EXPLAINING EXTREME EVENTS OF 2014
From A Climate Perspective
CORRESPONDING EDITOR:

Stephanie C. Herring, PhD
NOAA National Centers for Environmental Information
325 Broadway, E/CC23, Rm 1B-131
Boulder, CO 80305-3328
E-mail: stephanie.herring@noaa.gov

COVER CREDITS:

FRONT: ©iStockphotos.com/coleong—Winter snow, Boston, Massachusetts, United States.

BACK: ©iStockphotos.com/nathanphoto—Legget, California, United States – August 13, 2014: CAL FIRE helicopter surveys a part of the Lodge Fire, Mendocino County.

HOW TO CITE THIS DOCUMENT

Citing the complete report:

Citing a section (example):

EDITORIAL AND PRODUCTION TEAM

Riddle, Deborah B., Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Love-Brotak, S. Elizabeth, Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Veasey, Sara W., Visual Communications Team Lead, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Griffin, Jessica, Graphics Support, Cooperative Institute for Climate and Satellites-NC, North Carolina State University, Asheville, NC
Maycock, Tom, Editorial Support, Cooperative Institute for Climate and Satellites-NC, North Carolina State University, Asheville, NC
Misch, Deborah J., Graphics Support, LMI Consulting, Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Osborne, Susan, Editorial Support, LMI Consulting, Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Schreck, Carl, Editorial Support, Cooperative Institute for Climate and Satellites-NC, North Carolina State University, and NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Sprain, Mara, Editorial Support, LAC Group, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
Young, Teresa, Graphics Support, STG, Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, NC
TABLE OF CONTENTS

Abstract... ii

1. Introduction to Explaining Extreme Events of 2014 from a Climate Perspective... 1
2. Extreme Fire Season in California: A Glimpse Into the Future? ... 5
3. How Unusual was the Cold Winter of 2013/14 in the Upper Midwest? ... 10
4. Was the Cold Eastern US Winter of 2014 Due to Increased Variability? ... 15
5. The 2014 Extreme Flood on the Southeastern Canadian Prairies .. 20
6. Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming HIatus... 25
7. Was the Extreme Storm Season in Winter 2013/14 Over the North Atlantic and the United Kingdom Triggered by Changes in the West Pacific Warm Pool? ... 29
8. Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil............................... 35
10. Extreme Rainfall in the United Kingdom During Winter 2013/14: The Role of Atmospheric Circulation and Climate Change .. 46
11. Hurricane Gonzalo and its Extratropical Transition to a Strong European Storm... 51
12. Extreme Fall 2014 Precipitation in the Cévennes Mountains ... 56
14. The Contribution of Human-Induced Climate Change to the Drought of 2014 in the Southern Levant Region 66
15. Drought in the Middle East and Central–Southwest Asia During Winter 2013/14 .. 71
16. Assessing the Contributions of East African and West Pacific Warming to the 2014 Boreal Spring East African Drought .. 77
17. The 2014 Drought in the Horn of Africa: Attribution of Meteorological Drivers .. 83
18. The Deadly Himalayan Snowstorm of October 2014: Synoptic Conditions and Associated Trends .. 89
19. Anthropogenic Influence on the 2014 Record-Hot Spring in Korea ... 95
20. Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean .. 100
21. The 2014 Hot, Dry Summer in Northeast Asia .. 105
22. Role of Anthropogenic Forcing in 2014 Hot Spring in Northern China .. 111
23. Investigating the Influence of Anthropogenic Forcing and Natural Variability on the 2014 Hawaiian Hurricane Season .. 115
24. Anomalous Tropical Cyclone Activity in the Western North Pacific in August 2014 ... 120
25. The 2014 Record Dry Spell at Singapore: An Intertropical Convergence Zone (ITCZ) Drought ... 126
28. Increased Likelihood of Brisbane, Australia, G20 Heat Event Due to Anthropogenic Climate Change .. 141
29. The Contribution of Anthropogenic Forcing to the Adelaide and Melbourne, Australia, Heat Waves of January 2014 .. 145
30. Contributors to the Record High Temperatures Across Australia in Late Spring 2014 ... 149
31. Increased Risk of the 2014 Australian May Heatwave Due to Anthropogenic Activity ... 154
32. Attribution of Exceptional Mean Sea Level Pressure Anomalies South of Australia in August 2014 .. 158
33. The 2014 High Record of Antarctic Sea Ice Extent .. 163
34. Summary and Broader Context .. 168
ABSTRACT—Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott

Understanding how long-term global change affects the intensity and likelihood of extreme weather events is a frontier science challenge. This fourth edition of explaining extreme events of the previous year (2014) from a climate perspective is the most extensive yet with 33 different research groups exploring the causes of 29 different events that occurred in 2014. A number of this year’s studies indicate that human-caused climate change greatly increased the likelihood and intensity for extreme heat waves in 2014 over various regions. For other types of extreme events, such as droughts, heavy rains, and winter storms, a climate change influence was found in some instances and not in others. This year’s report also included many different types of extreme events. The tropical cyclones that impacted Hawaii were made more likely due to human-caused climate change. Climate change also decreased the Antarctic sea ice extent in 2014 and increased the strength and likelihood of high sea surface temperatures in both the Atlantic and Pacific Oceans. For western U.S. wildfires, no link to the individual events in 2014 could be detected, but the overall probability of western U.S. wildfires has increased due to human impacts on the climate.

Challenges that attribution assessments face include the often limited observational record and inability of models to reproduce some extreme events well. In general, when attribution assessments fail to find anthropogenic signals this alone does not prove anthropogenic climate change did not influence the event. The failure to find a human fingerprint could be due to insufficient data or poor models and not the absence of anthropogenic effects.

This year researchers also considered other human-caused drivers of extreme events beyond the usual radiative drivers. For example, flooding in the Canadian prairies was found to be more likely because of human land-use changes that affect drainage mechanisms. Similarly, the Jakarta floods may have been compounded by land-use change via urban development and associated land subsidence. These types of mechanical factors re-emphasize the various pathways beyond climate change by which human activity can increase regional risk of extreme events.
10. EXTREME RAINFALL IN THE UNITED KINGDOM DURING WINTER 2013/14: THE ROLE OF ATMOSPHERIC CIRCULATION AND CLIMATE CHANGE

Nikolaos Christidis and Peter A. Stott

Introduction. The winter of 2013/14 in the United Kingdom was characterized by an exceptional clustering of vigorous storms driven by the North Atlantic jet stream. The jet stream, in turn, gained momentum from this sequence of low pressure systems and was about 30% stronger than in recent decades (Slingo et al. 2014). The succession of deep depressions triggered tidal surges across coastal parts of the country, while the sustained rainfall over saturated ground culminated in widespread floodplain inundations, pronounced river flows, and record accumulated runoff totals (Huntingford et al. 2014). Coastal erosion and extended flooding led to damage in transport infrastructure and to business and residential properties and cost the U.K. government more than GBP 560 million in recovery schemes (DCLG 2014).

The positioning of a more southerly storm track increased the amount of moisture steered towards the United Kingdom over the winter season. Apart from a possible contribution from the positive phase of the North Atlantic Oscillation, possible drivers of the severe winter weather originating in the tropics have also been identified. The strengthening of the Atlantic jet stream may, for example, be linked to anomalously high precipitation in the West Pacific akin to La Niña conditions via Rossby wave interactions (Ineson and Scaife 2009) and the establishment of a pronounced temperature gradient between North America and the tropical Atlantic (Palmer and Owen 1986). The strong westerly phase of the Quasi-Biennial Oscillation during boreal winter may be another possible contributor to excessive storminess in the United Kingdom (Marshall and Scaife 2009). Although an increase in the number of deep winter depressions driven to the United Kingdom from the mid-latitude North Atlantic has not been established, new evidence suggests an increase in their intensity since the 1870s (Wang et al. 2013).

