STATE OF THE CLIMATE IN 2022

Special Supplement to the Bulletin of the American Meteorological Society
Vol. 104, No. 9, September 2023
Cover Credit:
Climate Change - Skiing and snowboarding during Winter Holidays in the Bavarian Alps around Oberstdorf.

Oberstdorf, Germany

Matthias Manuel / Alamy Stock Photo

How to cite this document:
Special Supplement to the Bulletin of the American Meteorological Society, Vol. 104, No. 9, September 2023 https://doi.org/10.1175/2023BAMSStateoftheClimate.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2022 is based on contributions from scientists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instruments located on land, water, ice, and in space.

Citing the complete report:

Corresponding author: Full Report: Jessica Blunden / jessica.blunden@noaa.gov

©2023 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.
STATE OF THE CLIMATE IN 2022

Table of Contents

Abstract .. Siii

1. Introduction .. S1

2. Global Climate ... S11

3. Global Oceans .. S146

4. The Tropics .. S207

5. The Arctic .. S271

6. Antarctica and the Southern Ocean .. S322

7. Regional Climates .. S366

8. Relevant Datasets and Sources .. S474
Abstract

IJ. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES

Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.

In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.

Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia’s highest temperature on record.

While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.

The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.

In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.

In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time annual record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.

Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.

A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close...
to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.

As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.

In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.

On 14–15 January, the Hunga Tonga-Hunga Ha’apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ~10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Dutton, Geoff, Cooperative Institute for Research in the Earth Sciences, NOAA Global Monitoring Laboratory, Boulder, Colorado
Duveiller, Gregory, Max Planck Institute for Biogeochemistry, Jena, Germany
Ekici, Mithat, Turkish State Meteorological Service, Ankara, Turkey
Elles Chereque, Aleksandra, Department of Physics, University of Toronto, Toronto, Canada
Elkhattam, M., Direction de la Météorologie Nationale Maroc, Rabat, Morocco
Epstein, Howard E., University of Virginia, Charlottesville, Virginia
Espinoza, Jhan-Carlo, Université Grenoble Alpes, Institut des Géosciences de l’Environnement, IRD, CNRS, Grenoble INP, Grenoble, France
Estilow, Thomas W., Rutgers University, Piscataway, New Jersey
Estrella, Nicole, Ecoclimatology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
Fauchereau, Nicolas, National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
Fausto, Robert S., Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Feely, Richard A., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Fenimore, Chris, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Fereday, David, Met Office Hadley Centre, Exeter, United Kingdom
Fettweis, Xavier, University of Liège, Belgium
Fioretov, Vitali E., Environment and Climate Change Canada, Toronto, Canada
Flemming, Johannes, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Fogarty, Chris, Canadian Hurricane Centre, Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
Fogt, Ryan L., Department of Geography, Ohio University, Athens, Ohio
Forbes, Bruce C., Arctic Centre, University of Lapland, Rovaniemi, Finland
Foster, Michael J., Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Franz, Bryan A., NASA Goddard Space Flight Center, Greenbelt, Maryland
Freeman, Natalie M., Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
Fricker, Helen A., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Frith, Stacey M., Science Systems and Applications, Inc, Lanham, Maryland; NASA Goddard Space Flight Center, Greenbelt, Maryland
Froidevaux, Lucien, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Frost, Gerald V. (JJ), ABR Inc., Fairbanks, Alaska
Fuhrman, Steven, NOAA/NWS NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Füllekrug, Martin, University of Bath, Bath, United Kingdom
Ganter, Catherine, Bureau of Meteorology, Melbourne, Australia
Gao, Meng, NASA Goddard Space Flight Center, Greenbelt, Maryland;
Gardner, Alex S., NASA Jet Propulsion Laboratory, Pasadena, California
Garforth, Judith, Woodland Trust, Grantham, United Kingdom
Gerland, Sebastian, Norwegian Polar Institute, Fram Centre, Tromso, Norway
Gibbes, Badin, School of Civil Engineering, The University of Queensland, Brisbane, Australia
Gille, Sarah T., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Gillson, John, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
Gleason, Karin, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Gobron, Nadine, European Commission Joint Research Centre, Ispra, Italy
Goetz, Scott J., Northern Arizona University, Flagstaff, Arizona
Goldenberg, Stanley B., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Goni, Gustavo, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Goodman, Steven, Thunderbolt Global Analytics, Huntsville, Alabama
Goto, Atsushi, World Meteorological Organization, Geneva, Switzerland
Groß, Jens-Uwe, Forschungszentrum Jülich, Jülich, Germany
Gruber, Alexander, TU Wien, Department of Geodesy and Geoinformation, Vienna, Austria
Gu, Guojun, CMNS-Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
Guard, Charles “Chip” P., Tropical Weather Sciences, Sinajana, Guam
Hagos, S., Pacific Northwest National Lab, Department of Energy, Richland, Washington
Hahn, Sebastian, TU Wien, Department of Geodesy and Geoinformation, Vienna, Austria
Haimberger, Leopold, University of Vienna, Vienna, Austria
Hall, Bradley D., NOAA Global Monitoring Laboratory, Boulder, Colorado
Hamlington, Benjamin D., Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia
Hanna, Edward, Department of Geography and Lincoln Climate Research Group, Lincoln, United Kingdom
Hanssen-Bauer, Ingrid, Norwegian Meteorological Institute, Oslo, Norway
Harnos, Daniel S., NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Harris, Ian, National Centre for Atmospheric Science (NCAS), University of East Anglia, Norwich, United Kingdom; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
He, Qiong, Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
Heim, Richard R. Jr., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Hellström, Sverker, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Hemming, Deborah L., Met Office Hadley Centre, Exeter, United Kingdom; Birmingham Institute of Forest Research, Birmingham University, Birmingham, United Kingdom
Hendricks, Stefan, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Hicks, J., NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Hidalgo, Hugo G., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Hirsch, Martin, ETH Zurich, Department of Environmental Systems Science, Zürich, Switzerland
Ho, Shu-peng (Ben), Center for Satellite Applications and Research, NOAA, College Park, Maryland; Remote Sensing Systems, Santa Rosa, California
Hobbs, W., Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies; Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania
Holmes, Robert M., Woodwell Climate Research Center, Falmouth, Massachusetts
Holsworth, Robert, University of Washington, Seattle, Washington
Hrbaček, Filip, Department of Geography, Masaryk University, Brno, Czech Republic
Hu, Guojie, Cryosphere Research Station on Qinghai-Tibet Plateau, Northwestern Institute of Eco-Environment and Resources, CAS, Beijing, China
Hu, Zeng-Zhen, NOAA/NWS Climate Prediction Center, College Park, Maryland
Editor and Author Affiliations (continued)

