Reply to “Comments on ‘Monitoring and Understanding Trends in Extreme Storms: State of Knowledge’”

—JAMES P. KOSSIN AND THOMAS R. KARL
NOAA/National Centers for Environmental Information
Asheville, North Carolina

—THOMAS R. KNUTSON
NOAA/Geophysical Fluid Dynamics Laboratory
Princeton, New Jersey

—KERRY A. EMANUEL
Massachusetts Institute of Technology
Cambridge, Massachusetts

—KENNETH E. KUNKEL
NOAA/National Centers for Environmental Information, and
Cooperative Institute for Climate and Satellites
North Carolina State University
Asheville, North Carolina

—JAMES J. O’BRIEN
Florida State University
Tallahassee, Florida

We welcome the comments of Landsea (2015, hereafter L15) and we applaud his efforts toward reanalyzing past tropical cyclone data in the Atlantic (Landsea et al. 2008, 2012, 2014; Hagen et al. 2012). However, L15 does not substantially change the conclusions stated in Kunkel et al. (2013, hereafter K13). L15 voices two main concerns:

1) The U.S. landfalling hurricane time series considered by K13 is dated.
2) The U.S. landfall record exhibits multidecadal variability that places the changes since 1970 into a larger perspective than K13 provided. Related to this concern, L15 introduces assertions about the relationship between U.S. landfall variability and basinwide North Atlantic variability.

We will address each of these points here:

1) K13 stated “Landfalling tropical cyclone activity in the United States, as well as East Asia, shows no significant long-term trends (e.g., Landsea 2005)” (p. 506). We are not aware of any published papers that have updated the U.S. landfalling hurricane time series beyond the papers cited in K13 [including not just Landsea (2005) but also Vecchi and Knutson (2011)]. L15’s inference that K13 presented dated information is not supported and the update introduced by L15 is in complete agreement with the statements of K13.

2) K13 stated “Owing to pronounced multidecadal variability evident in longer-term records of Atlantic basinwide or U.S. landfalling tropical cyclone frequency (e.g., Vecchi and Knutson 2011, see their Fig. 5), the period since around 1970 (e.g., Fig. 5) appears to be too short to draw confident inferences about longer-term (e.g., century scale) trends in Atlantic tropical cyclone activity” (p. 506). L15 fundamentally concurs with the broader perspective that K13 provides about the inability to draw confident inferences about century-scale trends from the observed post-1970 Atlantic activity.

In K13, a conscious choice was made to focus on the increases over the shorter period since the 1970s and address the attribution for these increases, because much of the state of knowledge is being actively promulgated on this shorter period. This is demonstrated by the citations in K13 as well as the IPCC Fifth Assessment Report (Bindoff et al. 2014) published subsequent to K13. The contrasting emphases of K13 and L15 are both important; one does not preclude the other, and the emphasis of L15 has been previously addressed (e.g., Knutson et al. 2010; Seneviratne et al. 2012; Hartmann et al. 2014; Zwiers et al. 2013). Anthropogenically forced change and internal climate variability have most likely affected North Atlantic hurricane activity and sea surface temperatures in a broad range of ways, and the quantification of these influences remains a significant research challenge (Dunstone et al. 2013; Tung and Zhao 2013; Zhang et al. 2013; Carslaw et al.

[1] The authors list on this reply comprises a subset of authors from K13 who specialize in tropical cyclone research, provided comments, or helped lead the overall author team’s work.
2013; Mann et al. 2014). Century-scale trends forced by steadily increasing greenhouse gases are not the only focus of detection and attribution studies and should not define the state of knowledge.