The aspect of the extreme event that we focus on in our study is rainfall. Persistent storminess throughout winter resulted in the highest rainfall amount averaged over the entire U.K. land area since 1931, as estimated with the HadUKP observational dataset (Alexander and Jones 2001). Here we consider a wider U.K. region (10°W–2°E, 48°–60°N) that is better resolved by global climate models. Rainfall data from the NCEP–NCAR reanalysis (Kalnay et al. 1996) indicate that 2013/14 was the wettest winter in the region (Fig. 10.1a) since the beginning of the record in 1948. In addition to the seasonal mean, we also employ an index for shorter events (R10x), defined as the wettest period during the year over 10 consecutive winter days. Estimates of R10x with reanalysis data also show a maximum in 2013/14 (Fig. 10.1b). The reanalysis data used here are found to be in good agreement with HadUKP. Emerging evidence suggests an increase in the frequency and intensity of extreme U.K. rainfall (Jones et al. 2013; Maraun et al. 2008), consistent with the detection of human influence on changes in extreme precipitation over larger spatial scales (Zhang et al. 2013).

Our study investigates how the interplay between anthropogenic forcings and the circulation pattern prevalent in winter 2013/14 (Fig. 10.1e) may impact the likelihood of extremely high precipitation (seasonal and R10x) in the U.K. region. We set out to answer two questions: 1) Are rainfall extremes more likely under a persistent southwesterly flow? 2) Given the characteristic winter circulation pattern, does human influence favor the occurrence of extremes? A
complementary analysis with an atmosphere-only model driven by prescribed oceanic conditions indicates that anthropogenic climate change increased the chance of getting an extremely wet winter in 2013/14 in parts of the United Kingdom (Shiermeier 2014). Following up, we employ coupled models that span the full range of possible oceanic conditions in an attempt to disentangle the possible contributions from synoptic conditions and externally forced factors.

Data and Methods. We estimate changes in the frequency of extreme rainfall based on simulations with models that contributed data to the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use two multimodel ensembles of simulations, one with the effect of both natural and anthropogenic forcings and one without the anthropogenic effect. A total of seven models are employed for which both types of experiments are available (details in online supplemental material). The models provide 43 simulations with all forcings (ALL) and 33 with natural forcings only (NAT) that end in 2012. Values of R10x are estimated with fewer simulations, as two of the models did not provide the necessary daily rainfall data. As in previous work, a bias correction is applied to the data of each model to bring the simulated rainfall averaged over a climatological period (1961–90) in agreement with the reanalysis (Christidis et al. 2013). Model evaluation assessments (online supplemental material) indicate that the ALL simulations used here produce realistic rainfall distributions and return times of extreme seasonal and 10-day long events. Modeled time series of winter (December–February, or DJF) rainfall and R10x generally encompass the range of the reanalysis data (Fig. 10.1a–d), though the DJF maximum of 2013/14 is only exceeded once in a single NAT simulation. No notable long-term change is evident in the time series. However, we find that the least-square fit to the ensemble mean of the model simulations yields trends that are significantly different than zero for both DJF and

Fig. 10.1. Rainfall in the U.K. region (10°W–2°E, 48°–60°N). Panels (a)–(d) illustrate the time series of the regional DJF rainfall (a,b) and the R10x index (c,d). Time series with data from the NCEP–NCAR reanalysis are plotted in black, and 2013/14 is marked by an asterisk. Time series from model simulations with all forcings (ALL) and natural forcings (NAT) only are shown in orange (a,c) and blue (b,d) respectively. The means of the ALL and NAT simulations are represented by the red and dark blue lines respectively. The vertical dotted lines mark the last 20 years of the model simulations used in the study to represent the recent climate. Panels (e)–(f) depict the geopotential height (red lines) and wind (blue arrows) winter mean anomalies at 500 hPa relative to the climatological period 1961–90. The map shown in panel (e) is constructed with NCEP–NCAR reanalysis data for 2013/14 and the one in panel (f) with the mean of winters extracted from the last 20 years of simulations with the ALL experiment, for which the circulation pattern correlates well (coefficient greater than 0.6) with the 2013/14 reanalysis pattern over the region marked by the black box.
R10x, but only when human influence is accounted for.

