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ABSTRACT

The predictability of any complex, inhomogeneous system depends critically on the definition of analysis and
forecast errors. A simple and efficient singular vector analysis is used to study the predictability of a coupled
model of El Niño–Southern Oscillation (ENSO). Error growth is found to depend critically on the desired
properties of the forecast errors (‘‘where and what one wants to predict’’), as well as on the properties of the
analysis error (‘‘what information is available for that prediction’’) and choice of optimization time. The time
evolution of singular values and singular vectors shows that the predictability of the coupled model is clearly
related to the seasonal cycle and to the phase of ENSO. It is found that the use of an approximation to the
analysis error covariance to define the relative importance of errors in different variables gives very different
results to the more frequently used ‘‘energy norm,’’ and indicates a much larger role for sea surface temperature
information in seasonal (3–6-month timescale) predictability. Seasonal variations in the predictability of the
coupled model are also investigated, addressing in particular the question of whether seasonal variations in the
dominant singular values (the ‘‘spring predictability barrier’’) may be largely due to the seasonality in the
variance of SST anomalies.

1. Introduction

A very important component of any prediction system
is the ability to understand the evolution of forecast skill.
In a chaotic system, the fastest growing singular vectors
(Lorenz 1965; Palmer 1996; Moore and Kleeman 1996)
may dominate the forecast error growth. Since initial
errors are inevitable, the optimal error growth, measured
in the linear regime by the first singular value, gives an
upper limit on predictability. Even if initial errors are
large enough to evolve into a nonlinear regime, or model
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errors are significant, then the fastest growing singular
vectors are still of interest as a practical tool for the
initialization of ensemble forecasts.

There has been a range of applications of the singular
vectors to El Niño–Southern Oscillation (ENSO). Blu-
menthal (1991) used a statistical reduction model that
is a best fit to the output of the full Zebiak and Cane
model (ZC; 1987) to study the growth of initial error
in the ZC model. He found that there is one growing
singular vector with largest growth in the spring. The
final pattern of the optimal sea surface temperature
(SST) perturbation is very similar to the model ENSO
pattern. A similar method has been used by Xue et al.
(1994). The results are similar in some aspects to those
in Blumenthal (1991) in that the structure of the fastest
growing singular vector at the initial and final time does
not change much with the seasons at which the forecast
is initialized.

Moore and Kleeman (1996) used an intermediate cou-
pled model of ENSO to construct a tangent linear model
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and its adjoint, and computed the corresponding singular
vectors. They obtained somewhat different initial error
patterns that started from the western Pacific with a
deepened thermocline, a relatively ‘‘noisy’’ SST and
wind field, and then moved to the central Pacific and
amplified through penetrative convection.

Chen et al. (1997) used the Battisti (1988) version of
the ZC model and applied an approximate method to
obtain the linear propagator directly from the full cou-
pled model, and then calculated singular vectors max-
imizing only SST variance subject to an initial pertur-
bation in the SST field. They found one dominant sin-
gular vector that is not sensitive to the initial time in
the annual cycle nor to the optimization time. The initial
(optimal perturbation) pattern consists of an east–west
dipole in the entire tropical Pacific basin superimposed
on a north–south dipole in the eastern tropical Pacific.
The final pattern resembles the model ENSO mode.
However, the magnitude of possible error growth is
highly dependent on the phase of the seasonal cycle and
the phase of the ENSO cycle at which the perturbation
is applied.

Xue et al. (1997a,b) used the ZC model from which
a linear tangent model is constructed using the method
suggested by Lorenz (1965) based on empirical orthog-
onal function (EOF) perturbation. Their results are sim-
ilar in some aspects to these of Chen et al. (1997).
However, there are some differences in the singular vec-
tor growth rate and variability of the optimal final pat-
terns. Thompson (1998) also studied the properties of
the optimal growth structure for a linearized version of
the Battisti (1988) coupled model of ENSO and found
that in some aspects the singular vectors and their
growth rates were in good agreement with those pro-
duced in Chen et al. (1997) and Xue et al. (1997a).

Penland and Sardeshmukh (1995), using a linear sto-
chastic ENSO model derived from observations, found
only one growing singular vector. This singular vector
is somewhat similar to that from Chen et al. (1997) in
the large scale, but it also shows some differences, such
as a negative anomaly in the optimal initial SST pattern
in the central tropical Pacific, a band of positive anomaly
in the Northern Hemisphere subtropics, and a similar
feature in the Southern Hemisphere.

A point that is not made very explicit in previous
work is that the definition of predictability in any dy-
namical system is not unique, since it depends on the
measure of error, that is, the choice of error norm. For
example, minimizing prediction error in different geo-
graphical locations may require different initial infor-
mation and therefore be subject to different levels of
predictability. Likewise, initial errors in different lo-
cations and different variables may be amplified by dif-
ferent physical processes. Thus, understanding these as-
pects of the predictability of the system has considerable
practical importance. In this paper, we will focus on the
following questions. 1) How does the predictability of
the forecast system depend on the variables we want to

predict and on their geographical location? 2) To predict
these variables, what initial information is required and
how does predictability depend on its distribution? 3)
How can we compare the relative importance of dif-
ferent error growth processes in the coupled model?

