Prequel to the Stories of Warm Conveyor Belts and Atmospheric Rivers:
The Moist Tongues Identified by Rossby and His Collaborators in the 1930s

Ruping Moa

a National Laboratory-West, Environment and Climate Change Canada, Vancouver, BC, Canada

Corresponding author: Dr. R. Mo, ruping.mo@ec.gc.ca

Early Online Release: This preliminary version has been accepted for publication in Bulletin of the American Meteorological Society, may be fully cited, and has been assigned DOI 10.1175/BAMS-D-20-0276.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

© 2022 American Meteorological Society
ABSTRACT: The model of atmospheric river (AR) has been around since the 1990s. A closely related model is the warm conveyor belt (WCB) developed in the 1970s. A look further back in time, a phenomenon known as “moist tongue” was intensively investigated in the late 1930s and early 1940s by Rossby and his collaborators using the innovation of isentropic analysis. This article aims to establish a historical perspective on the development of moist tongue model and its relevance to the current models of WCBs and ARs. As it turns out, moist tongue was identified as an extension of moist air into a region of lower moisture content on the selected isentropic charts. Most moist tongues are driven by large-scale cyclonic and anticyclonic eddies, and are often accompanied by surface cold fronts in close proximity. Ahead of the moist tongues, areas of continuous precipitation are caused mainly by the motion of moist air up the steep isentropic slopes over warm fronts or topographical features. In the warm season, the mere presence of a moist tongue could be sufficient to give thunderstorms. A reanalysis dataset is used to re-examine the structures and evolutions of two moist tongue events in 1936. It is shown that not all but some of the moist tongues fit well with the modern conceptual models of WCB and AR. These two case studies also serve to elucidate the usefulness of using the reanalysis data to investigate historical high-impact weather events that were poorly understood due to the lack of observational data.
The atmospheric river (AR) phenomenon has been the subject of intensive research and applications in recent decades (Gimeno et al. 2014; Ralph et al. 2017a, 2018, 2020). This synoptic-scale system can be generally defined as a long (\geq 2000 km), narrow (\leq 1000 km), and transient corridor of strong horizontal water vapor transport concentrated in the lower troposphere (Zhu and Newell 1998; Ralph et al. 2004). It is typically associated with a low-level jet (LLJ) ahead of the cold front of an extratropical cyclone, and its landfall over mountainous terrain has the potential to produce extreme precipitation and severe flooding. The aim of this article is to build a bridge between the contemporary notion of AR and the concept of moist tongue introduced by Carl-Gustaf Rossby and his colleagues in the 1930s (Rossby and Collaborators 1937a,b). While the main motivation of Rossby’s team was to promote isentropic analysis and show evidence of large-scale mixing in the atmosphere, their studies also showed how isentropic charts could be used to trace the moisture from its source to the areas of condensation and precipitation (Byers 1960).

The terminology of AR was conceived and developed in the early 1990s. In a pilot study, Newell et al. (1992) showed that a filamentary structure is a common feature of water vapor transport in the troposphere. They called these filaments “tropospheric rivers” because some may carry as much water as the Amazon. This term was soon renamed as AR by Zhu and Newell (1994); also see Espenak and Anderson (1993, p. 12). Newell et al. (1992) noticed that filamentary cloud bands had been documented and discussed earlier, but the associated moisture fluxes had not been calculated (e.g., McGuirk et al. 1987; Kuhnel 1989). These cloud bands were known as “tropical plumes” (TP) in the 1990s (McGuirk et al. 1988; McGuirk and Ulsh 1990; Iskenderian 1995). It was also in the 1990s when “pineapple express” (PE) emerged as a popular term in both media and academia to describe an LLJ in the northeastern Pacific that brings warm, moist air from the area around Hawaii to the west coast of North America (Pryne and Long 1991; Waters 1993; Davis 1995; Loukas and Quick 1996; Wood 1998; Lackmann and Gyakum 1999). The combined effect of the moist LLJ and orographic uplift can cause some extremely heavy rain storms in western North America (Dettinger 2004; Conrad 2009; Mo 2016). A typical example is the landfall of a PE storm during 13-15 November 2021 that triggered one of the most destructive and expensive weather disasters in Canadian history. For just over two days, massive amounts of rain (200 to 300 mm in some places with melting snow in high terrain) swamped the already soggy south coast and interior of British Columbia, leading to widespread floods, mudslides, debris flows, and highway
washouts; this perfect storm caused the loss of at least 6 lives and close to 15,000 evacuations (Environment and Climate Change Canada 2021). Note that both PE and TP storms were referred to as “tropical moisture export” (TME) events by Knippertz and Wernli (2010).

The first milestone for the AR theory was set by Zhu and Newell (1998), who published an algorithm for AR identification and showed that ARs are responsible for most of the meridional moisture transport in the extratropical atmosphere. Their result indicates that ARs can play a critical role in shaping global water and energy cycles, and their algorithm can be used to track ARs on a daily basis in operational forecasting. Up to this time the river analogy had not been widely recognized (Davis et al. 1993; Eerme 1996; Katzfey and McInnes 1996; Iselin and Gutowski 1997; Wernli and Davies 1997), and there was concern that the definition of ‘rivers’ is based purely upon an Eulerian analysis, while the term implies a Lagrangian character (Wernli 1997). It was not until the publications of Ralph et al. (2004) that the AR notion was widely accepted and appreciated in the scientific communities (e.g., Smirnov and Moore 1999, 2001; Gyakum 2000; James and Houze Jr 2005; Ralph et al. 2005, 2006; Kerr 2006; Jankov et al. 2007; Neiman et al. 2008a,b; Kaplan et al. 2009; Guan et al. 2010; Lavers et al. 2011, 2012; Sodemann and Stohl 2013; Gorodetskaya et al. 2014; Dacre et al. 2015; Gimeno et al. 2016; Paltan et al. 2017; Zhou et al. 2018; Mo et al. 2019, 2021; Ye et al. 2020; Black et al. 2021; Fu et al. 2021). The conceptual model in Ralph et al. (2004) not only portrays the AR as a pre-cold-frontal moisture conveyor belt, but also emphasizes its capability to produce extreme precipitation and form a critical link between weather and climate (also see Ralph et al. 2017b).