Samples of DJF rainfall and R10x are generated by selecting the last 20 years of the simulations (marked by the dotted vertical lines in Figs. 10.1a–d), as a proxy of the near-present-day climate. Ideally, the selected period should be centered on the year of the event, but this is not possible as the NAT simulations are not extended beyond 2012. Given the small trends in rainfall, years of the recent past should represent current climatic conditions sufficiently well, as also assumed in other studies (Christidis et al. 2015). We next partition the modeled winters between those that correlate well with the 2013/14 circulation patterns over a wider U.K. region shown in Fig. 10.1e (correlation coefficients above 0.6) and those with weaker correlations. We thus create high- and low-correlation ensembles with ALL and NAT forcings, which we later use to construct rainfall distributions and obtain likelihood estimates for extreme events. Figure 10.1f shows the 500-hPa field averaged over the winter season that corresponds to the mean of the high-correlation ensemble with ALL forcings, which displays a distinct southwesterly flow into the United Kingdom similar to winter 2013/14 (Fig. 10.1e). In contrast, the mean circulation estimated from all the winters extracted from the ALL simulations displays a more zonal flow, which agrees well with the climatological pattern from reanalysis data (online supplemental material).

Results. We first compare rainfall distributions with strong and weak correlations to the 2013/14 general circulation pattern in the “real world,” that is, under the influence of all climatic forcings (Figs. 10.2a,c). The characteristic flow increases the chance of heavy rainfall as the distribution shifts towards a wetter regime. A two-sided Kolmogorov–Smirnov test at the 95% confidence level is applied to determine the statistical significance of the difference between the observed and simulated rainfall distributions. The probability of exceeding extreme rainfall events is estimated using reanalysis data since 1948. The 2013/14 rainfall amount is represented by the vertical dashed line.

Fig. 10.2. The impact of the 2013/14 winter circulation pattern and anthropogenic forcings on DJF rainfall and R10x. Panels (a) and (c) illustrate the DJF and R10x rainfall distributions in the near-present-day climate based on simulated winters with high (orange) and low (green) correlations with the 2013/14 flow pattern. Panels (b) and (d) also illustrate the DJF and R10x rainfall distributions but for high-correlation cases only from model experiments with (red) and without (blue) anthropogenic forcings. A rainfall event is classified as extreme if the rainfall exceeds the amount associated with a 1-in-10-yr event (vertical black lines) estimated with reanalysis data since 1948. The 2013/14 rainfall amount is represented by the vertical dashed line. The distributions in panels (a)–(d) are constructed from simulated winters during the 1993–2012 period. Panel (e) shows the change in the likelihood of occurrence of extreme events under the influence of a circulation flow similar to 2013/14. Panel (f) shows the change in the likelihood due to anthropogenic forcings when the winter flow resembles the one of 2013/14. Best estimates of the change in the likelihood are marked by the square symbols and the 5%–95% uncertainty range by the vertical whiskers. The dashed horizontal line marks the ratio of 1, which suggests no likelihood change.
The prevalent southwesterly flow over
the United Kingdom in winter 2013/14 provided evidence for a human-induced increase in extreme rainfall in the United Kingdom for events with time scales of 10 days.

Acknowledgments. This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and the EUCLEIA project funded by the European Union’s Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 607085.

REFERENCES

Palmer, T. N., and J. A. A. Owen, 1986: A possible re-
relationship between some severe winters in North
America and enhanced convective activity over the

Schiermeier, Q., 2014: Climate change makes ex-
treme weather more likely to hit UK. *Nature News*,
doi:10.1038/nature.2014.15141.

Slingo, J., and Coauthors, 2014: The recent storms and
floods in the UK. Met Office and Centre for Ecol-
ogy and Hydrology, 27 pp. [Available online at www
.metoffice.gov.uk/media/pdf/1/2/Recent_Storms
_Briefing_Final_SLR_20140211.pdf.]

van Oldenborgh, G. J., and Coauthors, Eds., 2103: An-
nex I: Atlas of global and regional climate projec-
F. Stocker et al., Eds., Cambridge University Press,
1311–1393.

Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W.
Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013:
Trends and low frequency variability of extra-trop-
cal cyclone activity in the ensemble of twentieth
century reanalysis. *Climate Dyn.*, 40, 2775–2800,

Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-
K. Min, 2013: Attributing intensification of precipi-
Table 34.1. ANTHROPOGENIC INFLUENCE ON EVENT STRENGTH †

<table>
<thead>
<tr>
<th>EVENT TYPE</th>
<th>COUNTRY</th>
<th>PAPER REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>Australia (Ch. 31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe (Ch. 13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Korea (Ch. 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia, Adelaide & Melbourne (Ch. 29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia, Brisbane (Ch. 28)</td>
</tr>
<tr>
<td>Cold</td>
<td></td>
<td>Upper Midwest (Ch. 3)</td>
</tr>
<tr>
<td>Winter Storms and Snow</td>
<td>Eastern U.S. (Ch. 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. America (Ch. 6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Atlantic (Ch. 7)</td>
<td></td>
</tr>
<tr>
<td>Heavy Precipitation</td>
<td>Canada** (Ch. 5)</td>
<td></td>
</tr>
<tr>
<td>Drought</td>
<td>E. Africa (Ch. 16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Africa* (Ch. 17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Levant (Ch. 14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle East and S.W. Asia (Ch. 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.E. Asia (Ch. 21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Singapore (Ch. 25)</td>
</tr>
<tr>
<td>Tropical Cyclones</td>
<td>Gonzalo (Ch. 11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. Pacific (Ch. 24)</td>
<td></td>
</tr>
<tr>
<td>Wildfires</td>
<td></td>
<td>California (Ch. 2)</td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>W. Tropical & N.E. Pacific (Ch. 20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N.W. Atlantic & N.E. Pacific (Ch. 13)</td>
<td></td>
</tr>
<tr>
<td>Sea Level Pressure</td>
<td>S. Australia (Ch. 32)</td>
<td></td>
</tr>
<tr>
<td>Sea Ice Extent</td>
<td></td>
<td>Antarctica (Ch. 33)</td>
</tr>
</tbody>
</table>

† Papers that did not investigate strength are not listed.
†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though the study did not establish a cause.

Updated: 06/04/22 05:08 AM UTC
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Location/Region</th>
<th>Increase</th>
<th>Decrease</th>
<th>Not Found or Uncertain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>Australia (Ch. 30, Ch. 31) Australia, Adelaide (Ch. 29) Australia, Brisbane (Ch. 28) Europe (Ch. 13) S. Korea (Ch. 19) China (Ch. 22)</td>
<td></td>
<td></td>
<td>Melbourne, Australia (Ch. 29)</td>
</tr>
<tr>
<td>Cold</td>
<td>Upper Midwest (Ch. 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Storms and Snow</td>
<td>Nepal (Ch. 18)</td>
<td></td>
<td></td>
<td>Eastern U.S. (Ch. 4) N. America (Ch. 6) N. Atlantic (Ch. 7)</td>
</tr>
<tr>
<td>Heavy Precipitation</td>
<td>Canada (Ch. 5) New Zealand (Ch. 27)</td>
<td></td>
<td></td>
<td>Jakarta (Ch. 26) United Kingdom (Ch. 10) S. France (Ch. 12)</td>
</tr>
<tr>
<td>Drought</td>
<td>E. Africa (Ch. 16) S. Levant (Ch. 14)</td>
<td></td>
<td></td>
<td>Middle East and S.W. Asia (Ch. 15) E. Africa (Ch. 17) N. E. Asia (Ch. 21) S. E. Brazil (Ch. 8) Singapore (Ch. 25)</td>
</tr>
<tr>
<td>Tropical Cyclones</td>
<td>Hawaii (Ch. 23)</td>
<td></td>
<td></td>
<td>Gonzalo (Ch. 11) W. Pacific (Ch. 24)</td>
</tr>
<tr>
<td>Wildfires</td>
<td>California (Ch. 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>W. Tropical & N.E. Pacific (Ch. 20) N.W. Atlantic & N.E. Pacific (Ch. 13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Level Pressure</td>
<td>S. Australia (Ch. 32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Ice Extent</td>
<td></td>
<td></td>
<td></td>
<td>Antarctica (Ch. 33)</td>
</tr>
</tbody>
</table>

Total: 32

† Papers that did not investigate strength are not listed.
†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days.
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though the study did not establish a cause.