This article is organized as follows. The coupled mod-
el and an efficient method of calculating approximate
singular vectors are described in section 2. In section
3, we examine how the predictability of SST depends
on the geographical distribution of accepted forecast
error under some idealized analysis errors. Then, in sec-
tion 4, various ‘‘multivariable’’ norms, involving both
SST and subsurface information, are used to investigate
different error growth processes. In section 5, the var-
iability of the singular vectors and singular values over
the 1970s and 1980s is investigated, and the relative
importance of different error growth processes and the
seasonality of singular values are further explored. Con-
clusions are discussed in section 6.

2. The coupled model and analysis method

a. The forecast system

The coupled model used here is one of a hybrid na-
ture, consisting of a dynamical ocean coupled to a sta-
tistical atmosphere (Balmaseda et al. 1994). The ocean
model is derived from that described in Anderson and
McCreary (1985) and McCreary and Anderson (1991),
but extended to two active layers. Dynamics are based
on the shallow-water equations on the equatorial b
plane. The model includes explicit nonlinear thermo-
dynamics for both layers, accounting for horizontal ad-
vection, vertical heat transport, diffusion, and, in the
first layer, wind stress and surface heat flux, but no
freshwater flux.

The surface heat flux was derived from Oberhuber
(1988) plus two additional terms: a constant correction
term (Q0mod) that ensures the model is in equilibrium
with the forcing, and a relaxation term to prescribed
monthly climatological SST (T0mod) taken to be the SST
of the model equilibrium:

Qs 5 QOberhuber 1 Q0mod 1 l(T 2 T0mod). (1)

To create the initial conditions, the ocean model is
forced by observed wind stress [based on data from The
Florida State University (FSU), Goldenberg and
O’Brien 1981] during the period 1961–91 (control run).
The wind forcing is therefore the only information about
the state of the real world that is used to initialize fore-
casts, since the observed SST anomalies do not inter-
vene in the formulation of the heat flux. The fact that
we do not use SST or H information to initialize the
model simplifies the discusion of analysis error as dis-
cussed in section 4b.

The control simulation is also used to derive the em-
pirical atmosphere, which is a statistically derived
anomaly model. It is based on the assumption that near-
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surface wind stress anomalies (relative to the monthly
mean climatology) are a linear response to some func-
tion of the model SST. The output of control simulation
is used to find the regression coefficients between the
wind stress anomalies and the first six principal com-
ponents of the model SST anomalies, with seasonal var-
iation. The details of the formulation can be found in
Balmaseda et al. 1994.

b. Definition of the errors

Let the vector x represent the state variables of the
coupled model that is governed by the following equa-
tion:

x(t 1 dt) 5 M[x(t)], (2)

where M is a nonlinear operator. If x9 is a perturbation
of x, then

x9(t 1 dt) 5 M[x(t) 1 x9(t)] 2 M[x(t)]. (3)

In the linear regime, we can write the above equation
as follows:

f 5 Lg, (4)

where L is a linearized version of M, called the linear
propagator, and g and f are initial and final error vectors,
x9(t) and x9(t 1 dt), respectively.

In order to measure error growth, we require a scalar
definition of the ‘‘size’’ of the error at both forecast
initialization and target times. In the simplest case of
uncorrelated errors, these are most conveniently defined
in terms of weighted sums of squares, SiwAi and2gi

SiwFi . More generally, initial and final errors can be2f i

defined by the quadratic forms, gTWAg and fTWFf, where
the W are simply matrices of weights, still to be defined,
otherwise known as the ‘‘error metrics’’ or ‘‘norms.’’
Since our focus in this paper is the definition of error,
it is important to recognize that there are situations
which would not be well represented by such quadratic
forms, despite their apparent generality. For example,
if the crucial question was whether or not the forecast
quantity would exceed a certain value (e.g., in a flood
prediction problem), then a quadratic form would not
be an ideal measure of uncertainty, since it assigns equal
weight to both positive and negative errors. For con-
sistency with the bulk of the literature on error growth,
however, we confine attention to the quadratic defini-
tion.

There are two approaches to interpreting WF and WA.
The first is to define them in terms of a physically in-
terpretable scalar quantity, such as the total energy or
enstrophy of a perturbation; this is most informative in
studies focusing on mechanisms of error growth. The
second is to define them in terms of the actual errors
that are likely to occur in a forecast based on this par-
ticular model; we focus on this second approach, which
(by definition) has greater relevance to the practical en-
semble forecasting situation.

The interpretation of the forecast norm, WF, is
straightforward; weights should be large in regions
where we desire a good forecast, so a natural choice
would be for WF to be the inverse of the target forecast
error covariance. There is no reason in principle why
WF should equal WA but interpretation of error growth
factors (the singular values) becomes quite subjective
in the case that it does not (e.g., doubling the elements
of WF without changing WA would double all singular
values). Because we are not attempting practical fore-
casts in this study, we are at liberty to set WF to be
whatever we like, so for simplicity, we will set WF 5
WA throughout, except in the case of forecasts focusing
on specific regions.

