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ABSTRACT

In a companion paper, Y. Liu and R. Avissar analyzed the features of persistence in the land–atmosphere
system simulated with the National Center for Atmospheric Research Community Climate Model Version 2
coupled with the Biosphere–Atmosphere Transfer Scheme (CCM2–BATS). To interpret the results obtained in
that study, a fourth-order land–atmosphere analytical model is developed and used to investigate the timescales
of disturbances in the land–atmosphere system, and the major parameters and processes affecting them. This
analytical model has four damping timescales, namely seasonal, monthly, weekly, and daily. It is found that the
seasonal scale is caused by self-feedback of soil moisture, and its length increases significantly due to the
interactions between soil moisture and the other system variables. A sensitivity analysis performed with the
Fourier amplitude sensitivity test indicates that the seasonal timescale is mostly affected by the physical param-
eters related to hydrological processes (namely, evaporation, runoff, and soil moisture diffusion), while the
thermal characteristics of the land–atmosphere system mostly affect the monthly timescale. Thus, the results of
this analytical study indicate that the persistence obtained in the CCM2–BATS simulation is an inherent property
of the land–atmosphere system. They also emphasize the importance of soil moisture disturbances on persistence
in the climatic system.

1. Introduction

To study persistence in the land–atmosphere system,
Delworth and Manabe (1988, 1989, 1993) and Manabe
and Delworth (1990) analyzed autocorrelations of
monthly hydrological variables obtained from multiyear
simulations with the Geophysical Fluid Dynamics Lab-
oratory (GFDL) General Circulation Model (GCM). The
‘‘bucket’’ soil–water model developed by Manabe
(1969) was used in this model. They found a significant
persistence in soil moisture disturbances, especially at
high latitudes, and during the winter season.

Applying a similar technique, Liu and Avissar (1999,
hereafter LA99) analyzed the features of persistence in
the land–atmosphere system simulated with the National
Center for Atmospheric Research (NCAR) Community
Climate Model Version 2 (CCM2) coupled with the Bio-
sphere–Atmosphere Transfer Scheme (BATS) (hereafter
CCM2–BATS). There are significant differences be-
tween BATS and the bucket model. For instance, unlike
the bucket model, BATS accounts for the spatial dis-
tribution of different types of vegetation and soil. Also,

Corresponding author address: Dr. Roni Avissar, Department of
Environmental Sciences, Rutgers University, 14 College Farm Rd.,
New Brunswick, NJ 08901-8551.
E-mail: avissar@gaia.rutgers.edu

it explicitly resolves soil temperature on a multilayer
grid. LA99 claimed that these improved features pro-
vided new insights on persistence in the land–atmo-
sphere system. For example, they found that persistence
depends on regional climatology. It is stronger in the
dry regions of North Africa and the inner-Eurasian con-
tinent than in their adjacent moist regions. This feature
was supported by an analysis of soil and atmospheric
observations in China. They also found that soil mois-
ture has a much stronger persistence than soil temper-
ature.

Two types of mechanism contribute to persistence in
the land–atmosphere system: (i) external forcings, in-
cluding the atmospheric dynamics that produce global
circulation systems and control precipitation and cloud-
iness; and (ii) internal forcings, which consist of self-
feedbacks and interactions within the system. Consid-
ering that GCMs need very large computing resources
and account for a large number of complicated inter-
actions often difficult to interpret, analytical models are
good, efficient additional tools to study the mechanism
of persistence.

Delworth and Manabe (1988) used a first-order Mar-
kov process model, in conjunction with simulations pro-
duced with the GFDL GCM, to study the timescale of
decay of soil moisture disturbances. In that model, evap-
oration and precipitation are considered internal and ex-
ternal forcings, respectively. They showed that a sub-
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stantial part of the soil moisture variability occurs over
a period of about 9 months in the Tropics to about 22
months at high latitudes. Furthermore, they indicated
that the latitudinal dependence of persistence is probably
caused by potential evaporation. Indeed, at high lati-
tudes, where low potential evaporation results in slow
dissipation of soil water, disturbances of soil moisture
can easily persist for a relatively long time.

Delworth and Manabe (1988) pointed out that the
first-order Markov process model is substantially similar
to the bucket model used in the GFDL GCM. Thus,
persistence obtained from the GFDL GCM simulations
is explained quite well with this analytical model. But
mainly because of the significant differences between
BATS and the bucket model, a different analytical mod-
el is needed to explain the physical processes involved
in persistence derived from CCM2–BATS simulations.
First, in their analysis of persistence derived from a 10-
yr CCM2–BATS simulation described in detail by Bon-
an (1994), LA99 found that, besides soil moisture, other
components of the land–atmosphere system (namely,
soil temperature, air humidity, and air temperature) also
exhibit persistence. One can expect that disturbances in
one of the components will affect the other components
through various interactions and, as a result, affect their
persistence. Therefore, to better understand the impor-
tance of soil moisture and soil temperature disturbances
on the persistence in the entire land–atmosphere system,
it is necessary to study these interactions. It is important
to emphasize that first-order models, like the one used
by Delworth and Manabe (1988), do not account for
such interactions. Furthermore, one cannot explain the
regional-climatology dependence of persistence found
in the CCM2–BATS simulation with such a first-order
model. This is because in that model the dissipation rate
of soil moisture disturbances is determined by the ratio
of potential evaporation to a constant water field ca-
pacity. The larger the ratio, the faster the dissipation.
In dry regions, potential evaporation is large. Thus, the
ratio is large and so is the dissipation rate. This suggests
that the persistence of soil moisture is weaker in rela-
tively dry regions. However, this contradicts the results
of the CCM2–BATS simulation, implying that other im-
portant parameters affect persistence in the land–at-
mosphere system. Finally, various numerical experi-
ments have shown that soil moisture anomalies can sig-
nificantly affect local precipitation (e.g., Chen and Av-
issar 1994; Avissar and Liu 1996), emphasizing that
precipitation is both an external and an internal forcing.

In this paper, a fourth-order land–atmosphere analyt-
ical model, which addresses the above issues, is devel-
oped to investigate which physical parameters and pro-
cesses determine persistence in the land–atmosphere
system. This model is described in the next section. In
section 3, we use this model to analyze the timescales
of persistence in the land–atmosphere system. In the
following sections, we investigate the major factors af-

fecting these timescales, as well as the feedbacks and
interactions responsible for them.

2. The model

The model used for this investigation is an extension
of the third-order model proposed by Liu et al. (1992).
In that previous model, soil temperature, soil moisture,
and air temperature are predicted, while variation of air
humidity is assumed to compensate for the loss of water
caused by variation in soil moisture. That model was
used to study the role of soil moisture and vegetation
on climate anomalies, and it indicated that the dissi-
pation of disturbances grows faster as soil moisture and
vegetation cover increase. However, there are two major
problems with such a model. First, the interactions be-
tween soil moisture and air humidity are neglected. Sec-
ond, the amplitude of the actual variations of soil mois-
ture could be significantly reduced and, as a result, un-
realistic estimates of the dissipation rate could be ob-
tained.