Huang, Boyin, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Huang, Hongjie, Nanjing University of Information Science and Technology, Nanjing, China
Hurst, Dale F., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado; NOAA Global Monitoring Laboratory, Boulder, Colorado
Ialongo, Iolanda, Finnish Meteorological Institute, Helsinki, Finland
Inness, Antje, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Isaksen, Ketil, Norwegian Meteorological Institute, Oslo, Norway
Ishii, Masayoshi, Department of Atmosphere, Ocean and Earth System Modeling Research, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
Jadra, Gerardo, Instituto Uruguay de Meteorologia, Montevideo, Uruguay
Jevrejeva, Svetlana, National Oceanography Centre, Liverpool, United Kingdom
John, Viju O., EUMETSAT, Darmstadt, Germany
Johns, W., Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida
Johnsen, Bjørn, Norwegian Radiation and Nuclear Safety, Østerås, Norway
Johnson, Bryan, NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado; University of Colorado Boulder, Boulder, Colorado
Johnson, Gregory C., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Jones, Philip D., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Jones, Timothy, Coastal Observation and Seabird Survey Team, University of Washington, Seattle, Washington
Josey, Simon A., National Oceanography Centre, Southampton, United Kingdom
Jumaa, G., Meteo France, Direction Interregionale Pour L’Océan Indien, Reunion
Junod, Robert, Earth System Science Center (ESSC), University of Alabama in Huntsville, Huntsville, Alabama
Kääb, Andreas, Department of Geosciences, University of Oslo, Norway
Kabidi, K., Direction de la Meteorologie Nationale Maroc, Rabat, Morocco
Kaiser, Johannes W., SatFire Kaiser Hofheim am Taunus, Germany
Kaleschke, Lars, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Kaufmann, Viktor, Institute of Geodesy, Working Group Remote Sensing and Photogrammetry, Graz University of Technology, Graz, Austria
Kazemi, Amin Fazl, Iran National Climate and Drought Crisis Management, National Meteorology Organization, Tehran, Iran
Keller, Linda M., Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Kellerer-Pirklbauer, Andreas, Institute of Geography and Regional Science, Cascade – The Mountain Processes and Mountain Hazards Group, University of Graz, Graz, Austria
Kendon, Mike, Met Office National Climate Information Centre, Exeter, United Kingdom
Kennedy, John, Met Office Hadley Centre, Exeter, United Kingdom
Kent, Elizabeth C., National Oceanography Centre, Southampton, United Kingdom
Kerr, Kenneth, Trinidad and Tobago Meteorological Service, Port of Spain, Trinidad
Khan, Valentina, Hydrometer Center of Russia, WMO North East Asia Climate Center, Moscow, Russia
Khiem, Mai Van, Vietnam National Center for Hydro-Meteorological Forecasting, Vietnam Meteorological and Hydrological Administration, Hanoi, Vietnam
Kidd, Richard, EODC GmbH, Vienna, Austria
Kim, Mi Ju, Climate Change Monitoring Division, Korea Meteorological Administration, Seoul, South Korea
Kim, Seong-Joong, Korea Polar Research Institute, Incheon, South Korea