The location of the AR along an LLJ within the warm sector of a mid-latitude cyclone shares kinematic and thermodynamic properties of a system called the warm conveyor belt (WCB), which was recognized in the 1970s as a narrow air stream transporting large amounts of heat, moisture, and westerly momentum (Browning 1971; Browning and Pardoe 1973; Harrold 1973). The conceptual model of WCB depicts a tongue of moist and warm air flowing ahead of the cold front and ascending in the warm sector as it approaches the warm front associated with a cyclone; the WCB favors heavy precipitation along the isentropes closer to the warm front and cyclone center, where moist air rises more rapidly to achieve saturation before joining the upper-level westerly flow (Carlson 1980; Browning 1986, 1990). The occurrence of heavy precipitation ahead of the cold front may also be favored when the WCB environment provides a potential source for instability in conjunction...
with lift provided by the cold front. The warm, moist air flowing along the length of the cold front is what we call the AR today. It has been suggested that “moisture conveyor belt” could be a better term than AR to represent strong moisture transport because it is more consistent with the well-established WCB model (e.g., Bao et al. 2006; Knippertz and Martin 2007). To set the stage for a global science of ARs, a workshop held in 2015 brought together experts on ARs, WCBs, and TMEs to discuss the relationships among these interrelated concepts; the group reached consensus on redefining the WCB as a zone of dynamically uplifted heat and water vapor transport close to an extratropical cyclone, the TME as a zone of intense moisture transport out of the tropics, and the AR as a low-level corridor of strong moisture transport that often connects a TME to a WCB or an orographically induced rainout (Dettinger et al. 2015; Ralph et al. 2018).

Dating further back in time, we encounter the “moist tongue” (MT) and “dry tongue” (DT) coined by Rossby and Collaborators (1937a,b). The MT was identified as an extension of moist air into a drier region on a selected isentropic surface. A typical example from their studies is adapted in Fig. 1, which shows on the an MT from the southwest intersecting a DT from the northeast on the 315K isentropic surface over North America in mid-September 1936. These isentropic charts were produced by drawing on the maps the elevation contours of a selected isentropic surface (e.g., 315K) and the specific humidity, both interpolated from available upper-air observations. The coherent moisture-flow pattern in Fig. 1 is often associated with cloudiness and precipitation. Its elongated shape bears a strong resemblance to an inland-penetrating AR across central North America (e.g., Moore et al. 2012, 2015; Mahoney et al. 2016; Mo and Lin 2019). Note that the elevated core of a typical AR is located around 1 km above sea level (ASL) (Ralph et al. 2004). Although the mean elevation of the 315K surface in Fig. 1 is about 3 ~ 4 km ASL, the core of the MT is below 1.5 km ASL.

Through the novel use of isentropic analysis, Rossby’s team recognized the significance of the MTs in atmospheric dynamics and operational weather forecasting. The discovery of this synoptic-scale feature immediately aroused extensive theoretical and practical interests across the communities of meteorology, hydrology, and aviation (e.g., Osmun 1937; Byers 1938; Wexler and Namias 1938; Namias 1938, 1939a; Denham and Knoll 1939; Rossby and Collaborators 1939; Weightman 1939, 1940; Bernard 1940; Haynes 1940; Petterssen 1940; Swenson 1940; Knarr 1941; Mitchell and Wexler 1941; Willett et al. 1941; Starr 1942; Showalter and Solot 1942; Means 1944;
Fig. 1. The 315K isentropic charts valid on 11 and 12 September 1936, adapted from Rossby and Collaborators (1937b, Figs. 4 & 5; published 1937 by the American Meteorological Society). The solid lines are specific humidity contours in g kg\(^{-1}\) (intervals: 2 g kg\(^{-1}\)). The dashed lines are contours of height (above sea level) of the isentropic surface in km (intervals: 0.5 km). The letters M and D stand for Moist and Dry (specific humidity). The letters H (for High) and L (for Low) refer to the topography of the isentropic surface. The upper-air data used to produce these charts were observed at the 24 aero-meteorological stations indicated by dots in (b).
Showalter 1944). One successful application of the MT analysis was immediately found in the forecasting of summertime precipitation. Based on a case study in the summer of 1937, Namias (1938) pointed out that a weak MT may suffer lateral mixing with the dry air flanking it on both sides, which could act against thunderstorm formation and restrict the showers to its very central portion; on the other hand, strong MTs may remain comparatively unaltered by lateral mixing, and thereby provide ideal regions for continued thunderstorm activity (also see Rossby et al. 1938; Wexler and Namias 1938; Haynes 1940). For winter precipitation, Namias (1939a) showed a tongue of moist and warm air flowing northeastward over the eastern Gulf States during 6-8 December 1938; aloft, this MT was displaced by a cold DT from the west, and the established conditional instability (Rossby and Weightman 1926) resulted in thundershowers in northern Florida.

Unfortunately, the isentropic analysis advocated by the Rossby’s team in the 1930s was supplanted by isobaric analysis for operational purposes after 1945, mainly because the isentropic charts were difficult to produce in the pre-computer age (for some other reasons see Bleck 1973). As a consequence, the enthusiasm for the isentropic MT analysis has also faded away (e.g., Brooks 1945; Jones and Roe 1953; Namias 1955; Semonin 1960; Fritz 1961; Leese 1962; Mills 1989; Clark et al. 2005; Cerveny et al. 2011; Jeong et al. 2014). On the other hand, MTs as a meteorological phenomenon have been mentioned by some researchers using the isobaric analysis or other techniques (e.g. Takahashi et al. 1954; Saito 1966; Chang 1971; Namias and Wagner 1971; Miller 1973; Carleton 1985; Wernli 1997; Lau et al. 1998; Waugh 2005; Du et al. 2020).