In this practical approach, the analysis norm, WA,
should reflect how forecasts are initialized. In an en-
semble forecast system, isotropic random perturbations
(i.e., with equal variance in all components) are weight-
ed by the estimated analysis error to give ‘‘realistic’’
initial perturbations. For consistency, we require WA to
be chosen such that two perturbations of equal size are
equally likely to be generated by the ensemble initial-
ization procedure. This requires WA to be the inverse of
the estimated analysis error covariance, or WA 5 .21CA

The reason is as follows: if g is a vector of typical
analysis errors, then, by definition,

«(ggT) [ CA and «(gT g) 5 1,21CA (5)

where « is the expectation operator. Thus any two equal-
ly probably analysis errors would be given equal weight
under this analysis norm. A method of estimating 21CA

from the simulated analysis error covariance matrix is
given in appendix B.

If the forecast initialization system is consistent and
the model can be treated as perfect, we require CA to
approximate the actual analysis error covariance. The
characteristics of the analysis error are often very poorly
known. They depend both on the observing system used
to initialize the model (large errors in data-sparse re-
gions) and also, in a highly inhomogenous system, on
the dynamics of the system itself. In the case of the
tropical Pacific, for example, the strongest variability
occurs in the equatorial waveguide region, so we should
expect large analysis errors in this region even though
it is relatively well observed by the Tropical Ocean and
Global Atmosphere–Tropical Atmosphere–Ocean
(TOGA–TAO) buoy array.

In the case of an imperfect model, the quantity of
interest is not the analysis error itself, since if we were
to initialize such a model with a complete and accurate
set of observations of the true system (supposing this
were available) it would fail to generate a sensible fore-
cast because of model error. Rather, CA should reflect
the statistics of the difference between the analysis used
to initialize the forecast and the unknown ‘‘shadowing
trajectory’’ (Gilmour 1999) that provides the most ac-
curate forecast possible with this imperfect model. For
simplicity, we will focus our discussion on the perfect-
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model scenario, but it is worth noting that in the case
of an imperfect model, the dynamics of the model itself
play an even greater role in determining the appropriate
analysis error covariance: if a model is only capable of
displaying variability on large spatial scales, for ex-
ample, then these scales must dominate the difference
between the analysis and shadowing trajectories even if
the real world displays more small-scale variability.

In almost all situations, WF and WA will be real sym-
metric, so they can be expressed in terms of the Cholesy
decomposition:

WA 5 PA and WF 5 PF.T TP PA F (6)

The projection operators, PF and PA, yield weighted
vectors, f̃ 5 PFf and g̃ 5 PAg, in which expected errors
are isotropic (uncorrelated and equal variance across
components). The ratio of final error to initial error can
then be written

T T T Tf̃ f̃ f P P f f W fF F F2l 5 5 5 . (7)
T T T Tg̃ g̃ g P P g g W gA A A

Substituting for f using Eq. (4) gives

T 21T T T 21 T T˜ ˜g̃ P L P P LP g̃ g̃ L Lg̃A F F A2l 5 5 , (8)
T Tg̃ g̃ g̃ g̃

where

21L̃ 5 P LP , (9)F A

provided that exists. If it does not, a pseudo inverse21PA

can be introduced to define an approximate error growth
rate in a restricted space (see appendix B).

The vector g̃ that maximizes l2 in Eq. (8) is the first
eigenvector of L̃TL̃, and can be obained from a singular
value decomposition (SVD) of L̃. If PA is nondiagonal,
the elements of g̃ will not correspond to spatial loca-
tions, so we visualize these singular vectors by exam-
ining g̃, where (in the simplest case of the rows of21RA

PA being mutually uncorrelated, as in all the examples
here) the rows of RA are the rows of PA, normalized to
unity (i.e., RA corresponds to a pure rotation, while PA

corresponds to a rotation with weighting). Correspond-
ing final error patterns are obtained similarly from the
SVD.

c. Estimation of the linear propagator of the coupled
model

Rather than constructing the full tangent linearization
of the original model, we use an approximation sug-
gested by Lorenz (1965), modified to obtain the linear
propagator efficiently from the full coupled model. The
details are given in appendix A, but the basic principle
is to perturb the full coupled model using a small num-
ber (order 10–50) of patterns (forming an orthonormal
set), which are assumed to span typical analysis errors.
The choice of patterns is quite arbitrary, but should
reflect accessible modes of variability of the model; by

construction, the atmosphere model can only respond
to large-scale patterns of SST anomalies, which restricts
the scale of the growing coupled instabilities. We use
EOFs derived from a control integration of the ocean
model forced with observed wind stress to construct the
linear propagator; these large-scale patterns are acces-
sible to the model by construction and so should capture
any likely error growth processes.