In the model proposed here, in addition to the three
variables included in the earlier model of Liu et al.
(1992), air humidity is also introduced as a system var-
iable. The equations describing the variations of the four
variables represent a fourth-order model. Although it is
no longer possible to obtain intuitive analytical solutions
with such a higher-order model, it provides a very sim-
ple and inexpensive tool to study complex interactions
in the land–atmosphere system, including those between
soil moisture and air humidity.

In such a model, various types of parameters need to
be specified to characterize, among others, the heat and
water fluxes at the air–soil interface. A major improve-
ment made to the present model is the derivation of
these parameters from the above-mentioned CCM2–
BATS simulation. In doing so, we expect these param-
eters to be specified consistently. Furthermore, this is
also consistent with one of the objectives of this study,
which consists of using the analytical results obtained
here to interpret the features of persistence revealed by
the CCM2–BATS simulation. It should also be pointed
out that some of the schemes used by Liu et al. (1992)
to calculate fluxes (including precipitation) are replaced
with more appropriate schemes.

a. Equations

Figure 1 provides a diagram of the model, showing
its structure, variables, and fluxes. To simplify the land–
atmosphere system, the atmosphere is assumed to con-
sist of an air column of height ha. Its thermal and mois-
ture states are characterized by its temperature, Ta, and
its specific humidity, qa. Noting that the soil depths at
which thermal and hydrological processes are active are
not necessarily identical, the soil is assumed to consist
of a thermally active layer of depth dT and a hydrolog-
ically active layer of depth dQ. Similar to the atmo-
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FIG. 1. A schematic representation of the land–atmosphere system
(see appendix for list of symbols).

sphere, the soil is characterized by its temperature, Tg,
and its volumetric soil water content, Q. To account for
possible diffusion of heat and moisture at the bottom of
the active soil layers, soil sublayers of depth dTo and
dQo are defined for thermal and hydrological processes,
respectively. Correspondingly, a constant temperature,
Tgo, and a constant volumetric soil water content, Qo,
are assigned to these sublayers.

The fourth-order land–atmosphere system consists of
the following set of heat and water conservation equa-
tions:

dTaC 5 R 1 H 1 LP, (1)a adt

dqaM 5 E 2 P, (2)a dt

dTg
C 5 R 2 H 2 LE 1 K (T 2 T ), (3)g s T go gdt

dQ
M 5 P 2 E 2 F 1 K (Q 2 Q), (4)g Q odt

where KT 5 2DTCg/[dT(dT 1 dTo)] and KQ 5 2DQMg/
[dQ(dQ 1 dQo)]; Ca (5racpha) and Cg (5rgcgdT) are the
heat capacity of the atmosphere and the soil, respec-
tively (cp is specific heat of air at constant pressure, cg

is specific heat of the soil, r is density, and subscripts
a and g indicate atmosphere and ground); Ma (5raha)
and Mg (5rwdQ) are masses of the air column and of a
column of water of depth dQ per unit area, respectively;
Ra and Rs are the radiation balance of the atmosphere
and the land surface, respectively; H and E are the sen-
sible heat flux and the moisture flux between the land
surface and the atmosphere, respectively; P and F are
precipitation and runoff, respectively; DT and DQ are
the soil thermal and hydraulic diffusivity, respectively;
and L is the latent heat. It should be mentioned that
land is assumed to completely cover the earth, and snow
is neglected.

b. Fluxes

The radiative fluxes are calculated following Paltridge
(1974):

R 5 [1 2 a (1 2 n) 2 a n 2 A 2 C n]Ss a c a r o

4 42 «sT 1 n«sT , (5)g a

4 4R 5 (A 1 C n)S 1 n«sT 2 n«sTa a r o g a

4 42 n«9sT 2 (1 2 n)GsT . (6)a g

The first term on the right-hand side of Eq. (5) is the
net shortwave radiative flux at the land surface, where
So is the incident shortwave radiation at the tropopause;
aa (ø0.18) and ac (ø0.51) are the planetary albedo for
clear sky and for cloudy atmosphere, respectively; Aa

is the atmospheric absorption of shortwave radiation;
and n is the cloud fraction. The next two terms together
represent the net longwave radiative fluxes. The at-
mosphere is assumed to be opaque to longwave radiation
at all wavelengths other than in the atmospheric window
(7.5–12.5 mm), where absorption is assumed negligible.
In this model, longwave energy transfer occurs only in
the atmospheric window and, therefore, it is the only
flux that needs to be considered. The constant s is the
Stefan–Boltzmann constant, and « (ø0.3) is the fraction
of total blackbody radiation at normal earth tempera-
tures contained within the wavelengths of the atmo-
spheric window.

The first term on the right-hand side of Eq. (6) is the
net shortwave radiative flux of the atmosphere. In this
term, the factor Cr (ø0.04) accounts explicitly for the
extra shortwave absorption in clouds. The second and
third terms represent the net longwave absorption in
clouds resulting from exchange of radiant energy with
the earth’s surface. Again, only exchanges in the at-
mospheric window region of the spectrum are taken into
account. It is assumed that the amount of water vapor
above the level of the earth’s cloudy regions is negli-
gible. Thus, the window in the longwave spectrum has
expanded to new limits, which are set only by the ab-
sorption bands of carbon dioxide. Accordingly, long-
wave loss to space from the clouds is given by
n«9 , where «9 ø 0.75.4sT a
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TABLE 1. Parameters used in the coupled land–atmosphere system.

Parameter Unit Mean Range in FAST*

Ta

qa

Tg

Q
So

rEP

n
dT

dTo

dH

dHo

ha

DT

Dh
Cg

Qs

Ho

Eo

ra

K
g kg21

K
%
W m22

%
%
m
m
m
m
km
m2 s21(31027)
m2 s21(31028)
J K21 m23(3106)
%
W m22 K21

kg m22 s21(31023)
kg m23

255.0
5.0

285.0
25.0

330.0
60.0
50.0
10.0
10.0

1.0
10.0
10.0

5.0
5.0
1.0

40.0
1.0
4.5
0.75

250.0–260.0
3.0–7.0

280.0–290.0
10.0–40.0

—
45.0–75.0
35.0–65.0
0.75–1.25

—
0.75–1.25

—
9.0–11.0
2.5–7.5
2.5–7.5

0.75–1.25
30.0–50.0

0.5–1.5
3.5–5.5

—

* FAST stands for Fourier amplitude sensitivity test.

In clear atmosphere, the absorption bands of water
vapor become less opaque with increasing height and
decreasing water vapor concentration. In effect, the at-
mospheric window expands with increasing altitude so
that each atmospheric level loses energy directly to
space. Since the average temperature lapse to the tro-
popause is close to adiabatic as a result of mixing, on
the average, the temperature at any level bears a fairly
constant relation to the surface temperature. Thus, the
total longwave loss from the clear-sky troposphere is
likely to be proportional to surface blackbody radiation.
This concept is the basis for the last term in Eq. (6),
which contains a simple constant of proportionality G,
which was found to be about 0.38 (on average) for a
large number of studied typical cases. A detailed dis-
cussion of the philosophy behind this scheme, as well
as of the values assigned to each of its variables, are
given in Paltridge (1974).