There are several important properties shared by the phenomena of MTs, WCBs, and ARs, as conceptually illustrated in Fig. 2. They are all identified as an elongated stream of moist air. They are often related to an extratropical cyclone and the associated fronts. Most importantly, they all have the potential to produce heavy and sometimes prolonged precipitation. Since the MT notion was introduced in 1937, it may be considered as a prequel to the modern theories of WCBs (since 1971) and ARs (since 1992). It is from this historical perspective that I would like to reexamine the classic MT model of the Rossby school, and establish a connection of this isentropic tradition with the modern theories of WCBs and ARs. There have been recent articles that attempt to compare and distinguish among ARs, WCBs, and TMEs (e.g. Dettinger et al. 2015; Browning 2018; Ralph et al. 2018, 2020). However, the the MT model developed in the 1930s has not received enough attention. Wernli (1997) pointed out that the analysis of the conveyor-belt model (Browning 1971;
Fig. 2. Conceptual models of MT, WCB, and AR. (a) Schematic flow pattern around an occluded cyclone as shown by surface fronts and moisture lines in an isentropic surface, reproduced from Namias (1940, Fig. 182, p. 364; ©McGraw Hill; used with permission); the solid lines represent constant specific humidity (g kg$^{-1}$), and the arrows indicate the instantaneous flow of dry (D) and moist (M) currents. (b) Conveyor belt model adapted from Browning (1971, plan view of Fig. 3, p. 321; ©John Wiley and Sons; used with permission); stippled shading represents the warm conveyor belt and hatched shading depicts the extent of precipitation. (c) Schematic summary of the structure and strength of an atmospheric river, adapted from Ralph et al. (2017b, Fig. 16, p. 2594; ©American Meteorological Society; used with permission); the left panel is a plan view and the right panel is a vertical cross-section view.

Harrold 1973; Carlson 1980) is based on the traditional isentropic analysis developed in the 1930s (also see Wernli and Davies 1997). The term MT was used by Browning and Hill (1985) in their
isentropic analysis of the conveyor belts associated with a polar front, and in a later study Browning (1990) recognized that the conveyor belt model can be related to the isentropic MT/DT model presented in Namias (1939b), which is almost the same as Fig. 2a. This model was also cited by Ralph et al. (2004) and Fu et al. (2021) in their AR studies. Zhu and Newell (1994) noticed the similarity between the AR structure and a narrow tongue of moisture described by Starr (1942). Nevertheless, the detailed features of this isentropic MT model were not sufficiently discussed in these studies.

The first objective of this article is to present a comprehensive review of the literature related to the identification, conceptual model and applications of MTs in the “isentropic era”. As expected, the isentropic MT model is indeed related to the current models of WCBs and ARs. However, stark differences among these three phenomena do exist based in part on how they are defined and diagnosed (e.g., isentropic, isobaric, or vertically integrated). One clear difference is that an MT can be quite elevated and contribute to more synoptic-scale precipitation along the WCB, whereas ARs are almost always lower tropospheric phenomena with water vapor transport driven by the LLJ. My second objective is to demonstrate in two case studies how an MT can be similar to an AR and how they can be quite different under certain circumstances. Some limitations of the isentropic MT analysis will be noted and discussed in these case studies.

Isentropic charts and the moist/dry tongues

Isentropic analysis is a meteorological technique for examining air motion during an adiabatic process above the planetary boundary layer. A common practice is to plot some variables on a surface of constant potential temperature (isentropic surface). This approach was first suggested by Sir Napier Shaw (1929). A practical procedure for drawing isentropic weather maps was later proposed in Shaw (1930, p. 259–263). The potential of this innovation was quickly recognized by Rossby (1932), who proposed a simple graphical method for air mass analysis by means of two conservative quantities: potential temperature and specific humidity. When the aerological network of the United States reached a state to permit a practical test of the value of isentropic analysis, Rossby and Collaborators (1937a,b) took a key step by plotting specific humidity data on some selected isentropic surfaces. They argued that, since both potential temperature and specific humidity are invariant with adiabatic processes, many features of air motion in the free
atmosphere could be visualized by plotting the specific humidity on isentropic surfaces. The procedure involved 1) drawing an equivalent-potential temperature diagram for each individual airplane sounding, where the values of weather elements at a fixed potential temperature are determined by interpolation, and 2) plotting these values on a regional map for air motion analysis (Osmun 1937; Rossby and Collaborators 1937b).

Based on the upper-air observations from 24 aero-meteorological stations across the United States, Rossby and Collaborators (1937a,b) produced six isentropic charts for two synoptic situations during 11–15 September 1936. Their first two charts are shown in Fig. 1. Note that the exact valid hour for each map was not mentioned, because the data used to produce the map were observed over a period of several hours. Detailed analysis of these isentropic charts led to the following conclusions: 1) isentropic flow patterns are simpler than corresponding frontal systems on surface maps, and they change only slowly from day to day thanks to their material nature; 2) isentropic surfaces act like material sheets over a period of a few days, except for some small areas along active fronts or convection centers where the release of latent heat due to condensation cannot be ignored; 3) both MTs and DTs are evident on the isentropic surfaces; and 4) MTs or DTs advance less rapidly than expected from the observed wind distribution, indicating intense lateral mixing in the atmosphere (the assumption of adiabatic motion implies that each element of air remains in its proper isentropic layer).