Statements about the relationship between U.S. landfall variability and basinwide variability remain controversial (Holland 2007), and we would argue that the statements of L15 should be subjected to a more formal review than a comment/reply exchange provides. In addition to the decreased signal-to-noise ratio of measured trends when subsetting basinwide activity (K. Nzerem et al. 2006, unpublished manuscript; Emanuel 2011), there are substantial questions about whether U.S. landfalling activity can serve as an adequate proxy for basinwide North Atlantic activity when there are systematic and significant relationships between climate and tropical cyclone track variability (Kossin et al. 2010, 2014). This latter point was discussed briefly in K13. Finally, although the correlation of 0.49 identified by L15 is statistically significant, the associated common variance of only 24% emphasizes that the variability of the U.S. landfall record leaves a very large part (76%) of the basinwide variance unexplained.

Given the importance of understanding changes in the U.S. landfalling hurricane activity and how they relate to basinwide North Atlantic variability and trends, we feel that it is crucial to have the data and methods, as well as assertions of common variance between landfall and basinwide activity, subjected to a more formal and complete peer review, and we hope that Landsea and/or others will undertake a more thorough study.

REFERENCES

Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natu-

To order: bookstore.ametsoc.org, 617-226-3998, or use the order form in this magazine

Climate Conundrums: What the Climate Debate Reveals about Us
WILLIAM B. GAIL
This is a journey through how we think, individually and collectively, about humanity’s relationship with nature, and more. Can we make nature better? Could science and religion reconcile? Gail’s insights on such issues help us better understand who we are and find a way forward.

Eloquent Science: A Practical Guide to Becoming a Better Writer, Speaker, and Atmospheric Scientist
DAVID M. SCHULTZ
The ultimate communications manual for undergraduate and graduate students as well as researchers in the atmospheric sciences and their intersecting disciplines.

Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting
GARY LACKMANN
This textbook links theoretical concepts to modern technology, facilitating meaningful application of concepts, theories, and techniques using real data.
©2011, PAPERBACK, 360 PAGES, ISBN 978-1-878220-10-3 LIST $100 MEMBER $75 STUDENT MEMB. $65

Midlatitude Synoptic Meteorology Teaching CD
More than 1,000 PowerPoint Slides.
© 2013, CD, ISBN 978-1-878220-27-1 LIST $100 MEMBER $75

To order: bookstore.ametsoc.org, 617-226-3998, or use the order form in this magazine
COMING SOON!

A Scientific Peak:
How Boulder Became a World Center for Space and Atmospheric Science
JOSEPH P. BASSI

How did big science come to Boulder, Colorado? Joe Bassi introduces us to the characters, including Harvard sun-Earth researcher Walter Orr Roberts, and the unexpected brew of politics, passion, and sheer luck that during the Cold War era transformed this "Scientific Siberia" to home of NCAR and NOAA.

HISTORY

Father Benito Viñes:
The 19th-Century Life and Contributions of a Cuban Hurricane Observer and Scientist
LUIS E. RAMOS GUADALUPE

Before Doppler radar and weather broadcasts, Spanish Jesuit Benito Viñes (1837-1893) spent decades observing the skies at Belen Observatory in colonial Cuba. Nicknamed "the Hurricane Priest," Viñes taught the public about the weather and developed the first network of weather observation stations in the Caribbean, groundwork for the hurricane warning systems we use today.

Hurricane Pioneer:
Memoirs of Bob Simpson
ROBERT H. SIMPSON and NEAL DORST

In 1951, Bob Simpson rode a plane into a hurricane—just one of the many pioneering exploits you’ll find in these memoirs. Bob and his wife Joanne are meteorological icons: Bob was the first director of the National Hurricane Research Project and a director of the National Hurricane Center. He helped to create the Saffir-Simpson Hurricane Scale; the public knows well his Categories 1-5. Proceeds from this book help support the AMS’s K. Vic Ooyama Scholarship Fund.
Find out from the authoritative source for definitions of meteorological terms.

What’s a dust devil?

With over 12,000 meteorological terms, you’ll be able to look up definitions online any time, any place, anywhere.

http://glossary.ametsoc.org/wiki

Also available in hardcover and CD formats at the AMS Bookstore, www.ametsoc.org/amsbookstore.