3. Error growth in SST

The simplest analysis is to examine error growth in
one variable (e.g., SST) only, to give equal weight to
all analysis errors (WA 5 I) and to use simple geograph-
ical projection operators for PF. For example, we could
prescribe PF to be diagonal with unit entries for the area
in which we are interested and zero elsewhere. In phys-
ical terms, this is equivalent to the question: to predict
SST in a given region, where is the most important
initial SST information located?

a. Predicting SST over the whole tropical Pacific

In predicting SST over the whole tropical Pacific, we
assume that PA and PF are uniform diagonal matrices
spanning the domain shown in Fig. 1. Both the initial
and final singular vectors under this ‘‘SST to SST’’ (TT)
norm are shown for 3- and 12-month optimization times.
The striking similarity between both initial and final
patterns indicates the limited number of error growth
modes available to this model. At this time, and most
others, only one or two singular values exceed unity.
The main signals, located in the central–eastern equa-
torial Pacific, indicate that to predict future SST in the
whole tropical Pacific for up to 12 months, the most
important initial SST information is located in the cen-
tral–eastern tropical Pacific. The figure shows the sin-
gular vectors for a forecast initialized in January 1982,
but the patterns are similar when forecasts are initialized
at other dates. The error growth rate, however, indicated
by the singular values, is sensitive to the initialization
time.

We can compare our results with those from recent
papers using the SST norm. Chen et al. (1997) used the
Battisti (1988) version of the Zebiak and Cane model
(ZC) (1987), while Thompson (1998) used a linearized
version of the Battisti model to repeat part of Chen’s
work. Their results show that the initial and final pat-
terns of the singular vectors have large-scale structures
with the main signals located in the central–eastern Pa-
cific. The error growth rates vary with the seasonal cycle
and ENSO phase and have values comparable to ours.
Xue et al. (1997a) used the ZC model in a reduced EOF
space (keeping 37 EOFs for the SST). The optimal ini-
tial pattern is characterized by north–south and west–
east dipoles in optimal SST field. The final pattern
shows a mature ENSO phase. Compared with Chen’s
results, the SST optimizations from Xue are more equa-
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FIG. 1. First singular vectors for optimization times of 3 and 12 months, started in Jan 1982 under uniform SST to SST norm. The
corresponding singular values are 1.6 and 3.7, respectively.

torially confined but have comparable optimal growth
rates.

Moore and Kleeman (1996) use an intermediate cou-
pled model to compute the singular vectors by con-
structing and using the model adjoint. They found that
the singular vector spectrum is dominated by one mem-
ber. The optimal final SST pattern is large scale, with
its largest SST anomaly mainly located around 1808. In
the case of SST norm, their optimal initial SST pertur-
bation is a large-scale dipole pattern, with a strong neg-
ative anomaly in the western Pacific and a relatively
weaker positive anomaly in the central–eastern Pacific
(Moore and Kleeman 1997b).

Using the observed SSTs in the Indian and Pacific
Oceans to build a linear Markov model, Penland and
Sardeshmukh (1995) computed the SST structure of the
dominant singular vectors under the SST norm. They
also found only one growing singular vector. The main
signal in the optimal initial patterns is located in the
southeastern Pacific, which is more similar to those in
Chen and Thompson’s optimal initial SST patterns,
while Xue and our optimal initial SST in the eastern
Pacific seems more constrained to the equator. There is
a optimal negative anomaly in Penland and Sardesh-
mukh’s initial pattern in the central tropical Pacific,
which is similar to those in our optimal initial SST
patterns. There is an optimal positive anomaly in the

western Pacific that is also found in our optimal initial
SST patterns but not in Moore and Kleeman, Chen, Xue,
and Thompson’s results. The reason for other coupled
models that cannot produce these negative and positive
anomalies well in the central–western tropical Pacific,
may be related to their atmospheric models, which can-
not generate the correct remote wind stress response to
the SST anomalies in the central–eastern Pacific, while
the statistical atmosphere model can produce such a
wind stress response.

Despite differences among the coupled models and
the methods used to calculate the singular vectors, there
is some agreement. The optimal initial and final patterns
from many different models have large-scale features
in the tropical Pacific. Most of the time, the error growth
in the coupled models is controlled by one dominant
growing pattern and its final pattern resembles the model
ENSO mode. The error growth rates from all these re-
sults vary with the seasonal cycle and the phase of
ENSO.

The differences in the singular vectors reflect differ-
ent physics in different coupled models. Different ver-
sions of ZC model (used by Blumenthal 1991; Xue et
al. 1994, 1997a; Chen et al. 1997; Thompson 1998)
show that the most important signals are located in the
eastern Pacific, where the models have the largest SST
variability and wind stress mainly responds to local SST
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anomalies. Thus, the atmosphere and ocean are closely
coupled in the eastern Pacific. The results from Moore
and Kleeman show that in their model, the coupling is
dominant in the western and central tropical Pacific
where the rapid error growth is associated with pene-
trative convection anomalies that only exist over regions
where the SST $ 288C. In their model, ocean and at-
mosphere are strongly coupled in the central–western
tropical Pacific.

Our results also reflect the coupling physics in our
model. Our model has the largest SST variability in the
central–eastern Pacific and the statistical atmospheric
model is constructed based on the statistical relationship
between wind stress anomalies and SST anomalies
along the whole tropical Pacific. The atmospheric model
mainly responds to the SST anomalies in the central–
eastern tropical Pacific and with the largest wind stress
response located from near the date line to the central
Pacific. There is also a response to SST anomalies in
the western tropical Pacific, similar to the one found by
Penland and Sardeshmukh.