The bulk flux formulas are used to calculate sensible
heat and evaporation:

H 5 H (T 2 T ), (7)o g a

E 5 hE 5 hE [q (T ) 2 q ], (8)p o s g a

where Ho 5 racpCDTV and Eo 5 raCDWV; CDT and CDW

are the sensible heat and moisture drag coefficients, re-
spectively, which are strongly dependent upon land sur-
face and atmospheric dynamic and thermal properties
(e.g., vegetation cover and stability); V is the wind speed
in the atmospheric surface layer; Ep is the potential
evaporation; qs(Tg) is the saturated air specific humidity
at temperature Tg; and h 5 Q/Qs is the soil wetness,
with Qs being the volumetric soil water content at sat-
uration. Note that the separate effect of the wind and
the drag coefficient will not be considered here, and
only their combined impacts, as measured by Ho and
Eo, will be analyzed.

Both atmospheric dynamics and local moisture and
heat exchanges in the land–atmosphere system can con-
tribute to the essential conditions for the formation of
precipitation (i.e., ascending motion of air mass, strat-
ified instability, and water vapor supply). Because the
model proposed here does not simulate atmospheric dy-
namics, precipitation is parameterized with a simple for-
mula, which accounts only for the variances of atmo-
spheric moisture and temperature caused by land–at-
mosphere interactions. This parameterization is based
on the premise that at a given geographic location and
a given general circulation pattern, precipitation is most-
ly related to the atmospheric water vapor content (W),
and the relative humidity (Rh) of the entire air column.
Applying dimensional analysis to relations between pre-
cipitation and these two factors, Fu (1978) developed
the following formula:

C32(C /R )2 hP 5 C We , (9)1

where Ci (i 5 1, 2, 3) are empirical constants. In this
model, C2 5 0.5 and C3 5 4.5, as suggested by Fu

(1978). However, C1 is derived from the ratio of cli-
matological evaporation to precipitation (namely rEP 5
E /P) derived from the CCM2–BATS simulation used
by LA99.

Runoff is proportional to the net soil water gain (P
2 E), and to the soil wetness (h):

F 5 h(P 2 E). (10)

This type of relation is suitable for estimating runoff
at the seasonal or longer timescales. Note that the pa-
rameter values used in this study (see Table 1), as well
as the magnitude of the runoff perturbations, were se-
lected to prevent negative runoff.

c. Perturbation equations

The perturbation approach (Holton 1979) is used to
linearize the equations of the model. Accordingly, any
variable f is separated into a mean, f , and a perturbation,
f9. Assuming that the perturbations are small as compared
to the means, any terms including the product of two or
more perturbations are assumed much smaller than terms
including only one or no perturbation. Thus, for instance,
the radiation emitted by a blackbody at a temperature T
is given by s T4 5 s (T 1 T9)4 . s (T 4 1 4T3T9). It
should be noted that, in the real world, perturbations of
clouds and precipitation can be larger than their average.
But such perturbations are primarily related to atmospheric
dynamics. However, in a model aimed at simulating the
climatology of land–atmosphere moisture and temperature
anomalies, one can expect that the standard derivation of
clouds and precipitation will not be very large as compared
to their mean.

The perturbation equations for the sensible heat and
evaporation fluxes are
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H9 5 H (T9 2 T9), (11)o g a

E9 5 hE (D T9 2 q9) 1 E Q9/Q , (12)o g g a p s

where Dg 5 .dq /dT | ¯s T5Tg

To develop a perturbation equation for precipitation,
we first substitute the atmospheric water content in Eq.
(9) with the product of the specific humidity and the
mass of the atmosphere, and the relative humidity with
the ratio of the specific humidity to the specific humidity
at saturation. Subsequently, we differentiate the ex-
pression and assume that the perturbation of a quantity
is approximately equal to its differential value, and that
the average is expressed by the nondifferential value.
As a result, we obtain:

2 ,P9/P 5 P q9 P T91 a 2 a (13)

where P1 5 [1 1 C3(C2 / /qa, P2 5 C3(C2 /C3R ) ]h

/q as, and Da 5 dqs/ .C3R ) D dT | ¯h a T5Ta

The perturbation of cloud amount is related to the
precipitation perturbation as follows:

n9/ n 5 P9/P . (14)

It should be noted that, in the real world, changes in

cloudiness do not necessarily result in changes in pre-
cipitation (e.g., for nonprecipitating clouds).

The perturbation of the radiative fluxes is given by:

R9 5 («nD 1 R P n )T9 2 «D T9 2 R P nq9, (15)s L s1 2 a L g s1 1 aa g

R9 5 2(R 1 R P n )T9 1 R T9 1 R P nq9, (16)a a1 a3 2 a a2 g a3 1 a

where Rs1 5 (ac 2 aa 2 Cr)So 2 «s , Ra1 5 (« 14T a

«9) , Ra2 5 [(« 1 G)n 2 , Ra3 5 CrSo 2 (« 1nD G]DL La g

«9)s 1 (« 1 G)s , and 5 d(s )/dTi, (i 5 a,4 4 4T T D Ta g L ii

g).
Using these flux perturbations, the heat and water

conservation equations [Eqs. (1–4)] can be written:

dY
5 CY, (17)

dt

where

Y 5 (Y ) 5 (T9 /T , q9 /q , T9 /T , Q9/Q), (18)i a a a a g g

C 5 (c ) 5 I AI . (19)ij 1 2

Here, I1 is a diagonal matrix with elements [(CaT a )21 ,
(Maq a )21 , (CgT g )21 , (MgQ )21 ], I 2 , is a diagonal ma-
trix with elements [T a , q a ,T g , Q ], and

A 5 (a )ij

 2R 2 H 2 (LP 1 R n )P (LP 1 R n )P R 1 H 0a1 o a3 2 a3 1 a2 o

 PP 2hE 2 PP hE D E /Q2 o 1 o g p s5 , 
«nD 1 R P n 1 H LhE 2 R P n 2«D 2 H 2 LhE D 2 K 2LE /QL s1 2 o o s1 1 L o o g T p sa g 

2h PP h (PP 1 hE ) 2h hE D 2h E /Q 2 D /Q 2 Kd 2 d 1 o d o g d p s PE s Q 

(20)

where DPE 5 P 2 E , and h d 5 1 2 h .
Equation (17) represents a set of linear, homogeneous

differential equations with constant coefficients, whose
linearly independent solutions can be written

4

l tjY (t) 5 P (t)e , (21)Oi ij
j51

where lj 5 (lr)j 1 i(li) j (j 5 1, 4) are roots of the
characteristic equation of Eq. (21), given by

4

42kd l 5 0. (22)O k
k50

The parameter lr is the disturbance growth rate, and
the reciprocal of its absolute value is the e-folding time.
If lr , 0, the e-folding time is also called damping time
[equivalent to the decay timescale in Delworth and Man-
abe (1988)], which is the time at which the amplitude
of a disturbance is reduced to e21 times its initial value.
In Eq. (21), Pij(t) is a polynomial whose order is equiv-

alent to the number of equal roots. In Eq. (22), dk are
constant coefficients, with do 5 1 and d1 5 2 akk.4Sk51

To provide the means of studying the impact of dis-
turbances on the coupled land–atmosphere system, one
could develop analytical solutions for this fourth-order
model, as was done for the lower-order model of Liu
et al. (1992). However, its solutions become cumber-
some and no longer intuitive. Thus, a preferred alter-
native is the use of the eigenvalues of matrix C.