Kling, Zak, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Klotzbach, Philip J., Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Knaff, John A., NOAA/NESDIS Center for Satellite Applications and Research, Fort Collins, Colorado
Koppa, Akash, Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium
Korshunova, Natalia N., All-Russian Research Institute of Hydrometeorological Information, World Data Center, Obninsk, Russia
Kraemer, Benjamin M., University of Konstanz, Konstanz, Germany
Kramarova, Natalya A., NASA Goddard Space Flight Center, Greenbelt, Maryland
Kruger, A. C., Climate Service, South African Weather Service, Pretoria, South Africa
Kruger, Andries, Climate Service, South African Weather Service, Pretoria, South Africa
Kumar, Arun, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
L’Heureux, Michelle, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
La Fuente, Sofia, Dundalk Institute of Technology, Dundalk, Ireland
Laas, Ato, Estonian University of Life Sciences, Tartumaa, Estonia
Labe, Zachary M., Princeton University, Princeton, New Jersey
Lader, Rick, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Lakatos, Monika, Climatology Unit, Hungarian Meteorological Service, Budapest, Hungary
Lakkala, Kaisa, Finnish Meteorological Institute, Sodankylä, Finland
Lam, Hoang Phuc, Vietnam National Center for Hydro-Meteorological Forecasting, Vietnam Meteorological and Hydrological Administration, Hanoi, Vietnam
Lan, Xin, CIERC, University of Colorado Boulder & NOAA Global Monitoring Laboratory, Boulder, Colorado
Landschützer, Peter, Flanders Marine Institute, Innoveo Campus, Ostend, Belgium
Landsea, Chris W., NOAA/NWS National Hurricane Center, Miami, Florida
Lang, Timothy, NASA Marshall Space Flight Center, Huntsville, Alabama
Lankhorst, Matthias, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
Lantz, Kathleen O., NOAA Global Monitoring Laboratory, Boulder, Colorado
Lara, Mark J., University of Illinois at Urbana-Champaign, Urbana, Illinois
Lavado-Casimiro, Waldo, Servicio Nacional de Meteorologia e Hidrologia del Peru, Lima, Peru
Lavers, David A., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Lazzara, Matthew A., Department of Physical Sciences, School of Arts and Sciences, Madison Area Technical College, Madison, Wisconsin; Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Leblanc, Thierry, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Lee, Tsz-Cheung, Hong Kong Observatory, Hong Kong, China
Leibensperger, Eric M., Department of Physics and Astronomy, Ithaca College, Ithaca, New York
Lennard, Chris, Department of Environmental and Geographical Science, University of Reading, Reading, United Kingdom
Leuillette, Eric, NOAA/NWS NCCMP Laboratory for Satellite Altimetry, College Park, Maryland
Leung, Kinson H. Y., Environment and Climate Change Canada, Toronto, Ontario, Canada
Lieser, Jan L., Australian Bureau of Meteorology and Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
McCabe, Matthew F., Climate and Livability Initiative, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

McClelland, James W., Marine Biological Laboratory, Woods Hole, Massachusetts

McPhaden, Michael J., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

McVicar, Tim R., CSIRO Environment, Canberra, Australia; Australian Research Council Centre of Excellence for Climate Extremes, Sydney, Australia

Mears, Carl A., Remote Sensing Systems, Santa Rosa, California

Meier, Walter N., National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Mekonnen, A., North Carolina A&T University, Greensboro, North Carolina

Menzel, Annette, Ecosystematics, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany

Merchant, Christopher J., Department of Meteorology, University of Reading, Reading, United Kingdom

Merrifield, Mark A., Cooperative Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

Meyer, Michael F., United States Geological Survey, Madison, Wisconsin

Meyers, Tristan, National Institute of Water and Atmospheric Research, Ltd. (NIWA), Auckland, New Zealand

Mikolajczyk, David E., Antarctic Meteorological and Oceanographic Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Miller, John B., NOAA Global Monitoring Laboratory, Boulder, Colorado

Miralles, Diego G., Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium

Misevic, Noelia, Instituto Uruguayo de Meteorologia, Montevideo, Uruguay

Mishonov, Alexey, Earth System Science Interdisciplinary Center/Cooperative Institute for Satellite Earth System Studies Maryland, University of Maryland, College Park, Maryland; NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland

Mitchum, Gary T., College of Marine Science, University of South Florida, St. Petersburg, Florida

Moat, Ben I., National Oceanography Centre, Southampton, United Kingdom

Moesinger, Leander, TU Wien, Vienna, Austria

Moise, Aurel, Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore

Molina-Carpio, Jorge, Universidad Mayor de San Andrés, La Paz, Bolivia

Monet, Ghislaine, Université Savoie Mont Blanc, CNRS/INRAE/CARRTEL, Chambéry, France

Montzka, Stephan A., NOAA Global Monitoring Laboratory, Boulder, Colorado

Moon, Twila A., National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Moore, G. W. K., University of Toronto Mississauga, Mississauga, Canada

Mora, Natali, Center for Geophysical Research, University of Costa Rica, San Jose, Costa Rica

Morán, Johnny, Centro Internacional para la Investigación del Fenómeno de El Niño (CIFEN), Guayaquil, Ecuador

Morehen, Claire, Environment and Climate Change Canada, Vancouver, British Columbia, Canada