In particular, these two studies directed the attention of meteorologists to the large-scale MTs and their application potential in short- and long-range weather prediction. As shown in Fig. 1a, the situation on 11 September 1936 is characterized by the northeastward advance of an MT from the southwestern United States on the 315K isentropic surface. This tongue reaches the Atlantic Coast on the next day (Fig. 1b) after having intersected a DT from the north. It was noticed that the lines of constant specific humidity and height contour lines are nearly parallel in most areas, and regions of vertical motion and significant precipitation may be determined from the intersection of these two sets of lines on the isentropic charts (Rossby and Collaborators 1937b). This statement only makes sense for the large-scale geostrophically-balanced flow. The diabatic processes associated with strong convection and precipitation in the vicinity of a cold front may disturb the conservative nature of the isentropic charts, because the addition of moisture through convection or loss by precipitation cannot be avoided in some areas. As pointed out in Rossby and
Collaborators (1937a), a significant portion of the high moisture content with the MT in Fig. 1 is likely caused by the intense vertical mixing attending the passage of tropical air across the Mexican mountains.

Isentropic cross sections for MT analysis

Rossby et al. (1938) pointed out that the term “isentropic analysis” should apply not only to the study of upper air charts for prescribed isentropic surfaces, but also to the interpretation of atmospheric cross sections, without which the analysis would be incomplete. They further argued that, in order to take full advantage of the cross sections it is necessary to make use of the two most conservative properties, potential temperature (θ) and specific humidity (q). A schematic picture of such a θ-q cross section from their study is reproduced in Fig. 3. In these diagrams, the solid and dashed lines represent specific humidity and potential temperature, respectively. Their usefulness for convection diagnosis was assessed by Jerome Namias (Rossby et al. 1938, p. 35–36):

The fact that convection due to heating from below lowers the isentropic surfaces but raises the specific humidity at any fixed level makes the isentropic cross sections especially helpful in locating regions of significant convective activity. In these regions the moisture lines of the cross section bulge upward while the lines of constant potential temperature dip downward...

Figures 4 and 5 provide a real example adapted from Rossby et al. (1938). They were produced from the upper-air data collected from pilot balloon ascensions for about 110 stations in North America and some daily airplane meteorograph flights between Canada and the United States during 22–23 May 1936. These observations were not synchronous but most of them were taken in the morning hours between 0400 and 0800 EST (0800 and 1200 UTC). The two isentropic charts show an impressive MT (No. 9) extending northward from the Gulf of Mexico to the Great Lakes region. Its shape and scale are suggestive of an inland-penetrating AR (e.g., Mo and Lin 2019). Widespread thunderstorms were reported along this moist flow. The two isentropic cross sections show that the core of this MT was located near the Earth’s surface. In Fig. 5a, the two elevated maximum centers of specific humidity between 310 and 315K (over Omaha and San Antonio, respectively) were likely caused by strong convection along the MT.
Fig. 3. Schematic cross section through a convective area, reproduced from Rossby et al. (1938, Fig. 4 in Section B, p. 27; used with the permission of Woods Hole Oceanographic Institution). The solid lines are specific humidity contours in g kg\(^{-1}\) (intervals: 2 g kg\(^{-1}\)). The dashed lines are potential temperature contours in K (intervals: 5K). The letters M and D stand for Moist and Dry. Wind speed and direction are indicated by the conventional wind barbs.

Rossby et al. (1938) noticed that precipitation is often caused by the MT running up the steep isentropic slope. Most of continuous (stratiform) precipitation occurs on the northern side of the MTs. This is usually due to the motion of moist air up the slope of a warm front. The distribution of thunderstorms, however, may follow the flow patterns much more closely. Especially in the warm season, the mere presence of an MT, irrespective of whether or not it is flowing up-slope, is often sufficient to give thunderstorms.

Diabatic effects

The isentropic analysis of the Rossby school is built on the basic assumption of adiabatic motion, which implies that each element of air remains in its proper isentropic layer in the free atmosphere. However, diabatic influences cannot always be neglected. Rossby et al. (1938) recognized three fundamental diabatic processes that may need to be addressed carefully in isentropic analysis:
Fig. 4. The 305K isentropic charts valid the mornings of 22 and 23 May 1936, adapted from Rossby et al. (1938, Plates XIV and XV of Section C; used with the permission of Woods Hole Oceanographic Institution). The solid lines are specific humidity contours with intervals of 1 g kg$^{-1}$. The dashed lines are height contours with intervals of 500 m. The moist (M) and dry (D) tongues are numbered and indicated by line arrows. The two red lines and eight reference stations are added to indicate the cross-section lines in Fig. 5.
Fig. 5. (a) A north-south vertical cross section (from Fargo, ND, USA to San Antonio, TX, USA) valid on 22 May 1936, adapted from Rossby et al. (1938, Plate V of Section C). (b) A west-east vertical cross section (from Cheyenne, WY, USA to Dayton, OH, USA) valid on 23 May 1936, adapted from Rossby et al. (1938, Plate VI of Section C). The solid lines are specific humidity contours (intervals: 1 g kg$^{-1}$). The dashed lines are potential temperature contours (intervals: 5K). The letters M and D stand for Moist and Dry. Winds are indicated by the conventional wind barbs. These figures are used with the permission of Woods Hole Oceanographic Institution.
1) radiation, 2) convection, and 3) condensation and evaporation. Their discussions related to radiation and the diabatic effects of precipitation processes are omitted here for clarity. Convection needs more attention; it is an important diabatic process involving strong vertical (cross-isentrope) mass transport.

The role of convection is to transfer heat and moisture upward through the atmosphere. The moisture pumped aloft by convection may be carried far from its source by currents in the free atmosphere, so that the moisture lines of the cross sections in the region of violent convection frequently display a pattern similar to the anvil structure of the thunderstorm clouds (Rossby et al. 1938). The importance of convection in maintaining the MTs was further emphasized by Rossby et al. (1938, p. 36–37):

If it were not for the replenishment of moisture by convective transport upward, the moist tongues of the isentropic charts would soon be robbed of their vapor through lateral mixing with the dry air flanking them on both sides. In summer time thunderstorms may truly be considered as the life blood of the moist currents.