3. Timescales of disturbances

Table 1 lists the various atmospheric and soil con-
ditions needed to calculate the elements of matrix C.
These values are assumed to be representative of annual
conditions under current climate over land. We adopted
the values used in Paltridge (1974) for the radiative flux.
The values of a few parameters related to other pro-
cesses are taken from BATS (Dickinson et al. 1993) and
from the results of the CCM2–BATS simulation per-
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TABLE 2. Values of matrix C 5 (ci,j) (31026).

j 5 1 j 5 2 j 5 3 j 5 4

i 5 1
i 5 2
i 5 3
i 5 4

20.6410
4.694
1.673

20.2640

0.0700
21.708

0.0456
0.0961

0.1171
19.79

29.178
21.1130

0.0
0.6672

20.2195
20.0883

TABLE 3. Damping times (in days) obtained from the real parts of
the solutions of the fourth-order model.

Solutions Decay times

1
2
3
4

231.5
57.5

5.7
1.2

TABLE 4. Initial perturbations in the land–atmosphere system.

Group Case T (K)9a q /qa9a T (K)9g Q9/Q

GI 1
2
3
4

1.5
0
0
0

0
0.15
0
0

0
0
2
0

0
0
0
0.05

GII 1
2
3
4

1.5
0
1.5
0

0
0.15
0.15
0

2
0
0
2

0
0.05
0
0.05

GIII 1
2
3
4

1.5
21.5

1.5
21.5

0.15
0.15

20.15
20.15

2
22

2
22

0.05
0.05

20.05
20.05

formed by Bonan (1994). For instance, in BATS, the
active soil layer is 1 m deep for 11 of the 16 land-cover
types, and 1.5–2 m deep for the other types. The soil
sublayer is 9 m deep for all land-cover types. Here these
two layers are assumed to be 1 and 10 m deep, respec-
tively. The spatially (over land) and temporally averaged
ratio of evaporation to precipitation (rEP) in the CCM2–
BATS simulation is 0.60. The corresponding land sur-
face sensible and latent heat fluxes are 33 and 61 W
m22, respectively. Based on these values, as well as the
climatological values of Ta, Tg, qa, and h provided in
Table 1, one can obtain Ho and Eo from Eqs. (7) and
(8), respectively. A sensitivity analysis to Ho and Eo is
given in section 4.

The resulting elements of matrix C are given in Table
2, and the solutions of the perturbation equations, which
express damping times, are given in Table 3. The nature
of the growth rate of disturbances is determined by the
sign of the real parts of these solutions. It appears that
all the solutions are real and negative, indicating that
the initial disturbances in the system always decay with
time. The damping time points out how fast disturbances
decay with time. Consequently, it provides an essential
information for understanding at which climatic scale a
particular perturbation in the land–atmosphere system
persists. A damping time of a few days implies that the
considered perturbation is relevant to fast, synoptic-
scale processes, but is unlikely to have a significant
impact on longer timescales. On the other hand, a damp-
ing time of several months suggests a potential impact
on seasonal climatic processes.

The damping times corresponding to the four solu-
tions, as indicated in Table 3, are of the orders of 1 day,
1 week, 2 months, and 8 months. Thus, hereafter, they
will be referred to as daily, weekly, monthly, and sea-
sonal-scale processes, respectively. The monthly and
seasonal scales, which represent long-term variations,
will be referred to as long-term scales.

The long-term scale processes can be clearly seen
from the evolution of the disturbances in the land–at-
mosphere system. Because all lj (j 5 1, 4) are different,
the order of Pij (t) in Eq. (21) is zero. Denoting Pij 5
Pij(t) and substituting Eq. (21) into Eq. (17), we have

4

(a 2 d l )P 5 0; i 5 1, 4. (23)O ik ik j kj
k51

Here, dik is the Kronecker Delta. For each lj, one can
derive Pkj(k 5 1, 4) from this equation. Note, since lj

is the eigenvalue of aik, |aik 2 diklj| 5 0. Thus, one of
the four Pkj values remains unknown, and it is deter-
mined from the initial values of the system variables.

Three groups of simulations of four cases each were
performed. In the first group, one perturbation at a time
was imposed on the system (either air temperature, air
humidity, soil temperature, or soil moisture). In the sec-
ond and third group, two and four perturbations were
imposed on the system, respectively. These perturba-
tions are listed in Table 4. Their magnitude was derived
from the standard deviation normalized by the mean
values of air temperature and humidity at 700 hPa, and
soil temperature and moisture obtained from the CCM2–
BATS simulation, which are 1.54 K, 0.131 kg kg21, 2.1
K, and 0.046 m3 m23, respectively. The evolution of the
corresponding perturbed systems is illustrated in Fig. 2.

From the first group of simulations (cases GI1–GI4),
it appears that when a perturbation of air temperature
or air humidity is applied to the system, the system
returns to its original state (i.e., the disturbance is almost
completely damped) within a period of 6–8 months. A
perturbation of soil temperature is damped within about
5 months, and a perturbation of soil moisture affects the
system for about 1.5 yr. As illustrated in Fig. 2, typically,
the system variables that were not originally perturbed
reach a maximum disturbance within a period of a few
weeks to a few months, and are then gradually damped.

Soil moisture is almost unaffected by disturbances of
the three other variables. However, soil temperature is
relatively strongly affected by soil moisture disturbanc-
es. A positive soil moisture disturbance of 5% results
in a negative soil temperature perturbation of about
20.3 K. Air temperature is moderately affected by soil
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FIG. 2. Evolution of perturbations in the fourth-order land–atmosphere analytical model in
response to the initial forcing listed in Table 4. The solid, dashed, dotted, and dashed–dotted lines
represent the perturbations of air temperature ( ), normalized air humidity ( / q a), soil temper-T9 q9a a

ature ( ), and normalized soil moisture (Q9/Q), respectively.T9g

temperature or soil moisture disturbances, and relatively
strongly affected by air humidity perturbations. Air hu-
midity is only moderately affected by disturbances of
the three other variables.