Because of our use of a reduced-rank linear propa-
gator L̃ (see appendix A), initial error patterns are con-
fined to the subspace spanned by the leading 10 EOFs
of the control integration and are therefore constrained
to represent large scales. However, increasing the rank
to 50 had little impact on the shape of the patterns. Use
of an exact model adjoint would allow smaller-scale
error patterns to play a larger role but, as noted above
in the discussion of the analysis error, we are only in-
terested in error patterns that are accessible to a forced
or coupled integration of this model. Given our initial-
ization procedure (forcing with observed winds), very
small-scale patterns would never feature in either the
forced integration or the ideal shadowing trajectory of
the coupled model, which provides a hypothetical best
possible forecast in any particular situation. Small-scale
errors can therefore consistently be ignored in this study,
although they might play a larger role with a different
initialization procedure, such as nudging toward ob-
served subsurface ocean data. In any case, we would
hestitate to draw conclusions from small-scale structures
simulated by this model, since the dynamics of the mod-
el are unlikely to be realistic on any but the largest
scales. This EOF-based analysis provides, therefore, a
necessarily incomplete picture of possible errors but one
which, we believe, encompasses the errors that can sen-
sibly be studied with this kind of model.

b. Predicting SST in the tropical western Pacific

Compared to the eastern Pacific, SST variability in
the tropical western Pacific is relatively small, and so,
under uniform weighting, singular vectors for the entire
Pacific will be dominated by what happens in the east;
no matter what perturbation is applied, it will tend to
have more impact on eastern Pacific than western Pacific
SSTs simply because the former vary more easily. The

real atmosphere, however, is much more sensitive to
SST fluctuations of a given magnitude in the western
Pacific (Palmer and Mansfield 1984). So it may be de-
sirable to predict SST more accurately in the tropical
western Pacific than in the east.

To examine this issue, we simply assign a weight of
1.0 to forecast errors in the western tropical Pacific and
a weight of 0.0 to forecast errors in the eastern tropical
Pacific. Initial errors remain uniformly weighted over
the whole model domain. Results are shown in Fig. 2.
Final singular vectors are confined to the west by con-
struction, but examination of the initial singular vectors
(left panel) indicates that, for this coupled system, the
SST information needed to predict SST anomalies in
the tropical western Pacific in three month’s time is
mainly located in the tropical western Pacific itself. To
predict SST anomalies in the tropical western Pacific at
a lead of one year, however, we need to pay most at-
tention to initial SST information in the tropical eastern
Pacific. At intervening lead times (6–9 months, not
shown), SST information in both east and west is im-
portant.

The striking similarity between the initial patterns for
12-month optimization in Figs. 1 and 2, again may be
explained by the limited number of instability mecha-
nisms available; regardless of where one wants to pre-
dict SST, the same initial pattern is important if the lead
time is sufficiently long.

4. Error growth involving more than one variable

a. Idealized weighting functions

Since many variables can influence errors in the fore-
casts of SST, a practical question arises: which variables
must be determined most accurately at forecast initial-
ization time to minimize SST forecast errors? Moore
and Kleeman (1996) studied the energetics of error
growth in their coupled model using an energy norm
and found that thermocline data was more important
than SST data for SST prediction. Xue et al (1997a),
using a norm based on individual gridpoint variances,
also concluded that thermocline information has more
influence on the evolution of the system than initial SST
information. Combining contributions from different
variables is, however, inevitably somewhat arbitrary,
since it depends on the definition of error and also on
our understanding of where and in what variables the
initial uncertainties are located.

The motivation here is to study how the features of
the singular vectors depend on how we combine con-
tributions from different variables. For simplicity, we
confine attention to SST (T) and thermocline depth (H).
In terms of a state vector represented by (T, H), the
linear propagator can be expressed as

L LTT HTL 5 , (10)1 2L LTH HH
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FIG. 2. As in Fig. 1, except that in the forecast norm zero weight is given to the eastern Pacific. Note the similarity between the 12-
month initial singular vector in Figs. 1 and 2.

where LTT, LHT, LTH, and LHH are the relevant linear
propagators corresponding to different error growth pro-
cesses. The propagator LTH translates an initial error in
T into a final error in H, etc.

Initially, we assume uniform errors of magnitude
and in T and H, respectively:2 2s sT H

1/s T

5 
P 5 P 5 . (11) A F

1/sH 
5 

According to Eq. (9), we have

L (s /s )LTT H T HT21L̃ 5 P LP 5 . (12)F A [ ](s /s )L LT H TH HH

From Eq. (12), we can see that the dominant error
growth, and therefore the singular vectors and singular
values, depend crucially on the relative magnitude of
sT and sH as also noted by Thompson (1998). For ex-
ample, if we assume a typical uncertainty in SST sT 5
0.18C and in thermocline depth sH 5 10 m, Fig. 3 shows
that the dominant error growth process in this ‘‘mixed
norm’’ is H → T, suggesting that almost all of the initial
information for the future development of the SST

anomalies is contained within the initial ocean ther-
mocline field. The results are similar for different op-
timization times and initialization dates. These results
are similar to those of Moore and Kleeman (1996), who
use an energy norm. In contrast, if we use sT 5 1.08C
and sH 5 1 m, the dominant error growth process is
from T → H (not shown), implying that the initial errors
in the thermocline field H are not important, and all
useful information for future development of H anom-
alies is contained within the initial SST fields. In order
to establish which error growth processes matter for real
forecast errors, we need information about the size and
spatial distribution of realistic initial errors.

b. Weighting based on a simulated analysis error
covariance

The above results show that singular vectors are sen-
sitive to the method used to weight initial and forecast
errors. We now wish to investigate which are the best
norms to use in calculating the singular vectors for ini-
tialization of ensemble forecasts.