The interactions of MTs with anticyclonic and cyclonic eddies

The interactions among MTs, DTs, cyclones, and anticyclones formed an important part of the isentropic analysis in the 1930s. It was suggested in Rossby et al. (1938, p. 29) that the formation of large-scale anticyclones and cyclones could be explained based on the principle of conservation of absolute circulation:

Thus the total absolute circulation of any isentropic fluid chain consists of a circulation relative to the earth plus the circulation of the earth itself about this chain. If there are no frictional forces and if the motion is strictly adiabatic this sum must remain constant. Thus, if an originally stationary isentropic fluid chain is displaced from equatorial to polar regions it must develop an anticyclonic sense of circulation relative to an observer on the earth in order to counterbalance the increased circulation of the earth itself around the chain as it moves northward. Similarly, a southward moving system tends to develop a cyclonic circulation.

The above statement is just the Bjerknes circulation theorem (Bjerknes 1898) applied on an isentropic surface. It was the basis for the Rossby wave theory to be developed in the years to
come (Rossby 1939, 1940, 1941; Hoskins et al. 1985). For its application to the MT/DT analysis, Namias (1940, p. 147) used a schematic flow pattern (see Fig. 2a) to summarize the main features of a typical MT and its interactions with other components surrounding an occluded cyclone:

The moist current, having come up from the south, tends to acquire anticyclonic curvature indicated by the directional flow arrow to the upper right... Where the polar air intrudes into the system from the north it develops cyclonic vorticity... Thus a branch of the moist flow is diverted from the mother current into the cyclonic flow...

This description bears a close resemblance to the intersection of the warm and cold flows in the conveyor belt model developed a few decades later (e.g., Browning 1971, 1986; Carlson 1980; Stewart and Macpherson 1989). Martínez-Alvarado et al. (2014) found that the WCB of an extratropical cyclone generally splits into two branches; whether it turns cyclonically or anticyclonically depends on the altitude at which air exits the WCB. In Fig. 2a, the MT ahead of the cold front is what we call an AR today.

Comparisons of MTs with ARs: Two case studies

Despite the apparent similarity between the MT model and the AR (or WCB) model (Fig. 2), there are important differences in pattern recognition, classification, and practical applications. MTs can be visually recognized as some elongated areas of maximum specific humidity on selected isentropic charts. Their shape and intensity may vary significantly depending on the selected isentropic surface, and it is not easy to define lateral boundaries for an MT. The ARs, on the other hand, are often objectively identified from the distributions of vertically integrated water vapor (IWV) or integrated vapor transport (IVT) with some specific criteria. A popular method known as IWV_{20} defines an AR as an area with IWV greater than 20 kg m^{-2}, narrower than 1000 km, and longer than about 2000 km (Ralph et al. 2004). This method has since been replaced by the IVT methods that use both restrictive thresholds (e.g., the IVT_{250} in Rutz et al. 2014) and flexible thresholds (e.g., the location- and season-dependent 85th percentile in Guan and Waliser 2019); see Shields et al. (2018) for an in-depth comparison of various AR identification techniques.

In this section, two case studies are performed to show how an MT can sometimes overlap with or distinguish from an AR. The first case is the synoptic situation during 22–23 May 1936 (Figures 4 and 5). The second case is the situation during 11–12 September 1936 (Fig. 1).
Data description

Two datasets are used in these two case studies. The first is version 3 of the NOAA-CIRES-DOE Twentieth Century Reanalysis (20CRv3) produced by an assimilation system that assimilates only surface pressure reports with observed monthly sea-surface temperature and sea-ice distributions to generate a global atmospheric dataset (Compo et al. 2011; Slivinski et al. 2019). This reanalysis provides 8-times daily data from 1836 to 2015 on a 1° latitude × 1° longitude grid. It can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends (Slivinski et al. 2021). The isentropic analysis and vertical integration scheme can be easily performed using this three-dimensional (3D) dataset. There are some known issues with 20CRv3, including a systematic bias in tropical precipitation (Slivinski et al. 2019) and substantial biases in temperature and wind above 300 hPa (Slivinski et al. 2021). Note that the isentropic analysis in the 1930s relied on the upper-air data from the newly established aerological network in North America. These upper-air data, however, are not included for assimilation to produce 20CRv3. This limitation could have an impact on the MT and AR analyses in the case studies. In addition, the coarse resolution (1° × 1°) would render 20CRv3 inappropriate for analyzing convective precipitation.

The second dataset includes the daily precipitation amount in North America. It is extracted from the Global Historical Climate Network-Daily Summaries (GHCN-Daily) provided by the National Centers for Environmental Information (https://www.ncdc.noaa.gov/cdo-web/). This quality-controlled dataset includes daily observations around the world. It is developed to meet the needs of climate analysis and monitoring studies at a sub-monthly time resolution.

Case 1: MTs and ARs during 22–23 May 1936

The 305K isentropic charts for the mornings of 22 and 23 May 1936 in Fig. 4 are adapted from Rossby et al. (1938). Their reanalysis counterparts (20CRv3 valid at 1200 UTC) are shown in Fig. 6a,b. A comparison between them indicates that the geographical positions of the MTs are consistent. However, the ones in Fig. 4 are drier than those in Fig. 6. For instance, the maximum specific humidity across the US-Mexico border (western Texas) is higher than 11 g kg⁻¹ in Fig. 6a, but lower than 10 g kg⁻¹ in Fig. 4a. A possible explanation for this difference is that the upper-air data are not assimilated into 20CRv3, leading to incorrect estimates of moisture distribution. This
could be an inherent problem associated with this reanalysis, which takes only surface pressure observations into account (Slivinski et al. 2021).