Morice, Colin, Met Office Hadley Centre, Exeter, United Kingdom

Mostafa, A. E., Department of Seasonal Forecast and Climate Research, Cairo Numerical Weather Prediction, Egyptian Meteorological Authority, Cairo, Egypt

Mote, Thomas L., University of Georgia, Athens, Georgia

Mrekaj, Ivan, Technical University in Zvolen, Zvolen, Slovakia

Mudryk, Lawrence, Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
Editor and Author Affiliations (continued)

Mühl, Jens, AGAGE, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Müller, Rolf, Forschungsanstalt Jülich, Jülich, Germany

Nance, David, Cooperative Institute for Research in the Earth Sciences, NOAA Global Monitoring Laboratory, Boulder, Colorado

Nash, Eric R., Science Systems and Applications, Inc., Lanham, Maryland; NASA Goddard Space Flight Center, Greenbelt, Maryland

Nerem, R. Steven, Colorado Center for Astrodynamics Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Newman, Paul A., NASA Goddard Space Flight Center, Greenbelt, Maryland

Nicolas, Julien P., European Centre for Medium-Range Weather Forecasts, Bonn, Germany

Nieto, Juan J., Centro Internacional para la Investigación del Fenómeno de El Niño (CIIFEN), Guayaquil, Ecuador

Noetzli, Jeannette, WSL Institute for Snow and Avalanche Research SLF, Davos-Dorf, Switzerland; Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland

Noll, Ben, National Institute of Water and Atmospheric Research, Auckland, New Zealand

Norton, Taylor, Antarctic Meteorological Research and Data Center, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Nyland, Kelsey E., Department of Geography, George Washington University, Washington, DC

O’Keefe, John, The Harvard Forest, Harvard University, Petersham, Massachusetts

Ochwat, Naomi, Earth Science Observation Center, Cooperative Institute for Research in Environmental Sciences (ESOC/Cires), University of Colorado Boulder, Boulder Colorado

Okawa, Yoshinori, Tokyo Climate Center, Japan Meteorological Agency, Tokyo, Japan

Okunaka, Yuka, Tokyo Climate Center, Japan Meteorological Agency, Tokyo, Japan

Osborn, Timothy J., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Overland, James E., NOAA Pacific Marine Environmental Laboratory, Seattle, Washington

Park, Taejin, NASA Ames Research Center, Mountain View, California; Bay Area Environmental Research Institute, Mountain View, California

Parrington, Mark, European Centre for Medium-Range Weather Forecasts, Bonn, Germany

Parrish, Julia K., Coastal Observation and Seabird Survey Team, University of Washington, Seattle, Washington

Pasch, Richard J., NOAA/NWS National Hurricane Center, Miami, Florida

Pascual Ramírez, Reynaldo, National Meteorological Service of Mexico, Mexico City, Mexico

Pellet, Cécile, Department of Geosciences, University of Fribourg, Fribourg, Switzerland

Pelto, Mauri S., Nichols College, Dudley, Massachusetts

Perčec Tadić, Mljet, Croatian Meteorological and Hydrological Service, Zagreb, Croatia

Perovich, Donald K., University of Dartmouth, Hanover, New Hampshire

Petersen, Guðrún Nína, Icelandic Meteorological Office, Reykjavik, Iceland

Petersen, Kyle, Cooperative Institute for Research in the Earth Sciences, NOAA Global Monitoring Laboratory, Boulder, Colorado

Petropavlovskikh, Irina, NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado; University of Colorado Boulder, Boulder, Colorado

Petty, Alek, NASA Goddard Space Flight Center, Greenbelt, Maryland

Pezza, Alexandre B., Greater Wellington Regional Council, Wellington, New Zealand

Pezzi, Luciano P., Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (DIOGT), National Institute for Space Research (INPE), São José dos Campos, Brazil

Phillips, Coda, Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

Phoenix, Gareth K., University of Sheffield, Sheffield, United Kingdom

Pierson, Don, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden

Pinto, Izidine, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands

Pires, Vanda, Portuguese Sea and Atmospheric Institute, Lisbon, Portugal

Pitts, Michael, NASA Langley Research Center, Hampton, Virginia

Po-Chedley, Stephen, Lawrence Livermore National Laboratory, Livermore, California

Pogliotti, Paolo, Environmental Protection Agency of Valle d’Aosta, Saint-Christophe, Italy

Poinar, Kristin, University at Buffalo, Buffalo, New York

Polvani, Lorenzo, Columbia University, New York, New York

Preimesberger, Wolfgang, TU Wien, Department of Geodesy and Geoinformation, Vienna, Austria

Price, Colin, Tel Aviv University, Tel Aviv, Israel

Pullkanen, Merja, Finnish Environment Institute (SYKE), Jyvaskyla, Finland

Putkey, Sarah G., Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Quio, Bo, Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Quisbert, Kenny, Servicio Nacional de Meteorologia e Hidrologia de Bolivia, La Paz, Bolivia

Quispe, Willy R., Servicio Nacional de Meteorologia e Hidrologia de Bolivia, La Paz, Bolivia