The ideal analysis norm, WA, should reflect analysis
uncertainty. The ideal forecast norm is more ambiguous,
because it depends on the relative weight ascribed to
forecast errors in different regions as discussed in sec-
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FIG. 3. Singular vectors using a mixed norm with sT 5 0.18C and sH 5 10 m for a 6-month forecast initialized in Jan 1982. The relative
magnitude of the different components indicates the dominant error growth process, in this case initial errors in H leading to final errors in
T. The singular vectors are normalized in spectral (EOF) space, but displayed in physical space as defined in section 2b.

tion 3. However, the interpretation of error growth and
singular values becomes complicated if different norms
are used for analysis and forecast, so to simplify inter-
pretation we use the same norm for both.

1) FEATURES OF SIMULATED ANALYSIS ERROR

VARIANCES

In a real forecast situation it is difficult to know ex-
actly the distribution of initial uncertainty. In this study,
we estimate initial uncertainty in SST from the statistics
of the difference between SST observations and a model
simulation forced with observed winds, after the mean
bias has been removed. If the model and SST obser-
vations were perfect, and therefore the only source of
analysis and forecast error were errors in the forcing
fields used for initialization (i.e., in our analysis pro-
cedure), this estimate would be accurate given a suffi-
ciently long forced integration and observational record.
In reality, of course, the model is imperfect, but this
still provides a reasonable starting point.

We estimate H uncertainties from the difference of
two model integrations with different wind forcing (see
appendix B). This is less easy to justify, but in the
absence of a long record of thermocline depth obser-

vations, we have little alternative. Recalling that, in an
imperfect model, the analysis norm should reflect the
statistics of the difference between the analysis and the
corresponding point on the unknown shadowing trajec-
tory, which yields the most accurate possible forecast
in a given situation, basing this norm on the comparison
of two trajectories seems reasonable, but it should be
stressed that a more quantitative analysis of thermocline
depth errors under different initialization schemes
would be very useful.

Some insight into the characteristics of the simulated
analysis SST (T) and H error covariance matrices can
be obtained from their diagonal components, which rep-
resent error variance at a particular location. For ease
of interpretation, we display rms values in Fig. 4. Figure
4 shows that estimated SST errors are mainly distributed
between the central equatorial Pacific and the South
American coast, in a pattern that is similar to the first
EOF of SST.

The simulated analysis errors in H are mainly dis-
tributed between the central and western tropical Pacific.
Since the wind fields used in the two model simulations
to calculate errors in H are similar far from the equator,
we underestimate the uncertainty in H there. As we are
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FIG. 4. Estimated rms analysis errors in SST (left, degrees) and thermocline depth (right, meters).

FIG. 5. Singular vectors under the mixed norm, optimization started in Jan 1982. The relevant first singular value is
6.32. Initial and forecast errors were weighted by the simulated analysis error covariance.

focusing on equatorial processes, this is not thought to
be a major problem.

2) INFLUENCE OF SIMULATED ANALYSIS ERROR

NORMS ON SINGULAR VECTORS

Singular vectors based on this estimated analysis
norm for two different initialization dates are shown in

Figs. 5 and 6. Both SST and H components of the initial
and final singular vectors in Fig. 5 are of comparable
magnitude, indicating that, on this occasion, there is no
dominant error growth process in this coupled model
when the the initial and final errors are constrained with
simulated analysis error covariance matrices. These re-
sults indicate that initial uncertainty in both SST and H
fields were equally important for predicting SST anom-

Unauthenticated | Downloaded 10/21/21 06:29 AM UTC



15 SEPTEMBER 2000 3307F A N E T A L .

FIG. 6. Same as in Fig. 5 but optimization started in Jul 1982. The relevant first singular value is 6.25.

alies in the tropical Pacific at this time, in contrast to
results obtained using other norms (Moore and Kleeman
1996; Xue et al 1997a). Thompson (1998), in a similar
study with a mixed norm, found that the optimal SST
pattern with a 0.18 anomaly produces the same size
ENSO as the H pattern with 1.2-m thermocline anomaly.

Singular vectors from an optimization started 6
months later are shown in Fig. 6. In contrast to Fig. 5,
initial errors in the SST field were evidently more im-
portant during this later period (July–December 1982),
dominating error growth in the SST and H fields, and
indicating that the singular vectors in the coupled model
vary with initialization time.

The quantities plotted in Figs. 5 and 6 represent the
singular vectors of the weighted linear propagator, L̃,
with the weighting given by the analysis norm [see Eq.
(9)]. As such, some of the structure in these patterns
will reflect the structure of the norm as well as the
properties of the linear propagator itself. If we ignore
the effect of EOF filtering, we can think of these initial
patterns being operated on first by (which, in a21PA

diagonal analysis norm, would simply represent a
weighting by the local analysis standard deviation) and
then by the linearized model, L, to give these final pat-
terns. The final patterns would then themselves be
weighted by before calculating their size. If L wereTPF

simply the unit matrix, the initial patterns would tend

to be larger where the analysis errors are large. This
makes sense in physical terms: if the dynamics do noth-
ing to the errors, then the regions and variables in which
we should be most concerned about initial errors are
those in which the initial errors are likely to be largest,
just as we should be most concerned about final errors
in those regions and variables in which we would like
forecast errors to be small.