The results of the second group of simulations (cases
GII1–GII4) confirm the above results. The time needed
by the coupled land–atmosphere system to damp the
disturbances is equal to that of the longest of the two
perturbations. Therefore, it is about 6–8 months for cas-
es GII1 and GII3, and about 1.5 yr for cases GII2 and
GII4. The sensitivity of each variable to perturbations
of the three other variables is basically similar to cases
GI1–GI4, and the magnitude of the perturbations is the
sum of the individual perturbations.

It is interesting to note the strong impact of soil mois-
ture perturbations on soil temperature. As can be seen
from case GII4, even though a disturbance of 12 K was
originally applied to the soil temperature, this pertur-
bation very rapidly reaches a maximum negative value,
similar to that resulting from the application of a soil
moisture disturbance alone (case GI4).

Since in each of the third group of simulations (cases
GIII1–GIII4) soil moisture perturbations are applied to

the coupled land–atmosphere system, the damping of
the perturbations takes about 1.5 yr. While these addi-
tional simulations confirm the results and conclusions
discussed above, it is interesting to note the symmetry
obtained by positive or negative perturbations, which is
due to the linearity of the perturbation equations. Indeed,
one can notice that case GIII1 is symmetric to case
GIII4, and case GIII2 is symmetric to case GIII3. Thus,
there is obviously no need to repeat the experiments
illustrated in Figs. 2a–h with negative perturbations, as
similar results, but with an opposite sign, would be ob-
tained.

In summary, it appears that disturbances at the sea-
sonal and longer timescales are obtained in all cases,
and the longer disturbances are related to initial distur-
bances in soil moisture. The physical explanation to the
importance of soil moisture is discussed in the following
sections.

4. Which parameters affect the disturbances

The Fourier amplitude sensitivity test (FAST) is used
to identify which parameters mostly affect the damping
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times obtained from this fourth-order land–atmosphere
model. This technique was introduced by Cukier et al.
(1973) and was used, for example, by Uliasz (1988) to
evaluate a Lagrangian long-range transport model, by
Collins and Avissar (1994) to study the sensitivity of
land surface heat fluxes to land surface characteristics,
and by Liu and Avissar (1996) to examine sensitivity
of shallow convective precipitation to atmospheric dy-
namic and cloud microphysical parameters.

In FAST, the input parameters are varied simulta-
neously through their ranges of possible values follow-
ing their given probability density functions (i.e., values
that have a greater probability are chosen more often).
All input parameters are assumed to be mutually in-
dependent and each is assigned a different frequency,
which determines the number of times that the entire
range of values is traversed. With each input parameter
oscillating at a different characteristic frequency, a dif-
ferent set of input parameter values is obtained for each
model run with every value used once. The mean and
variance, which characterize the uncertainty due to the
variability of the input parameters, are calculated for
model output parameters. Fourier analysis of each out-
put for all model runs is used to separate the response
of the model to the oscillation of particular input pa-
rameters. Summation of those Fourier coefficients cor-
responding to a particular input parameter frequency and
its harmonics determines the contribution of that input
parameter to the model output variances. Finally, by
scaling the relative contribution of the input parameters
to the total variance, partial variances are obtained,
which show the sensitivity of model output parameters
to the variation of individual input parameters in terms
of a percentage of the variance.

The Fourier coefficients corresponding to input pa-
rameter frequencies and their harmonics do not account
for the total variance of the model outputs. The Fourier
coefficients corresponding to linear combinations of
more than one input parameter frequency account for
the remaining percentage of the variance, which can be
attributed to the combined influences of two or more
parameters.

In comparison to other techniques [e.g., Monte Carlo,
Latin hypercube sampling (McKay et al. 1979; Derwent
1987)], the advantages of this technique are evident con-
sidering that, for instance, it requires only 1027 runs
for a model with 15 input parameters. For comparison,
if 10 values would be used within the range of all input
parameters, a total of 1015 model runs would be needed
with a stratified sampling technique. Moreover, FAST
provides information on the model sensitivity to partic-
ular input parameters, unlike other techniques for sen-
sitivity analysis. A complete description of the theory
and implementation of FAST and approximations used
in computer implementation, mainly following Cukier
et al. (1978) and Uliasz (1988), is given in Collins and
Avissar (1994) and Liu and Avissar (1996).

Fifteen out of the 19 input parameters of our fourth-

order model listed in Table 1 were chosen for this anal-
ysis. Normal distributions of these input parameters
were considered, and their ranges are also given in Table
1. Note that, as required in FAST, the 15 parameters
selected here were defined independently of each other.
However, it should be emphasized that, in fact, some of
them are physically related. For instance, this is the case
for clouds, and air temperature and air humidity.

Figure 3 depicts the partial variance of the damping
times resulting from this sensitivity test. It appears that
the longest damping timescale, which is about 9.5
months, is very sensitive to soil moisture, the ratio of
evaporation to precipitation, soil temperature, and soil
moisture at saturation. Each of these parameters con-
tributes more than 10% to the total variance. In addition,
the drag coefficient of the water vapor flux, the depth
of the hydrologically active soil layer, air humidity, and
soil hydraulic diffusivity have some impact on the var-
iance. It is interesting to note that all these parameters
are related to soil hydrological processes. Indeed, the
ratio of Q to Qs affects the actual evaporation; Eo, Tg,
and qa affect the potential evaporation; rEP is related to
evaporation and precipitation; and DQ and dQ affect the
transfer of water between the active soil layer and the
soil sublayer. Thus, clearly, the parameters associated
with soil hydrology determine the length of the longest
process in the land–atmosphere system.

The cloud fraction, whose partial variance contributes
more than half of the total variance, has the dominant
impact on the monthly damping timescale. Note, clouds
in this model are ‘‘passive,’’ that is, they are related to
precipitation, and they only affect temperature through
radiative fluxes. Therefore, here they are considered a
thermal property of the atmosphere, while in fact they
are both thermal and hydrological properties. In addition
to the cloud fraction, the air column height and the air
temperature each contribute 10%–15% to the total var-
iance. Thus, it can be concluded that the monthly time-
scale is mostly affected by the thermal properties of the
atmosphere.

The weekly damping timescale is mostly affected by
the parameters that control evaporation. As clearly de-
picted in Fig. 3c, qa, Tg, Q, and Eo contribute together
about 80% of the total variance. Finally, the daily damp-
ing timescale is mostly affected by soil moisture (Fig.
3d), but it is important to note that soil thermal prop-
erties also have a significant impact on this timescale.

5. Impact of the major parameters on damping
timescales

Based on the FAST analysis presented in the previous
section, we examine the effects of the five most im-
portant parameters (at each timescale) on the damping
timescales. The range considered for each parameter is
the same as in the previous experiments (see Table 1).