Rajeevan, M., Ministry of Earth Sciences, New Delhi, India

Ramos, Andrea M., Instituto Nacional de Meteorologia, Brasilia, Brazil

Randel, William J., National Center for Atmospheric Research, Boulder, Colorado

Rantanen, Mika, Finnish Meteorological Institute, Helsinki, Finland

Raphael, Marilyn N., Department of Geography, University of California, Los Angeles, Los Angeles, California

Reagan, James, NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland

Recalde, Cristina, NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, Maryland

Reid, Phillip, Australian Bureau of Meteorology and Australian Antarctic Program Partnership (AAPP), Hobart, Australia

Rémy, Samuel, HYGEOS, Lille, France

Reyes Kohler, Alejandra J., Dirección de Meteorologia de Chile, Santiago de Chile, Chile

Ricciardulli, Lucrezia, Remote Sensing Systems, Santa Rosa, California

Richardson, Andrew D., School of Informatics, Computing, and Cyber Systems, Flagstaff, Arizona; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona

Ricker, Robert, NORCE Norwegian Research Centre, Tromso, Norway

Robinson, David A., Rutgers University, Piscataway, New Jersey

Robjhon, M., NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland

Rocha, Willy, Servicio Nacional de Meteorologia e Hidrologia, Bolivia

Rodell, Matthew, Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Rodriguez Guisado, Esteban, Agencia Estatal de Meteorologia, Madrid, Spain

Rodriguez-Fernandez, Nemésio, CESBIO, Université de Toulouse, CNES/CRNS/INRAe/IRD/UAPS, Toulouse, France
Editor and Author Affiliations (continued)

Suslova, Anya, Woodwell Climate Research Center, Falmouth, Massachusetts
Svendby, Tove, Norwegian Institute for Air Research, Kjeller, Norway
Sweet, William, NOAA/NOS Center for Operational Oceanographic Products and Services, Silver Spring, Maryland
Takahashi, Kiyotoshi, Tokyo Climate Center, Japan Meteorological Agency, Tokyo, Japan
Takemura, Kazuto, Tokyo Climate Center, Japan Meteorological Agency, Tokyo, Japan
Tank, Suzanne E., University of Alberta, Edmonton, Canada
Taylor, Michael A., Department of Physics, The University of the West Indies, Kingston, Jamaica
Tedesco, Marco, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York; NASA Goddard Institute of Space Studies, New York, New York
Thackeray, Stephen J., UK Centre for Ecology and Hydrology, Lancaster, United Kingdom
Thiaw, W. M., NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Thibert, Emmanuel, Université Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, Grenoble, France.
Thoman, Richard L., International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Thompson, Andrew F., California Institute of Technology, Pasadena, California
Thompson, Philip R., Cooperative Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii
Tian-Kunze, Xiangshan, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Timmermans, Mary-Louise, Yale University, New Haven, Connecticut
Timofeyev, Maxim A., Irkutsk State University, Institute of Biology, Irkutsk, Russia
Tobin, Skie, Bureau of Meteorology, Melbourne, Australia
Tømmervik, Hans, Arctic Department, Norwegian Institute for Nature Research, Tromsø, Norway
Tourpali, Klearoti, Aristotle University, Thessaloniki, Greece
Trescio, Lidia, State Hydrometeorological Service, Chisinau, Republic of Moldova
Tretiakov, Mikhail, Arctic and Antarctic Research Institute, St. Petersburg, Russia
Trewin, Blair C., Australian Bureau of Meteorology, Melbourne, Australia
Triniñas, Joaquín A., Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain; Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Trotman, Adrian, Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
Truchelut, Ryan E., WeatherTiger, Tallahassee, Florida
Truel, Luke D., Pennsylvania State University, University Park, Pennsylvania
Tye, Mari R., National Center for Atmospheric Research, Boulder, Colorado
van der A, Ronald, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
van der Schalie, Robin, Planet Labs, Haarlem, The Netherlands
van der Schrier, Gerard, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
Van Meerbeeck, Cedric J., Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
van Vliet, Arnold J.H., Environmental Systems Analysis Group, Wageningen University and Research, The Netherlands
Vazife, Ahad, Iran National Climate and Drought Crisis Management, National Meteorology Organization, Tehran, Iran
Verburg, Piet, National Institute of Water and Atmospheric Research, Wellington, New Zealand
Vernier, Jean-Paul, NASA Langley Research Center, Hampton, Virginia
Vimont, Isaac J., NOAA Global Monitoring Laboratory, Boulder, Colorado
Virts, Katrina, University of Alabama in Huntsville, Huntsville, Alabama
Vivero, Sebastián, Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Volkov, Denis L., Cooperative Institute for Marine and Atmospheric Studies, University of Miami; NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Vömel, Holger, Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
Vose, Russell S., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Walker, Donald (Skip) A., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
Walsh, John E., International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Wang, Bin, School of Ocean and Earth Science and Technology, Department of Meteorology, University of Hawaii; International Pacific Prediction Center, Honolulu, Hawaii
Wang, Hui, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Wang, Muyin, NOAA Pacific Marine Environmental Laboratory, Seattle, Washington; Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington
Wang, Ray H. J., Georgia Institute of Technology, Atlanta, Georgia
Wang, Xinyue, National Center for Atmospheric Research, Boulder, Colorado
Wanninkhof, Rik, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Warnock, Taran, University of Saskatchewan, Saskatoon, Canada
Weber, Mark, University of Bremen, Bremen, Germany
Webster, Melinda, University of Washington, Seattle, Washington
Wehrli, Adrian, University of Zürich, Zürich, Switzerland
Wen, Caihong, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Westberry, Toby K., Oregon State University, Corvallis, Oregon
Widiansky, Matthew J., Cooperative Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii
Wiese, David N., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Wild, Jeannette D., ESSIC/University of Maryland, College Park, Maryland; NOAA NESDIS/STAR, College Park, Maryland
Wille, Jonathan D., Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland; Institut des Géosciences de l’Environnement, CNRS/UGA/IRD/G-INP, Saint Martin d’Hères, France
Willems, An, Royal Meteorological Institute of Belgium (KMI), Brussels, Belgium
Willett, Kate M., Met Office Hadley Centre, Exeter, United Kingdom
Williams, Earle, Massachusetts Institute of Technology, Cambridge, Massachusetts
Willis, J., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Wong, Takmeng, NASA Langley Research Center, Hampton, Virginia
Wood, Kimberly M., Department of Geosciences, Mississippi State University, Mississippi State, Mississippi
Woolway, Richard Iestyn, School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, Wales
Xie, Ping-Ping, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland
Yang, Dedi, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York; Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York
Editor and Author Affiliations (continued)