From July 1982 to January 1983, the dominant errors
appear to originate in SST, meaning that a small SST
error (defined relative to the average size of SST anal-
ysis errors) would grow into a larger error in both SST
and H than would an error in H, similiarly defined rel-
ative to the average size of H errors, over this period.
This seems plausible, since by July 1982 the subsurface
El Niño signal was already reasonably well established,
whereas explosive growth of coupled SST/wind stress
anomalies occurred primarily in the second part of that
year; hence, the increase in the relative importance of
SST errors between the earlier and later periods is con-
sidered.

Any growth of errors from an initial SST perturbation
is likely to involve atmosphere–ocean coupling in this
model, since the direct influence of SST on H, via non-
linearities in the ocean model thermodynamics, is rel-
atively weak. Inspection of an animation of these sin-
gular vectors confirms that coupled processes (specifi-

Unauthenticated | Downloaded 10/21/21 06:29 AM UTC



3308 VOLUME 13J O U R N A L O F C L I M A T E

FIG. 7. First singular values (6-month optimization) from analysis
errors and forecast errors weighted by simulated analysis error co-
variance matrices. (top) First singular values of the full linear prop-
agator (solid line) and from root of sum of squared singular values
of individual subpropagators (dashed line). (bottom) First singular
values of individual subpropagators corresponding to different error
growth processes. Solid line: TT, dashed line: HH, dotted line: HT,
dot–dashed line: TH.

cally the ‘‘classic’’ ENSO mechanism of anomalous
zonal SST gradients in the central Pacific inducing a
local zonal windstress anomaly that in turn enhances
the SST gradient anomaly) do indeed play a dominant
role in the evolution of errors originating in SST.

Errors in H can affect the other variables in the model
more directly, but at lead times longer than 3 months
or so, coupled processes also play an important role.
The H anomalies in the western Pacific are a charac-
teristic feature of many of the H initial singular vectors
we have observed so far. The typical evolution observed
in an animation is for these to propagate as equatorially
trapped Kelvin waves into the central Pacific where they
are amplified significantly by this coupled instability.

The results of this section indicate that the singular
vectors are sensitive to the background error covariance
matrices. Using the inverse of the simulated analysis
error covariance as the error norm can influence the
properties of optimal initial and final (SST and ther-
mocline H) patterns and their growth rates significantly.
This suggests that a reduction of analysis uncertainty in
certain areas (particularly the eastern Pacific for SST
and western Pacific for H, although this could be spe-
cific to this model and these particular initial condi-
tions), then we might substantially improve the pre-
dictability of the coupled system.

5. Temporal variability of error growth processes

In order to compare the relative importance of dif-
ferent error growth processes at different times, it is
helpful to decompose the linear propagator into com-
ponents relevant to the different processes. We can write
the linear propagator L, corresponding to error growth
in both T and H in terms of the linear propagators
corresponding to error growth in the individual variables
[Eq. (10)], LTT, LHT, LTH, and LHH. The variance infor-
mation of L is given by the sum of squares of its singular
values:

r

T 2var(L) 5 tr(LL ) 5 l , (13)O i
i51

where li is ith singular value of L, tr is trace operator,
and r is the rank of the diagonal (singular values) matrix.
From (10) we have

T T TL L 1 L L L L 1 L LTT TT TT HT TT TH HT HHTLL 5 (14)
T T T T1 2L L 1 L L L L 1 L LTH TT HH HT TH TH HH HH

and therefore
2 2 2 2 2l 5 l 1 l 1 l 1 l . (15)O O O O Oi TTi HTi THi HHi

i i i i i

If the first singular values dominate error growth in the
coupled model, then we have

ø 1 1 1 .2 2 2 2 2l l l l l1 TT1 HT1 TH1 HH1 (16)

So the relative importance of different error growth pro-

cesses at different times can be quantified by examining
their contribution to .2l1

Throughout this section we use the estimated analysis
norm described in the previous section. Given the rel-
ative arbitrariness of this estimate, terms that depend on
the assumed relative magnitude of SST and H errors
( and ) should be interpreted with caution. We2 2l lHT TH

stress, however, that the same arbitrariness would apply
to any assumed mixed norm encompassing both vari-
ables, and the use of this estimate at least ensures that
these relative magnitudes are commensurate, at some
level, with possible analysis errors. Similar results are
obtained using a uniform mixed norm with sT 5 0.28C
and sH 5 2.8 m (Fan 1998).

a. Seasonal and interannual variation in singular
values

The evolution of singular values obtained from in-
dividual and full optimizations during the 1970s and
1980s are shown in Fig. 7, for 6-month optimization
times. The upper panel compares from the full T and2l1

H propagators with the sum of the individual , show-2lS1

ing that the approximation in Eq. (16) is well satisfied.
Hence we can use the relative size of lTT1, lHT1, lTH1,
and lHH1 to evaluate the relative importance of the cor-
responding ‘‘subpropagators.’’ Thompson (1998) ob-
tained similar results.