Also shown in Fig. 6 are the distributions of mean sea level pressure (MSLP), IWV and IVT valid at 1200 UTC 22–23 May 1936. An inland-penetrating AR across the central United States and eastern Canada can be identified using either the IWV\textsubscript{20} or IVT\textsubscript{250} rules. It was driven northeastward by a weakening cyclone-anticyclone couplet. This AR is well consistent with the isentropic MT in Fig. 6a,b. There was also a weak Pacific AR making landfall on the west coast of Canada on Fig. 6d,f. The corresponding MT is barely noticeable, given that elevations of the 305K isentropic surface in that area are generally higher than 3500 meters ASL (Fig. 6b).

Figure 7 show two vertical cross sections from 20CRv3, on which potential temperature, specific humidity and wind are drawn in the same fashion as in Fig. 5. An extra element, the water vapor flux, is also included to highlight the fact that AR is a corridor of strong horizontal water vapor transport. The north-south cross section in Fig. 7a indicates that the AR core is located in the lower atmosphere around the 900-hPa level. At the southern end, the Mexican Plateau acts as a barrier to block moist flow from the tropical Pacific, and as a wall to guide moisture from the Gulf of Mexico into the United States. Towards the northern end, moisture lines bulged upward as the AR flowed onto a warm front marked by the strong horizontal gradient of potential temperature. The west-east cross section in Fig. 7b shows that the AR was ahead of a cold front. The pre-frontal convection forced the moisture lines to bulge upward over the AR.

The corresponding 24-hour precipitation amounts from the 20CRv3 and the GHCN-Daily observations are plotted in Fig. 8. Although the reanalysis has an AR-induced maximum center of moderate (25–50 mm) to heavy (> 50 mm) precipitation in the midwestern United States, it seriously underestimates precipitation intensity along the AR axis. In particular, much higher amounts were observed over coastal Texas, with the highest value of 273.1 mm at Schulenburg (29.68°N 96.86°W). Overall, there are 37 stations reporting a daily amount greater than 50 mm, with six of them with an amount exceeding 100 mm. On the other hand, the differences between reanalysis and observations are acceptable over Florida and the west coast of Canada.
could be an inherent problem associated with this reanalysis, which takes only surface pressure observations into account (Slivinski et al. 2021).

Also shown in Fig. 6 are the distributions of mean sea level pressure (MSLP), IWV and IVT valid at 1200 UTC 22–23 May 1936. An inland-penetrating AR across the central United States and eastern Canada can be identified using either the IWV or IVT rules. It was driven northeastward by a weakening cyclone-anticyclone couplet. This AR is well consistent with the isentropic MT in Fig. 6a,b. There was also a weak Pacific AR making landfall on the west coast of Canada on Fig. 6d,f. The corresponding MT is barely noticeable, given that elevations of the 305K isentropic surface in that area are generally higher than 3500 meters ASL (Fig. 6b).

Figure 7 show two vertical cross sections from 20CRv3, on which potential temperature, specific humidity and wind are drawn in the same fashion as in Fig. 5. An extra element, the water vapor flux, is also included to highlight the fact that AR is a corridor of strong horizontal water vapor transport. The north-south cross section in Fig. 7a indicates that the AR core is located in the lower atmosphere around the 900-hPa level. At the southern end, the Mexican Plateau acts as a barrier to block moist flow from the tropical Pacific, and as a wall to guide moisture from the Gulf of Mexico into the United States. Towards the northern end, moisture lines bulged upward as the AR flowed onto a warm front marked by the strong horizontal gradient of potential temperature. The pre-frontal convection forced the moisture lines to bulge upward over the AR.

The corresponding 24-hour precipitation amounts from the 20CRv3 and the GHCN-Daily observations are plotted in Fig. 8. Although the reanalysis has an AR-induced maximum center of moderate (25–50 mm) to heavy (> 50 mm) precipitation in the midwestern United States, it seriously underestimates precipitation intensity along the AR axis. In particular, much higher amounts were observed over coastal Texas, with the highest value of 273.1 mm at Schulenburg (29.68°N 96.86°W). Overall, there are 37 stations reporting a daily amount greater than 50 mm, with six of them with an amount exceeding 100 mm. On the other hand, the differences between reanalysis and observations are acceptable over Florida and the west coast of Canada.
Fig. 7. (a) A north-south vertical cross section (from Quaqtaq, QC, Canada to Torreón, COA, Mexico) valid at 1200 UTC 22 May 1936. (b) A west-east vertical cross section (from Calgary, AB, Canada to Richmond, VA, USA) valid at 1200 UTC 23 May 1936. The blue solid lines are specific humidity contours (intervals: 2 g kg\(^{-1}\)). The red dashed lines are potential temperature contours (intervals: 5K). The magnitude of water vapor flux is represented by color-filled contours. Winds are indicated by the conventional wind barbs. The cross-section line is indicated by a red line in the embedded box with IVT distribution.
Fig. 8. (a) Accumulated precipitation amount in mm for a 24-hour period ending at 1200 UTC 23 May 1936 based on the 20CRv3 data. (b) The color-filled value is the same as in (a), while the observed daily precipitation amount is plotted to a colored dot; the observed amounts are plotted in ascending order to make sure that a heavier amount is overlaid on a lighter amount.
Case 2: MTs and ARs during 11–12 September 1936

The isentropic MT and AR analyses from 20CRv3 for the situations on 11–12 September 1936 are shown in Figures 9 and 10. The reanalysis MTs in Fig. 9a,b are geographically consistent with, but drier than, their counterparts in Fig. 1; the drier conditions of 20CRv3 in this case are in contrast to the moister conditions in the previous case.

The distributions of IVT in Fig. 9e,f (and IWV in Fig. 9c,d) suggest a weak to moderate AR over eastern North America. As compared to the corresponding MTs in Fig. 9a,b, the AR axis is located further to the east in the subtropical area, and the presence of AR is more noticeable over eastern and Atlantic Canada, where the specific humidity values are low on the 315K isentropic surface with elevations higher than 5000 m. The isentropic analyses on the 305K surface are shown in Fig. 10a,b. The MT locations on this lower level are more consistent with the AR positions in Fig. 9e,f.

