A color radar system should include certain features as standard. Because while the base price may look OK, it can be a shock when you put together the options that make it perform the way you want.

That's why you should look at the Alden C2000R. We've just redesigned it to include more features than ever—and kept the price the most competitive around.

Our radar network has expanded. You can access any NWS radar in the country, over 120 of them nationwide. And each has its own customized 4-color background—you don't pay extra for it.

We've also added four built-in range displays, from 25 to 200 miles, so you can focus on your local weather, or display the entire region—at the push of a button.

Our image memory has been expanded so you can store up to 16 images with the standard system, or add another 48 frames if you want. You can loop combinations in time-lapse sequences to emphasize the drama of storm movement.

And now you can collect your time-lapse sequences more easily than ever. Our new auto-dialer can be programmed to automatically call the radar at preselected intervals—freeing you up for other important tasks.

We still include the wide variety of standard features that make Alden the most flexible system you can buy. Zoom, pan and scroll, range rings and sweep line. And NTSC and RGB compatibility that make it usable for broadcast.

In addition to the C2000R radar system, Alden offers the C2000S weather graphics system, which lets you access a variety of private databases. Our "building-block" design lets you add either system to an existing C2000 model at any time in the future, with minimal additional cost.

For more information on Alden's weather radar and weather graphics systems, call or write Alden Electronics, 135A Washington Street, Westborough, MA 01581. (508) 366-8851.

Please send information on:
- C2000R Color Radar System
- C2000R/S Radar and Color Weather Graphics System
- C2000M Single Picture (radio version)

Name __________________________
Company ________________________
Address _________________________
City ___ State ___ Zip ___
Phone ___________________________
ADVANCED SENSORS WITH FAST RESPONSE AND HIGH RESOLUTION

The Lyman-Alpha Hygrometer measures rapid humidity fluctuations. AIR's Lyman-Alpha Hygrometer is designed to measure rapid absolute humidity fluctuations with two-millisecond response and high spatial resolution over an extremely wide range of conditions.

The instrument measures humidity in a small volume of air by sensing water vapor's absorption of light in a selected wavelength, the Lyman-Alpha emission line. A uniquely stable light source minimizes changes in light source intensity to assure accurate readings.

The Lyman-Alpha Hygrometer is ideal for operation on meteorological towers, in laboratories, and on aircraft. Applications include humidity flux measurements, water vapor measurements in fast flowing gases, atmospheric turbulence research, and aircraft-based atmospheric humidity sensing.

Key Specifications:
- Response: 2 ms (independent of dew point)
- Range: -80°C to +50°C dew point
- Spatial Resolution: 1 cm
- Hysteresis: none

AIR Temperature Sensors for fast, high-resolution measurements. Turbulence studies require sensors with sensitivity and fast response. AIR offers two types of instruments to measure high-frequency temperature fluctuations.

The AIR Temperature Structure Function Sensor is an advanced dual-probe differential thermometer that measures atmospheric thermal structure with a frequency spectrum between 0.1 Hz and 25 Hz. In addition, the instrument directly outputs temperature structure function, C_T.

The AIR Fast Response Temperature Sensor measures thermal fluctuations up to 25 Hz. Applications include heat flux studies, micro-meteorology, and sonic anemometer corrections.

Both types of AIR temperature sensors are available for tower mount applications or for lower altitude research when mounted on an AIR Tethersonde atmospheric sounding probe.

Find out more. For complete specifications and additional information about AIR's advanced technology Humidity and Temperature Sensors, call or write:

Atmospheric Instrumentation Research, Inc.
8401 Baseline Rd. A, Boulder, CO 80303
TWX: 910-940-5904 FAX: 303-499-1767
(303) 499-1701 Ext. 3
SUDDENLY, ALL OTHER CEILOMETERS FALL SHORT COMPARED TO THIS ONE.

Imagine a ceilometer that measures twice as far as any other, and delivers ten times the resolution. Impossible? Not at all. Because that ceilometer is already here.

It's a dramatic breakthrough from Belfort: a vertical laser beam ceilometer that provides cloud based measurements to 25,000 ft. instead of the maximum 12,500 ft. of other such instruments.

What's more, it collects more information in much less time, with a resolution documented at ten times that of other laser beam ceilometers.

Already selected for use by the British Meteorological Office, the instrument is microprocessor controlled, self-diagnostic and self-calibrating, eyesafe, features Klett Extinction profile, and provides remote monitoring and control plus PC compatible interface.

Learn why you no longer have to limit your thinking about accurate cloud base measurements. Call or write for more information. Belfort Instrument, 727 S. Wolfe Street, Baltimore, MD 21231 301-342-2626 FAX: 301-342-7028 TELEX: 87528 BELFORT-BAL

BELFORT®
A Division of TransTechnology Corporation
Volume 70, No. 12, December 1989

articles

Observations of the Wind Field in Tornadoes, Funnel Clouds, and Wall Clouds with a Portable Doppler Radar

H. B. Bluestein and W. P. Unruh 1514

Vortex Breakdown in Atmospheric Columnar Vortices

H. J. Lugt 1526

John Aitken’s Contribution to Atmospheric and Aerosol Sciences—One Hundred Years of Condensation Nuclei Counting

J. Podzimek 1538

meeting reviews

The NATO Advanced Research Workshop in Dynamics, Chemistry, and Photochemistry in the Middle Atmosphere of the Southern Hemisphere

A. O’Neill and C. R. Mechoso 1546

Summary of the Seventh Conference on Meteorology of the Middle Atmosphere

R. A. Madden 1553

correspondence

Observing and Forecasting Tropical Cyclones—Where Next?

J. C. L. Chan and G. J. Holland 1560

D. Chesters and A. J. Krueger 1564

The Wolbach Dataset for Global Climate Monitoring—Philanthropy and Climatology

R. G. Quayle 1570

China Expands Opportunities for International Exchange

B. C. Houghton 1571

special news features

President Nominates J. A. Knauss as Commerce Under Secretary for Oceans and Atmosphere

1586

Summary of AMS Participation in the 1989 International Science and Engineering Affiliated Fairs

1593

AMS notices .. 1574

awards ... 1575

book review .. 1576

new publications .. 1584

news and notes ... 1584

about our members .. 1587

news from our chapters ... 1588

25 years ago .. 1591

50 years ago .. 1591

calendar of meetings ... 1600

announcements .. 1612

corporation members ... 1615

professional directory ... 1619

index to 1989 .. 1632

contents of AMS Journals .. 1645

index to advertisers ... 1648

Cover: Graduate students from the University of Oklahoma probing a tornado with a portable 1-W FM-CW Doppler radar designed and built at the Los Alamos National Laboratory. The view is to the west with a 28-mm lens from Texas Secondary Road, 707, approximately 5 km west of Hodges at 2334 UTC 13 May 1989.

Photo by Howard B. Bluestein