Yin, Xungang, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Yin, Ziqi, Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
Zeng, Zhenzhong, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
Zhang, Huai-min, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Zhang, Li, NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center, College Park, Maryland; ERT, Laurel, Maryland
Zhang, Peiqun, Beijing Climate Center, Beijing, China
Zhao, Lin, School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Zhou, Xinjia, Center for Satellite Applications and Research, NOAA, College Park, Maryland
Zhu, Zhiwei, Nanjing University of Information Science and Technology, Nanjing, China
Ziemke, Jerry R., Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland; NASA Goddard Space Flight Center, Greenbelt, Maryland
Ziese, Markus, Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
Zolkos, Scott, Woodwell Climate Research Center, Falmouth, Massachusetts
Zotta, Ruxandra M., TU Wien, Vienna, Austria
Zou, Cheng-Zhi, NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland

Editorial and Production Team

Allen, Jessicca, Graphics Support, Cooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina
Camper, Amy V., Graphics Support, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Haley, Bridgette O., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Hammer, Gregory, Content Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Love-Brotak, S. Elizabeth, Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Ohlmann, Laura, Technical Editor, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Noguchi, Lukas, Technical Editor, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Riddle, Deborah B., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Veasey, Sara W., Visual Communications Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
STATE OF THE CLIMATE IN 2022

INTRODUCTION

T. Boyer, E. Bartow-Gillies, J. Blunden, and R. J. H. Dunn

Special Online Supplement to the Bulletin of the American Meteorological Society Vol. 104, No. 9, September, 2023

https://doi.org/10.1175/2023BAMSStateoftheClimate_Intro.1
Corresponding author: Jessica Blunden / jessica.blunden@noaa.gov

©2023 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.
STATE OF THE CLIMATE IN 2022

Introduction

Editors
Ellen Bartow-Gillies
Jessica Blunden
Tim Boyer

Chapter Editors
Peter Bissolli
Kyle R. Clem
Howard J. Diamond
Matthew L. Druckenmiller
Robert J. H. Dunn
Catherine Ganter
Nadine Gobron
Gregory C. Johnson
Rick Lumpkin
Ademe Mekonnen
John B. Miller
Twila A. Moon
Marilyn N. Raphael
Ahira Sánchez-Lugo
Carl J. Schreck III
Richard L. Thoman
Kate M. Willett
Zhiwei Zhu

Technical Editor
Lukas Noguchi

BAMS Special Editor for Climate
Michael A. Alexander

American Meteorological Society
Cover Credit:
panaramka/Wild peaks of the Carpathians in a thunderstorm/Getty.

Self portrait: Traveling of a lone tourist in the snowy Carpathians among wild forests and fields, during a strong storm with a winter thunderstorm against the backdrop of mountains.

How to cite this document:
Introduction is one chapter from the State of the Climate in 2022 annual report and is available from https://doi.org/10.1175/2023BAMSStateoftheClimate_Intro.1. Compiled by NOAA's National Centers for Environmental Information, State of the Climate in 2022 is based on contributions from scientists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instruments located on land, water, ice, and in space. The full report is available from https://doi.org/10.1175/2023BAMSStateoftheClimate.1.

