiences widespread anomalous southerlies in the lower troposphere (Fig. 1d), favorable for the transportation of warm and humid air from the northwestern Pacific into adjacent regions, including northern China, the Korean Peninsula, and southern Japan. A practical index for measuring the strength of the EAWM is the meridional wind speed anomaly at 850 hPa over the northwestern Pacific (17°–41°N, 114°–144°E; green box in Fig. 1e), referred to as V850. As a result, abundant moist air is transported into North China, resulting in abnormally high levels of relative humidity over this region, thereby inducing conditions favorable to extreme winter precipitation (Fig. 1f). The humidity conditions are captured as the regional mean relative humidity within 26°–42°N, 110°–161°E (green box in Fig. 1f), hereafter referred to as RH1000.

The correlation coefficients between February precipitation in Beijing and the H500, V850, and RH1000 indices for 1951–2020 are all significant under the t test ($\alpha = 0.01$) (Fig. 1b). Favorable circulation conditions occur concurrently and promote extreme precipitation events
in Beijing. We normalize each time series by its respective standard deviation for 1971–2000 and apply a multiple linear regression (MLR) model to construct a compound index. The MLR equation is $y = 0.019 + 0.308 \times RH1000^* + 0.103 \times V850^* + 0.315 \times H500^*$, with asterisks (*) representing normalized series. This new index is normalized to its climatology and is referred to as the circulation index (CI; red line in Fig. 1b), with a significant correlation coefficient (Corr $= 0.58$) to winter precipitation in Beijing for 1951–2020. We also examine a suite of other relevant variables but find that adding more circulation variables does not markedly change the correlation because the effect of the other variables is implicitly included in the CI through their correlation with the three dominant variables. The CI reached 2.21σ in February 2020, second to only one stronger event in 1990 (Fig. 1b). Total precipitation over the North China during 1990 was 26.8 mm, the highest since 1951 (Fig. S1a), and the precipitation center was located in the southern part of North China rather than the Beijing area (Fig. S1b). Therefore, winter circulation anomalies for February 2020 can be treated as an extreme climate event (corresponding to a CI equal to or greater than 2.21σ).

Based on long-term reanalysis, the probability of extreme atmospheric circulation anomalies (i.e., those with a CI value greater than 2.21σ) increased twofold in the twentieth century (Fig. 1c), from a once-in-50-year event during 1901–1950 to a once-in-25-year event during 1951–2000 (Table 1). There is also a consistent shift in the frequency of the three components that make up CI (i.e., H500, V850, and RH1000) (Fig. S2). The probabilities of extreme values of these components (H500, V850, and RH1000), such as those occurring in 2020, increased from the first half to the second half of the last century by between 20% and 166% (Table 1). The increase in frequency is statistically significant, but the role of anthropogenic influence remains to be clarified.

Table 1. The frequency of extreme winter atmospheric circulation anomalies (CI, RH1000, V850, and H500) was stronger than that of the 2020 event in the reanalysis data (20CR and ERA20C) and simulations (CMIP5). Here σ = standard deviation of the time series for 1971–2000. Values of changes are in bold.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>RH1000</th>
<th>V850</th>
<th>H500</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cir (2020)</td>
<td>3.21σ</td>
<td>0.77σ</td>
<td>1.03σ</td>
<td>2.21σ</td>
</tr>
<tr>
<td>20CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1901–1950</td>
<td>0</td>
<td>26.0%</td>
<td>6.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>1951–2000</td>
<td>0</td>
<td>32.0%</td>
<td>16.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Change</td>
<td>—</td>
<td>23.0%</td>
<td>166.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>ERA-20c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1901–50</td>
<td>0</td>
<td>16.0%</td>
<td>10.0%</td>
<td>0</td>
</tr>
<tr>
<td>1951–2000</td>
<td>0</td>
<td>24.0%</td>
<td>12.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Change</td>
<td>—</td>
<td>50.0%</td>
<td>20.0%</td>
<td>—</td>
</tr>
<tr>
<td>Simulations from 20 CMIP5 model runs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nat-Hist: 1951–2000</td>
<td>1.3%</td>
<td>21.1%</td>
<td>9.0%</td>
<td>3.4%</td>
</tr>
<tr>
<td>All-Hist: 1951–2000</td>
<td>1.8%</td>
<td>25.2%</td>
<td>14.3%</td>
<td>5.2%</td>
</tr>
<tr>
<td>RCP8.5: 2050–99</td>
<td>2.6%</td>
<td>29.8%</td>
<td>26.7%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Change (All-Hist–Nat-Hist)</td>
<td>38.5%</td>
<td>19.4%</td>
<td>58.9%</td>
<td>52.9%</td>
</tr>
<tr>
<td>Change (RCP8.5–All-Hist)</td>
<td>44.4%</td>
<td>18.3%</td>
<td>86.7%</td>
<td>84.7%</td>
</tr>
</tbody>
</table>
Anthropogenic influence on the occurrence of extreme winter circulation conditions. To construct the CI series in the historical and future simulations, the normalized anomalies of H500, V850, and RH1000 are calculated based on the All-Hist 30-yr (1971–2000) climatology for each model. There is a remarkable shift toward higher CI values in the All-Hist and RCP8.5 simulations compared with the CI distribution in the Nat-Hist simulations, with a 32% and 68% increase in the mean relative to the standard deviation, respectively (Fig. 2a). There are consistent changes in the component indices in the All-Hist and RCP8.5 scenario toward a more frequent occurrence of the anomalous anticyclonic system over the northwestern Pacific in the midtroposphere, weakened EAWM (with anomalous southeasterly flows), and abnormally high relative humidity in the Beijing area (Figs. 2b–d). The probability of atmospheric circulation anomalies conducive to extreme winter precipitation in Beijing (CI larger than 2.21σ) changes from 3.4% under the Nat-Hist scenario to 5.2% under the All-Hist scenario and further increases to 9.6% in the future scenario (Table 1). This finding suggests that anthropogenic influence has contributed to an approximately 52.9% increase in the likelihood of such circulation anomalies causing extreme winter precipitation, and the models project a further 84.7% increase under the RCP8.5 scenario. These results are supported by strong intermodel agreement, as 19 out of 20 runs reproduced an increased frequency of atmospheric circulation anomalies with positive CI values (Table S1).

Conclusions.

Beijing experienced its wettest February in 2020 since at least 1951, but it is challenging to directly attribute such precipitation local extremes using only climate models. Here, employing both observations and climate model simulations, we analyzed the anthropogenic influence on the changes in the likelihoods of atmospheric circulation conditions related to very wet February conditions. Similar extreme precipitation events are associated with an anomalous anticyclone over the northwestern Pacific and a weakened EAWM, resulting in above-average relative humidity in the Beijing area. According to reanalysis data, such circulation anomalies have increased in frequency by approximately 100% in the twentieth century. Finally, in an ensemble of 20 runs of CMIP5, we find that anthropogenic influence has caused a 52.9% increase in the likelihood of such extreme circulations, and we project a further 84.7% increase under the RCP8.5 scenario.

Acknowledgments. We wish to thank Andrew Hoell for his valuable inputs that greatly improved the manuscript. This study was supported by the National Key R&D Program of China (2019YFA0607202 and 2017YFE0133600), and the National Natural Science Foundation of China (41805082).
References