Figure 4 shows that, at the seasonal scale, the five
considered parameters can have a very strong impact
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FIG. 3. FAST of the fourth-order model outputs: (a) seasonal, (b) monthly, (c) weekly, and (d)
daily damping timescales, as indicated by the average timescale (T ) obtained from all model
runs. Partial variances reflect sensitivity of the timescales to the model inputs (see appendix for
list of symbols).

on the damping timescale. For instance, a dry soil (Q
5 0.1) has a damping time of 485 days, but a wet soil
(Q 5 0.4) has a damping time of only 153 days, em-
phasizing that a moist soil damps a perturbation much
faster than a dry soil does. An increase of 108C in soil
temperature causes a reduction of 6 months in the
damping time (from 364 to 156 days), and an increase
of Eo (which is proportional to the turbulence activity
in the atmospheric surface layer) from 3.5 to 5.5 3
1023 kg m22 s21 , results in a reduction of the damping
time from 283 to 196 days. When rEP and Q s increase,
they result in a very significant increase of the damping
time.

The evaporation equation [Eq. (8)] consists of two
variables, namely potential evaporation (Ep) and soil

wetness (h). Here Ep increases with Tg and Eo, and
decreases with qa. Therefore, it can be assessed from
the relations between these three parameters and the
damping time (Fig. 4), that the damping timescale de-
creases with an increase in potential evaporation. The
relations between the damping time and Q and Qs in-
dicate that the damping time decreases with h. The com-
bined effects of Ep and h result in a decrease of the
damping time with an increase in actual evaporation.

The runoff parameterization [Eq. (10)] consists of two
variables as well, that is, h, and the net soil water gain
(P 2 E). The later is inversely proportional to rEP. Fig-
ure 4 shows that the damping time increases from 138
to 393 days with a variation of rEP from 0.45 to 0.75
or, equivalently, decreases with (P 2 E). Therefore,
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FIG. 4. Sensitivity of the damping times to the major physical parameters of the fourth-order
land–atmosphere analytical model (see appendix for list of symbols).

together with the variation of h, the damping time de-
creases with an increase in runoff.

The last term on the right-hand side of Eq. (4) is the
exchange of soil moisture between the active layer and
the sublayer, which acts as a force-restore term for soil
moisture disturbances. Its intensity is proportional to DQ

and inversely proportional to dQ. The damping time de-
creases with DQ and increases with dQ (not shown).
Therefore, it decreases with a faster exchange between
the two soil layers. Here dQ is also a measure of the
total available water in the active layer. For a given
forcing, as expressed by the right-hand side terms in
Eq. (4), the larger dQ, the slower the variation rate of
soil moisture, and the longer the damping time. This
effect is somewhat similar to that of soil heat capacity
in damping the variation of soil temperature. However,
evaporation and runoff affect the damping time much
more significantly than the exchange between the two
soil layers does.

In summary, the smaller the fluxes of water in the
land–atmosphere system (i.e., evaporation, runoff, and
underground diffusion) are, the longer the damping time
is, and, therefore, the more significant persistence is.

The monthly scale is significantly affected by the five
parameters considered here: it decreases with the in-

crease in cloudiness and air temperature, and increases
with the increase in the three other parameters. As can
be seen in Fig. 3, cloudiness is a dominant factor con-
tributing to the total variance at this timescale, and Fig.
4 indicates that the damping time decreases from 70 to
49 days as cloudiness increases from 0.35 to 0.65. This
parameter affects the radiation balance of both the at-
mosphere and the ground surface. It appears that an
increase in cloudiness results in an increase of the over-
all radiation balance, and a greater energy exchange rate
in the land–atmosphere system. As a result, the dissi-
pation of disturbances is faster.

Four of the five parameters, which have significant
effects on both the weekly and the seasonal scales, are
common. The other one, namely, air humidity, results
in an increase of the weekly damping time by 6 days,
when it increases from 0.03 to 0.07. This increase is
apparently caused by a reduced evaporation from the
land surface in a moister atmosphere. The daily scale
decreases with an increase in Q, Eo, and Tg, and in-
creases with an increase in dT and Cg.

It should be noted that the above sensitivity analysis
is not able to directly illustrate how the solar radiation
contributes to the damping times, because the latent and
sensible heat fluxes have been prescribed separately,
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TABLE 5. Damping times (in days) obtained from the real parts of
the solutions of the third-order models.

Solutions T 5 09a q 5 09a T 5 09g Q9 5 0

1
2
3

229.4
7.3
1.2

195.6
18.7

1.3

235.6
29.1

5.8

58.1
5.7
1.2

TABLE 6. Damping times (in days) obtained from the real parts of
the solutions of the second-order models.

Solutions T 5 Q9 5 09g T 5 q 5 09 9a a q 5 Q9 5 09a T 5 T 5 09 9a g

1
2

29.6
5.9

188.2
1.3

18.7
1.3

233.0
6.6

without any constraint on the balance between the sur-
face net radiation and the two fluxes (an advantage of
doing so is the possibility to examine independently the
relative contribution of air and soil parameters to per-
sistence). But using the Bowen ratio together with solar
radiation, this sensitivity can be examined. For that pur-
pose, we first relate the heat and water vapor drag co-
efficients, CDT and CDW, to the Bowen ratio b:

c C (T 2 T )H p DT g a
b 5 5 (24)

LE LC h [q (T ) 2 q ]DW s g a

giving

Lh [q (T ) 2 q ]s g a
C 5 C b . (25)DT DW [ ]c (T 2 T )p g a

Assuming balance between climatic net radiation,
sensible heat flux, and latent heat flux, we obtain:

R 1 K (T 2 T )s T go g
C 5 . (26)DW r LVh [q (T ) 2 q ](b 1 1)a s g a

The sensitivity analysis of the longest damping time
to the solar radiation (So) indicates that the damping
time decreases from about 295 to 206 days as So in-
creases from 300 to 380 W m22.

6. Major physical processes

a. Processes responsible for the various timescales

The evolution of the disturbances in the land–atmo-
sphere system is controlled by two mechanisms: self-
feedbacks, which are measured by the four diagonal
elements in matrix C [Eq. (19)], and interactions, which
are measured by the 12 other elements of that matrix.
The physical processes responsible for each of the four
damping timescales can be analyzed by examining the
behavior of the various lower-order systems, which can
be derived from the fourth-order model by excluding
the feedbacks and interactions caused by one or more
system variable(s).

Four third-order systems are obtained by eliminating
one of the four system variables at a time in Eqs. (1)–
(4) (i.e., 5 0, 5 0, 5 0, or Q9 5 0). TheT9 q9 T9a a g

resulting damping times are presented in Table 5. They
indicate that the seasonal damping timescale appears
only in the third-order systems with disturbance of soil
moisture. The longest damping time in the first three
systems varies between 196 and 236 days. This em-

phasizes that the soil moisture feedback, and its inter-
actions with the other variables, are the primary cause
for the damping timescale. In the third-order system
without physical processes related to soil moisture dis-
turbances, the maximum damping timescale is only of
the order of two months. In addition, among the various
interactions, the one between soil moisture and air hu-
midity is the predominant: excluding this interaction
results in a reduction of the damping time from 232 to
196 days. On the other hand, the exclusion of the in-
teractions involving air and soil temperature has little
impact on the damping timescales.