Citing the complete report:

Citing this chapter:
Editor and Author Affiliations (alphabetical by name)

Bartow-Gillies, Ellen, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Blunden, Jessica, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Boyer, Tim, NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland
Dunn, Robert J. H., Met Office Hadley Centre, Exeter, United Kingdom

Editorial and Production Team

Allen, Jessica, Graphics Support, Cooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina
Camper, Amy V., Graphics Support, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Haley, Bridgette O., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Hammer, Gregory, Content Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Love-Brotak, S. Elizabeth, Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Ohlmann, Laura, Technical Editor, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Noguchi, Lukas, Technical Editor, Innovative Consulting and Management Services, LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Riddle, Deborah B., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Veasey, Sara W., Visual Communications Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
1. INTRODUCTION

T. Boyer, E. Bartow-Gillies, J. Blunden, and R. J. H. Dunn

The year 2022 was marked by unusual (though not unprecedented) disruptions in the climate system. The first was the third successive year of below-average temperatures in the tropical Pacific. A “triple-dip” La Niña nearly continuous from August 2020 through the end of 2022 marked the first such occurrence in the twenty-first century. Note that the triple-dip La Niña should not be confused with the double-dip La Niña described in the *State of the Climate 2021*, as the double-dip referred to the short interruption between two La Niña events in 2021 which was the only break in the triple-dip period. Descriptions of the large-scale characteristics of the triple-dip La Niña are found in Chapters 2 (Global Climate) and 3 (Global Ocean). The El Niño–Southern Oscillation phenomena, of which the triple-dip La Niña is an anomalous manifestation, has major short-term influence on the climate system. The specific details of the effects of the triple-dip La Niña on other aspects of the climate system are found throughout the report. A perspective of the triple-dip La Niña and its implications for long-term climate are discussed in a sidebar of Chapter 3.

The second unusual event was the extraordinary amount of precipitation over Antarctica in 2022, which led to a record-high annual surface mass balance (since 1980) and the first net positive annual ice-sheet mass balance on the continent since satellite measurements began in 1993. The heavy precipitation was closely tied to an unusually high number of atmospheric rivers over the continent, which carry moisture over Antarctica that mainly falls as snow. March precipitation totals in the Wilkes and Adelie regions were particularly high, estimated to exceed 300% of the 1991–2020 climatological mean. While an increase in ice-sheet mass in Antarctica has positive implications for global continental water storage and hence lessening sea-level increase, atmospheric rivers also have a large impact on surface melt and ice-sheet stability. Surface melt in turn has an impact on ‘firn’, the underlying layer of recrystallized snow from previous years. Firn density is an important factor in determining how surface melt water flows on and within ice shelves, which can reduce glacial stability and lead to their breakup and collapse. There was also record-low sea ice surrounding Antarctica in 2022, and on the eastern Antarctic Peninsula which allowed large swells to reach the coast and caused a breakout of fast ice that contributed to an acceleration of upstream glaciers. The complex interactions of climate factors on the Antarctic continent are discussed in Chapter 6, with particulars in the two sidebars: 1) The Antarctic heatwave of March 2022 and 2) Larsen-B fast ice breakout and glacier response.

A third event in 2022 was the eruption of the Hunga Tonga–Hunga Ha’apai underwater volcano (HTHH) in January. This eruption propelled immense amounts of water vapor (50 Tg to 150 Tg, upwards of 10% of the total stratospheric water vapor burden) and other gases into the stratosphere, with a plume higher than any previous eruption in the satellite era. Implications of the eruption, detailed in a sidebar and elsewhere in Chapter 2, include increased stratospheric aerosols and observations of cool stratospheric temperatures outside normal ranges with correspondingly anomalous winds. Long-term effects on tropospheric temperatures and the Antarctic ozone hole remain to be seen. The HTHH eruption also had an effect on our ability to make observations. For example, as detailed in Chapter 3, the calculation of ocean carbon biomass from satellite measurements has been greatly affected by the amount of sulfate aerosols injected by the HTHH eruption.
Another instance of volcanic activity, though not of the scale of HTHH, but with significant
effects on the climate observing system, was the eruption of Mauna Loa in late November 2022.
This eruption and subsequent lava flow shut down access and power to the NOAA Mauna Loa
Observatory (featured on the cover of Chapter 8, Datasets), interrupting one of the longest time
series for a variety of atmospheric variables, including atmospheric carbon dioxide (CO₂) levels.
After a 10-day interruption, NOAA’s CO₂ measurements were transferred to the University of
Hawaii’s Maunakea Observatories. The Mauna Loa CO₂ time series is an invaluable monitor of
the changes in our climate system (as detailed in Chapter 2). This serves as a reminder of the
importance of long-term continuous time series in our understanding of Earth’s climate system
and the importance of continuing such time series.

All the above singular events, along with the status of essential climate variables (ECVs) and
their implications for Earth’s climate system are detailed in the State of the Climate 2022 due
to the persistent dedication of the chapter editors and section authors—this year 576 authors
from 66 different countries, including Andorra and Namibia for the first time. A distillation of
the state of the climate for 2022 in the context of long-term trends and variability of selected
essential climate variables is found in the 36 panels of Plate 1.1. The State of the Climate report
continues to advance toward a more comprehensive survey of essential climate variables (ECVs).
A new section on lightning (Chapter 2, Global Climate) documents global distributions in this
ECV. A new section on Arctic Precipitation (Chapter 5, the Arctic) adds regional insight into the
precipitation ECV.