The reanalysis in Fig. 10c shows generally light daily precipitation (less than 25 mm) along the MT/AR corridor, except for some moderate (25–50 mm) rains off the east coast of Mexico where a tropical cyclone can be seen in the MSLP maps (Fig. 9c,d). There is a local maximum of 20 to 25 mm in the southern Great Lake region. The observed daily precipitation amounts are much higher (Fig. 10d). The highest amount of 135.6 mm was observed at La Uniòn (17.98°N, 101.88°W) in southern Mexico. It is followed by an amount of 99.8 mm at Kokomo, IN (40.46°N, 86.18°W). The third highest amount is 93.7 mm at Council Grove, KS (38.67°N, 96.50°W), and there are 31 stations with observed daily amounts greater than 50 mm on the map.

Conclusions

Carl-Gustaf Arvid Rossby was one of the most influential atmospheric and oceanic scientists in the 20th century (Byers 1960). One of his scientific undertakings in the 1930s was the investigation of large-scale lateral mixing in the atmosphere. Following an earlier suggestion of Sir Napier Shaw, Rossby and Collaborators (1937a,b) reasoned that lateral mixing would occur on isentropic surfaces, and these isentropic charts could be taken as a working tool for synoptic weather analysis. Using water vapor as a conservative tracer, their first application of isentropic analysis not only provided evidence of large-scale lateral mixing in the atmosphere, but also identified the moist tongues as an important flow pattern which can be used for tracing the sources of atmospheric
Case 2: MTs and ARs during 11–12 September 1936

The isentropic MT and AR analyses from 20CRv3 for the situations on 11–12 September 1936 are shown in Figures 9 and 10. The reanalysis MTs in Fig. 9a,b are geographically consistent with, but drier than, their counterparts in Fig. 1; the drier conditions of 20CRv3 in this case are in contrast to the moister conditions in the previous case.

The distributions of IVT in Fig. 9e,f (and IWV in Fig. 9c,d) suggest a weak to moderate AR over eastern North America. As compared to the corresponding MTs in Fig. 9a,b, the AR axis is located further to the east in the subtropical area, and the presence of AR is more noticeable over eastern and Atlantic Canada, where the specific humidity values are low on the 315K isentropic surface with elevations higher than 5000 m. The isentropic analyses on the 305K surface are shown in Fig. 10a,b. The MT locations on this lower level are more consistent with the AR positions in Fig. 9e,f.

The reanalysis in Fig. 10c shows generally light daily precipitation (less than 25 mm) along the MT/AR corridor, except for some moderate (25–50 mm) rains off the east coast of Mexico where a tropical cyclone can be seen in the MSLP maps (Fig. 9c,d). There is a local maximum of 20 to 25 mm in the southern Great Lake region. The observed daily precipitation amounts are much higher (Fig. 10d). The highest amount of 135.6 mm was observed at La Uniòn (17.98°N, 101.88°W) in southern Mexico. It is followed by an amount of 99.8 mm at Kokomo, IN (40.46°N, 86.18°W). The third highest amount is 93.7 mm at Council Grove, KS (38.67°N, 96.50°W), and there are 31 stations with observed daily amounts greater than 50 mm on the map.

Conclusions

Carl-Gustaf Arvid Rossby was one of the most influential atmospheric and oceanic scientists in the 20th century (Byers 1960). One of his scientific undertakings in the 1930s was the investigation of large-scale lateral mixing in the atmosphere. Following an earlier suggestion of Sir Napier Shaw, Rossby and Collaborators (1937a,b) reasoned that lateral mixing would occur on isentropic surfaces, and these isentropic charts could be taken as a working tool for synoptic weather analysis. Using water vapor as a conservative tracer, their first application of isentropic analysis not only provided evidence of large-scale lateral mixing in the atmosphere, but also identified the moist tongues as an important flow pattern which can be used for tracing the sources of atmospheric

Fig. 9. MT and AR analysis based on the 20CRv3 data valid at 1200 UTC 11 and 12 September 1936. (a) & (b) The 315K isentropic charts, where the color-filled contours in g kg\(^{-1}\) show the specific humidity distribution and the red dashed lines are contours of height (above sea level) of the isentropic surface in m (intervals: 500 m). (c) & (d) The IWV (color-filled, in kg m\(^{-2}\)) and MSLP (white solid lines, intervals: 2 hPa). (e) & (f) The vertically integrated water vapor flux (white vector) and its magnitude IVT (color-filled, in kg m\(^{-1}\)s\(^{-1}\)).

23
Fig. 10. (a) & (b) The 305K isentropic charts valid at 1200 UTC 11 and 12 September 1936 (compared to the 315K charts in Fig. 9a,b). (c) Accumulated precipitation amount in mm for a 24-hour period ending at 1200 UTC 12 September 1936 based on the 20CRv3 data. (d) The color-filled value is the same as in (c), while the observed daily precipitation amount is plotted to a colored dot (see Fig. 8).

They also suggested the use of isentropic cross sections to provide further insight into the vertical structure and dynamic stability of MTs (Rossby and Collaborators 1937b; Rossby et al. 1938). The present article established a historical narrative that would acknowledge the MT model developed in the 1930s as an antecedent to the contemporary concepts of WCB and AR. As shown in Fig. 2, these three phenomena are interrelated with a common feature of strong low-level moisture transport. Under certain circumstances, therefore, they are all but different manifestations of the same thing.
Jerome Namias was one of Rossby’s most prominent collaborators in advocating for isentropic analysis. He was also part of a team devoted to developing reliable methods for short- and long-range weather forecasts (Wexler and Namias 1938; Namias 1938, 1939a,b, 1940; Willett et al. 1941). Their studies confirmed that an MT entering the United States from the Gulf of Mexico is an important factor to be considered in weather forecasting, and areas of heavy precipitation are often located in the zone between MTs and DTs where the isentropic slopes are steepest. Figure 2a is a schematic flow pattern reproduced from Namias (1940). This model was also adopted in a textbook by Starr (1942, p. 55):

The moisture emanating from the Gulf of Mexico may flow northward and affect any portion of the continental United States east of the Rocky Mountains... The movement of this moist air is usually in the form of a rather narrow tongue situated above a surface cold front so that the forward portion of the moist outbreak is found in the vicinity of a cyclonic disturbance at the ground...