Four second-order systems were considered here: (i)
5 Q9 5 0, (ii) 5 5 0, (iii) 5 Q9 5 0, andT9 T9 q9 q9g a a a

(iv) 5 5 0. The damping times obtained withT9 T9a g

these second-order systems are presented in Table 6.
With system (i), which does not account for soil-variable
perturbations, the disturbances sustain for a period of
about one month. However, a damping time of about 6
months is obtained with system (ii), which does not
account for air-variable perturbations. Considering these
results and those obtained with the third-order systems,
it seems that atmospheric disturbances can persist on
the seasonal scale only if there are interactions between
atmospheric variables and soil moisture. The other two
second-order systems further illustrate the importance
of the moisture processes. Clearly, thermal disturbances
have a short-time impact on the land–atmosphere sys-
tem, while moisture disturbances persist for as long as
8 months.

Assuming that there are no interactions among the
four system variables, Eqs. (1)–(4) become four inde-
pendent first-order systems. Each one contains only one
of the four perturbation variables. Obviously, in these
cases, the variation of the disturbances in the systems
is caused by self-feedback. The results show that the
damping time is about 3.5 months for the first-order
system, which accounts for soil moisture perturbations,
and several days to three weeks for the other systems.

Three major conclusions can be drawn from the
damping times obtained with the different systems dis-
cussed here. First, results from the first-order systems
indicate that self-feedbacks are the primary mechanisms
for the formation of the timescale of persistence. Spe-
cifically, soil moisture feedback causes seasonal-scale
persistence. Second, the interactions between soil mois-
ture and the other variables of the land–atmosphere sys-
tem (mainly air humidity) cause a significant increase
of the long-term persistence, from about 3.5 months
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when only soil moisture self-feedback is considered, to
about 8 months when various interactions are introduced
in the land–atmosphere system. Finally, for atmospheric
disturbances to persist at the seasonal scale, interactions
between the atmosphere and soil moisture must be con-
sidered.

Note, the intensity of the soil moisture feedback is
mainly controlled by the various hydrological fluxes
(i.e., evaporation, runoff, and water diffusion between
the two soil layers), as shown in matrix C. Thus, this
confirms the importance of these fluxes on long-term
disturbances, which was already found in the sensitivity
analysis described in section 4.

b. Processes responsible for the disturbance decay

In section 3, we indicated that disturbances in the
land–atmosphere system tend to dissipate with time (i.e.,
they have negative growth rates). Here we examine the
role of feedbacks and interactions on the rates of dis-
sipation.

The four diagonal elements of matrix C are negative.
Thus, their sum and average are also negative. From the
relation between roots and coefficients derived from Eq.
(22), namely, S lk 5 2d1/do 5 S akk, it appears that
the average of the roots, which is equal to the average
of the four diagonal elements of matrix C, is also neg-
ative. The diagonal elements of matrix C represent the
self-feedbacks of the land–atmosphere system. A neg-
ative value indicates a negative self-feedback, which
results in disturbance decay.

A physical explanation to the roles of these self-feed-
backs can be given by using the perturbation equations.
For instance, a positive perturbation of air temperature
results in a decrease of sensible heat released in the
atmospheric surface layer from the land surface, and in
an increase of heat lost by longwave radiation. Con-
sequently, one can expect a decrease in precipitation,
which results in a reduced release of condensation latent
heat, due to the corresponding lower relative humidity.
These effects induce a negative air temperature tenden-
cy. Similarly, a positive perturbation of soil temperature
results in an increase in heat loss to the atmosphere by
sensible heat flux, latent heat flux, and longwave radi-
ation, and into the soil sublayer by conduction, which
leads to a decrease in soil temperature. A positive per-
turbation of air moisture results in a decrease of the
amount of water evaporated from the land surface and,
possibly, in an increase in condensation, which removes
vapor from the atmosphere. Finally, a positive pertur-
bation of soil moisture results in an increase in evap-
oration to the atmosphere, in runoff, and in the amount
of water lost by percolation to the soil sublayer.

But there are also positive interactions in the system,
as indicated by the positive elements of matrix C, which
can promote the growth of disturbances. For example,
a positive perturbation of soil moisture results in a more
humid atmosphere due to a stronger evaporation at the

land surface, and a moister atmosphere is likely to pro-
duce more precipitation, which in turn increases soil
moisture.

Eventually, the overall evolution of the disturbances
(i.e., amplification or decay) depends on the relative
importance of the feedbacks and interactions. Because
all the roots of the coupled land–atmosphere system
(and their mean) are negative, disturbances decay with
time. Thus, one can expect that self-feedbacks have a
predominant impact on this system.

The fourth-order system is too complicated to provide
a clear and intuitive analysis of the contribution of the
feedbacks and interactions to the overall behavior of the
coupled land–atmosphere system. Thus, a second-order
model of the land–atmosphere system, which contains
the major processes affecting long-term disturbances, is
used here. Note, this model, which is based on the per-
turbation equations of soil and atmospheric moisture,
can be analytically solved. Denoting its coefficient ma-
trix as B, its four elements are b11 5 a22, b12 5 a24, b21

5 a42 and b22 5 a44. The characteristic equation of this
system is given by

l2 1 bl 1 c 5 0, (27)

where

b 5 2(b11 1 b22) (28)

and

c 5 b11b22 2 b12b21. (29)

Solutions of this equation are

l1,2 5 (2b 6 D)/2, (30)

where D 5 (b2 2 4c)1/2.
A sufficient condition for the equation to have two

different, negative, real roots, which ensures that dis-
turbances in the second-order system decay with time,
is b . 0, c . 0, and D . 0. Because both self-feedbacks
b11 and b22 are negative, b . 0. Also,

D . [(hEo 1 PP1) 2 (1 2 h)E p ]2 . 0. (31)21Qs

Note that P . E is assumed for obtaining this relation.
The determinant of matrix B (namely, c) is equal to

the difference between the product of the two self-feed-
backs and the product of the two interactions, both of
which are greater than zero. Thus, its sign is an indicator
of the relative importance of the feedbacks and inter-
actions in the system: A positive value indicates a dom-
inant role of the feedback, while a negative value em-
phasizes that the interactions are dominant. From the
second-order system, one obtains:

c 5 (dPE/Qs 1 KQ)(hEo 1 PP1) . 0 (32)

emphasizing that self-feedbacks are always dominant
and that disturbances decay with time.
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7. Conclusions

A fourth-order land–atmosphere model based on per-
turbation equations obtained from heat and water con-
servation principles in the soil and the atmosphere was
developed to study persistence in the coupled land–at-
mosphere system. The following major results are ob-
tained from this study.