The layout of this Supplement is similar to previous years. Following this introduction (Chapter
1), Chapter 2 catalogs global climate, Chapter 3 the oceans, Chapter 4 the tropics, Chapters 5 and
6 the high latitudes (Arctic and Antarctic, respectively), and Chapter 7 other specific regions
of the globe (North America, Central America/Caribbean, South America, Africa, Europe, Asia,
and Oceania). Finally, Chapter 8 is a listing of many (though not all) datasets used in the various
sections of the State of the Climate in 2022 and a link to dataset access and further information.
Datasets are listed by chapter. Most of the datasets are readily downloadable by the reader who
would like to reproduce the results found in the State of the Climate report or investigate further.
Fig. 1.1. Geographical distribution of selected notable climate anomalies and events in 2022.

Plate 1.1. (Next page) Global (or representative) average time series for essential climate variables through 2019. Anomalies are shown relative to the base period in parentheses although base periods used in other sections of the report may differ. The numbers in the parentheses in the lower left or right side of each panel indicate how many in situ (red), reanalysis (blue), and satellite (orange) datasets are used to create each time series in that order. (a) NH polar stratospheric ozone (Mar); (b) SH polar stratospheric ozone (Oct); (c) surface temperature; (d) night marine air temperature; (e) lower-tropospheric temperature; (f) lower-stratospheric temperature; (g) extremes (warm days [solid] and cool days [dotted]); (h) Arctic sea-ice extent (max [solid]) and min [dotted]); (i) Antarctic sea-ice extent (max [solid] and min [dotted]); (j) glacier cumulative mean specific balance; (k) NH snow-cover extent; (l) NH lake ice duration; (m) Mauna Loa apparent transmission; (n) lower-stratospheric water vapor; (o) cloud area fraction; (p) total column water vapor – land; (q) total column water vapor – ocean; (r) upper-tropospheric humidity; (s) specific humidity – land; (t) specific humidity – ocean; (u) relative humidity – land; (v) relative humidity – ocean; (w) precipitation – land; (x) precipitation – ocean; (y) ocean heat content (0 m–700 m); (z) sea-level rise; (aa) tropospheric ozone; (ab) tropospheric wind speed at 850 hPa; (ac) land wind speed; (ad) ocean wind speed; (ae) biomass burning; (af) soil moisture; (ag) terrestrial groundwater storage; (ah) fraction of absorbed photosynthetically active radiation (FAPAR); (ai) land surface albedo – visible (solid) and infrared (dotted).
1. Introduction
Essential Climate Variables
—T. BOYER, E. BARTOW-GILLIES, J. BLUNDEN, AND R.H. DUNN

The following variables are considered fully monitored in this report, in that there are sufficient spatial and temporal data, with peer-reviewed documentation to characterize them on a global scale:

- Surface atmosphere: air pressure, precipitation, temperature, water vapor, wind speed and direction
- Upper atmosphere: Earth radiation budget, temperature, water vapor, wind speed and direction, lightning
- Atmospheric composition: carbon dioxide, methane and other greenhouse gases, ozone
- Ocean physics: ocean surface heat flux, sea ice, sea level, surface salinity, sea-surface temperature, subsurface salinity, subsurface temperature, surface currents, surface stress
- Ocean biogeochemistry: ocean color
- Ocean biogeosystems: plankton
- Land: albedo, river discharge, snow

The following variables are considered partially monitored, in that there is systematic, rigorous measurement found in this report, but some coverage of the variable in time and space is lacking due to observing limitations or availability of data or authors:

- Atmospheric composition: aerosols properties, cloud properties, precursors of aerosol and ozone
- Ocean physics: subsurface currents
- Ocean biogeochemistry: inorganic carbon
- Land: above-ground biomass, anthropogenic greenhouse gas fluxes, fire, fraction of absorbed photosynthetically active radiation, glaciers, groundwater, ice sheets and ice shelves, lakes, permafrost, soil moisture
- Surface atmosphere: surface radiation budget

The following variables are not yet covered in this report, or are outside the scope of it:

- Ocean physics: sea state
- Ocean biogeochemistry: nitrous oxide, nutrients, oxygen, transient tracers
- Ocean biogeosystems: marine habitat properties
- Land: anthropogenic water use, land cover, land surface temperature, latent and sensible heat fluxes, leaf area index, soil carbon
Acknowledgments

The editors thank the BAMS editorial staff, in particular Bryan Hanssen, who provided technical guidance, oversaw publication of the report, and continues to help us shepherd the report into a digital publishing era; Andrea Herbst, who provided peer review support; Nicole Rietmann, who oversaw the hundreds of citations and references this year; and the NCEI Graphics team for facilitating the construction of the report and executing the countless number of technical edits needed. We thank our technical editor, Lukas Noguchi, for his dedication and attention to detail. We also express our gratitude to Dr. Michael Alexander, who served for the third year as the AMS special editor for this report. Finally, we thank all of the authors and chapter editors who provide these valuable contributions each year, always with an aim to improve and expand their analyses for the readers.