This description was quoted by Zhu and Newell (1994) to introduce the concept of AR. In fact, this MT model (Fig. 2a) bears an even stronger resemblance to the conceptual model of WCB proposed in Browning (1971) (Fig. 2b).

As compared to the modern AR analysis, the MT model developed in the 1930s had some serious limitations that could have handicapped its effectiveness and chance for success. One is that the isentropic analysis was restricted mainly over continental regions where the network of upper-air observations must be sufficiently dense. Therefore, offshore moisture transport could not be accurately accommodated. Another disadvantage is that the shape and scale of an MT could vary significantly according to the selected isentropic surfaces. These surfaces should remain in the free atmosphere, because specific humidity may not be considered as a conservative element in the lowest layers where air motion is largely controlled by convection and vertical mixing (Rossby and Collaborators 1937a). It is also difficult to assign exact boundaries to the MTs; the same applied to the WCB analysis, as noticed by Carlson (1980). These problems were eventually addressed and reconciled over time with the development of modern technologies. The current AR analysis has benefited from global upper-air data collected from multiple sources, and methods to identify ARs are often based on the IWV or IVT distributions.
The relationship between MT and AR was further investigated in two case studies using the reanalysis data of 20CRv3. It was demonstrated that an extensive MT on an isentropic chart is often indicative of the presence of an AR. However, some ARs may not be captured well on certain isentropic surfaces. On the other hand, not all MTs on isentropic charts can be identified as an AR based on the IWV or IVT criteria. It was also demonstrated that, while caution must be used in assessing the precipitation intensity and distribution from 20CRv3, this reanalysis dataset offers substantial potential to assess the synoptic features of historic ARs or other high-impact weather events.

As the antecedents for the model of ARs, WCBs or MTs are concerned, I would like to end this article with a quote from an even earlier study of Rossby and Weightman (1926):

The type discussed below, a weak depression from the Northwest slowly approaching the lower Mississippi Valley, and there increasing in intensity under advection of warm, moist air from the Gulf and cold air from Canada, occurs frequently...

Acknowledgments. This article originated from a presentation at the Virtual Symposium by the International Atmospheric Rivers Conference Community, 5-9 October, 2020 (https://iarc-symposium.com/). I would like to thank Anthony Liu, Mindy Brugman, Roxanne Vingarzan, Anna Wilson, Willie Cowan, Jorge Eiras-Barca, and Peter Black for stimulating discussions and suggestions. Dr. Shuzhan Ren conducted an internal review of the first version. Drs. Laura Slivinski and Gilbert Compo (NOAA) are gratefully acknowledged for their invaluable assistance related to the use and interpretation of the 20CRv3 data. ECCC librarians, Alison Dodd and Danny Chan, kindly assisted with manuscript research. Critical and constructive comments from three anonymous reviewers are highly appreciated. Editor Kristine Harper provided many valuable suggestions for improving the final version.

Data availability statement. The 20th Century Reanalysis V3 data are provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html. Daily precipitation data across Canada, the United States, and Mexico in May and September 1936 are downloaded from Climate Data Online https://www.ncdc.noaa.gov/cdo-web/, provided by the NOAA’s National Centers for Environmental Information.
The relationship between MT and AR was further investigated in two case studies using the reanalysis data of 20CRv3. It was demonstrated that an extensive MT on an isentropic chart is often indicative of the presence of an AR. However, some ARs may not be captured well on certain isentropic surfaces. On the other hand, not all MTs on isentropic charts can be identified as an AR based on the IWV or IVT criteria. It was also demonstrated that, while caution must be used in assessing the precipitation intensity and distribution from 20CRv3, this reanalysis dataset offers substantial potential to assess the synoptic features of historic ARs or other high-impact weather events.

As the antecedents for the model of ARs, WCBs or MTs are concerned, I would like to end this article with a quote from an even earlier study of Rossby and Weightman (1926):

The type discussed below, a weak depression from the Northwest slowly approaching the lower Mississippi Valley, and there increasing in intensity under advection of warm, moist air from the Gulf and cold air from Canada, occurs frequently...

Acknowledgments.

This article originated from a presentation at the Virtual Symposium by the International Atmospheric Rivers Conference Community, 5-9 October, 2020 (https://iarc-symposium.com/). I would like to thank Anthony Liu, Mindy Brugman, Roxanne Vingarzan, Anna Wilson, Willie Cowan, Jorge Eiras-Barca, and Peter Black for stimulating discussions and suggestions. Dr. Shuzhan Ren conducted an internal review of the first version. Drs. Laura Slivinski and Gilbert Compo (NOAA) are gratefully acknowledged for their invaluable assistance related to the use and interpretation of the 20CRv3 data. ECCC librarians, Alison Dodd and Danny Chan, kindly assisted with manuscript research. Critical and constructive comments from three anonymous reviewers are highly appreciated. Editor Kristine Harper provided many valuable suggestions for improving the final version.

Data availability statement.

The 20th Century Reanalysis V3 data are provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html. Daily precipitation data across Canada, the United States, and Mexico in May and September 1936 are downloaded from Climate Data Online https://www.ncdc.noaa.gov/cdo-web/, provided by the NOAA's National Centers for Environmental Information.

References

Mo, R., M. M. Brugman, J. A. Milbrandt, J. Goosen, Q. Geng, C. Emond, J. Bau, and A. Erfani, 2019: Impacts of hydrometeor drift on orographic precipitation: Two case studies of landfalling