1) The land–atmosphere system has seasonal, month-
ly, weekly, and daily damping timescales. This suggests
that disturbances in this system could persist for seasons.
Thus, persistence is an inherent property of the land–
atmosphere system. This result provides theoretical sup-
port to the studies of Namias (1952, 1959) and others,
who indicated that atmospheric anomalies possess
month-to-season persistence.

2) The seasonal damping timescale is due to the soil
moisture self-feedback, and interactions between soil
moisture and the other variables of the system greatly
increase the damping timescale. When soil moisture pro-
cesses are ignored, disturbances in the land–atmosphere
system decay rapidly. Thus, this study provides theo-
retical support to Namias’ assumption (1959) that land
is a primary factor affecting persistence.

3) The seasonal damping timescale is mostly affected
by the physical factors related to soil moisture (i.e.,
evaporation, runoff, and soil moisture diffusion), and
the monthly damping timescale is mainly affected by
the thermal characteristics of the system.

In a companion paper Liu and Avissar (1999) ex-
amined persistence in a simulated land–atmosphere sys-
tem with the NCAR CCM2 coupled with BATS, and in
observations of soil and atmospheric variables in China.
They also showed that soil moisture and soil temperature
perturbations persist for months to seasons, and that soil
moisture persistence is much stronger. That investiga-
tion provides support to this analytical study. Persis-
tence timescales of months to seasons were also ob-
tained in a number of other numerical and observational
studies (e.g., Walker and Rowntree 1977; Rind 1982;
Rowntree and Bolton 1983; Yeh et al. 1984; Walsh et
al. 1985; Liu et al. 1993; Gao et al. 1996; Vinnikov et
al. 1996).

This study clearly emphasizes the importance of con-
sidering hydrological processes in general, and soil
moisture in particular, in climatic studies at monthly and
seasonal timescales. This conclusion has been pointed
out by other investigators. For instance, Castelli and
Rodriguez-Iturbe (1995) found that land–atmosphere in-
teractions can influence local atmospheric processes
through the modification of the vertical lapse rate, and
large-scale processes through the global dynamics of
baroclinic waves. The advection rates of mass and en-
ergy, and the strength of the ageostrophic frontal cir-
culations are particularly important in that case. Betts
et al. (1996) showed that the monthly precipitation pat-
tern is quite sensitive to initial soil moisture in the First
International Satellite Land Surface Climatology Project

Field Experiment and Boreal Ecosystem–Atmosphere
Study experiments. They suggested that, due to the
memory of the soil moisture reservoir, some predict-
ability exists at monthly and seasonal scales. Avissar
(1995) emphasized the importance of an appropriate
representation of soil moisture in global climate models.

While the results presented in this paper provide sig-
nificant insights on the importance of land–atmosphere
interactions on the prediction of atmospheric processes
at monthly and seasonal scales, it is important to keep
in mind that only small-amplitude disturbances in a lin-
ear system were considered here. One obvious limitation
with such a model is that it neglects scale interactions
in the climate system. In the real world, however, short-
time forcings can generate long-time fluctuations. The
relation between tropical convection activity, 30–60-
day low-frequency fluctuations, and the El Nino–South-
ern Oscillation is but one example of such interactions.
The possible relations between the daily, weekly,
monthly, and seasonal scales in the model need to be
examined with nonlinear models. Additional simula-
tions with GCMs and analyses of nonlinear behaviors
of the land–atmosphere system are likely to provide
additional insights on this important issue.

The fourth-order analytical model developed here
does not have positive growth modes. Two factors con-
tribute to this. First, the model does not have external
forcing related to, for example, atmospheric dynamics,
which causes disturbances in the land–atmosphere sys-
tem. Second, the nature of the development of the sys-
tem (i.e., growth or decay) depends very much on the
model parameters. In this study, climatological values
have been given to these parameters. Thus, the results
presented here reflect the climatological behavior of the
land–atmosphere system. However, the model could
give solutions, which indicate growing disturbances, by
selecting specific sets of parameters reflecting local,
short-term conditions. In addition, due to the lack of
atmospheric dynamics, this model is unable to address
the potentially important role of atmospheric systems
(e.g., blocking or other standing waves) on atmospheric
persistence.

Finally, snow has a major impact on the land–at-
mosphere interactions at mid- and high-latitudes during
winter time. It can significantly affect soil moisture and,
as a result, persistence in the entire land–atmosphere
system. But snow is not represented in the model used
here. Therefore, a more detailed model including snow
processes would probably provide additional insights on
persistence in the land–atmosphere system.
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APPENDIX

List of Symbols

aij Elements of matrix A
A Coefficient matrix of the fourth-order perturba-

tion model
Aa Atmospheric absorption of shortwave radiation
bij Elements of matrix B
B Coefficient matrix of the second-order perturba-

tion model
cg Specific heat of soil
cij Elements of matrix C
cp Specific heat of air at constant pressure
Ca Heat capacity of atmosphere
CDT Sensible heat drag coefficient
CDW Water vapor drag coefficient
Cg Heat capacity of soil
Ck Empirical constant for calculating precipitation

(k 5 1, 2, 3)
Cr Cloud absorption of shortwave radiation
dT Depth of thermally active soil layer
dTo Depth of thermal soil sublayer
dQ Depth of hydrologically active layer
dQo

Depth of hydrological soil sublayer
DT Soil thermal diffusivity
DQ Soil hydraulic diffusivity
E Evaporation
Eo Turbulent water vapor exchange index
Ep Potential evaporation
F Runoff
G Ratio of clear-sky longwave radiative loss to the

surface longwave radiation
ha Height of air column
H Sensible heat flux
Ho Turbulent sensible-heat exchange index
KT Soil thermal conductivity
KQ Soil hydraulic conductivity
L Latent heat
Ma Mass of atmosphere
Mg Mass of soil
n Cloud fraction
P Precipitation
Pij Polynomials in the characteristic equation of the

fourth-order model
Pk Precipitation function (k 5 1, 2)
qa Air specific humidity
qs Air specific humidity at saturation
rEP E /P
Ra Atmospheric radiation flux
Rak Atmospheric radiation function (k 5 1, 2, 3)
Rh Relative humidity
Rs Radiative flux at the ground surface

Rs1 Surface radiation function
So Solar radiation at tropopause
Ta Air temperature
Tg Soil temperature
Tgo Soil sublayer temperature
V Wind speed
W Atmospheric water content
aa Clear-sky albedo
ac Cloudy atmosphere albedo
b Bowen ratio
da dqs/dT | ¯T5Ta

dg dqs/dT | ¯T5Tg

dLa
dLa/dTa

dLg
dLg/dTg

dPE P 2 E
« Fraction of total blackbody radiation
«9 Emissivity of cloud longwave radiation
h Q/Qs

h d 1 2 h
Q Volumetric water content of the hydrologically

active soil layer
Qo Volumetric water content of the soil sublayer
Qs Q at saturation
l Roots of the characteristic equation
lr Growth rate of disturbance
ra Air density
rg Soil density
rw Water density
s Stefan–Boltzmann constant
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