The first point to note from the lower panel of Fig.
7 is that, for a 6-month optimization time, errors orig-
inating in SST seem to dominate error growth under
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this norm (lTH1 and lTT1 are consistently greater than
lHT1 and lHH1), but all four processes are of comparable
importance (none of the quantities displayed has a dif-
ferent order of magnitude from the others, as would
happen if we were to use an energy norm). The im-
portance of errors originating in SST could be exag-
gerated if we have underestimated terms involving H
in our estimated analysis error covariance, but not by
an order of magnitude. For a 12-month optimization
time (not shown), development of SST errors into H
errors (the T → H process, indicated by lTH1) still dom-
inates predictability, but the other three error growth
processes are now of roughly equal importance. We
would argue that this suggests that reducing initializa-
tion errors in both SST and H are of comparable im-
portance in improving ENSO prediction skill.

Focusing on lTT1 and lTH1, interannual variability in
total predictability seems to be dominated by processes
resulting in SST errors, and is evidently closely related
to ENSO (peaks in lTT1 coincide with El Niño events).
This may be interpreted physically, in that errors in SST
are likely to grow fastest when the background SST
anomalies are also developing rapidly at the onset of
an El Niño event.

In contrast, the seasonal cycle in total predictability
seems to be dominated by processes resulting in H errors
(lTH1). Again, this makes sense in terms of the coupled
model used. There is a strong seasonal cycle in ther-
mocline depth as well as strong nonlinearity in the pro-
cesses controlling H anomalies in the model ocean, so
error growth is heavily dependent on how fast H anom-
alies can develop given the model background state at
a particular point in the seasonal cycle. For a 12-month
optimization time, error growth in H fields also shows
clear interannual variability (not shown), as would be
expected since coupled instabilities dominate errors at
long lead times.

It is interesting to note that a singular value of the
full propagator could be greater than unity (indicating
growth) even when all of its constituent singular values
from the subpropagators are less than unity (indicating
decay). If two or more decaying singular vectors re-
sulted from different processes project strongly onto
each other, then they can still generate a growing mode
in the coupled system—see, for example, Penland and
Sardeshmukh (1995). The second singular values of the
individual subpropagators (LTT, LHT, LTH, and LHH) are
consistently smaller than 1.0, but the second singular
values obtained from the corresponding full optimiza-
tion indicate growth throughout the last two decades.

This result suggests that, if we restrict attention to
only a single variable in our definition of error, we find
only a single growing mode in this model; error growth
is dominated by the first singular value. If, however, we
consider interactions between different variables, then
the first singular vector is no longer the only growing
pattern; in most cases the second singular vector also
grows.

b. Seasonal and interannual variations in singular
vectors

Figure 8 shows the evolution of the equatorial com-
ponent of the first initial and final singular vector, with
the final singular vector multiplied by the corresponding
singular value. The optimizations here are based on the
simulated SST analysis error covariance matrices at the
initial time and final time.

Some interesting properties emerge. First, the sea-
sonal cycle dominates the evolution of the initial SST
error patterns. Second, the optimal final SST errors not
only vary with the seasonal cycle but also display clear
interannual variability, which is closely associated with
the ENSO events: during warm events the region of
maximum growth seems to be the eastern Pacific, while
during the cold episodes the growth of the errors is
larger in the central Pacific.

We also examined the variability of the optimal H
errors and found that the seasonal cycle is the dominant
feature in both the optimal initial and final H errors.

c. Origins of seasonality in singular values

Singular values clearly vary with the seasonal cycle,
raising the question of whether this seasonality results
from seasonality in the strength of coupled instabilities
(the so-called spring predictability barrier; Webster and
Yang 1992) or simply from seasonality in the variance
of anomalies in the variables under consideration (large
SST anomalies, of either sign, only occur at certain
times of year).

To explore this issue, we weighted every grid point
with the inverse monthly standard deviation of SST
anomalies in the Niño-3 region, thereby eliminating the
seasonal cycle in Niño-3 anomaly variance, giving equal
weight to average-sized anomalies in each season. To
cross-check, we also multiplied by the standard devia-
tion, to exaggerate the seasonal cycle artificially.

Figure 9 shows the seasonal cycle in the first singular
value, averaged from 1970 to 1990, after the data have
been preprocessed in this way. Weighting by the inverse
monthly standard deviation of Niño-3 SST anomalies
virtually eliminates the seasonal cycle in lTT1, indicating
that much of the ‘‘spring predictability barrier’’ in this
model results from seasonality in the variance of anom-
alies. The choice of the Niño-3 region to define the
normalization does not appear to be critical—similar
results are obtained weighting by local standard devi-
ation.

6. Conclusions and discussion

Errors in the initial conditions of any coupled system
are inevitable. In order to understand how predictability
depends on the geographical location of the initial un-
certainty and on the geographical location of accepted
forecast errors, we have developed a simple and efficient
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FIG. 8. Evolution of the optimal initial SST errors: (optimal initial patterns) and the optimal
final SST errors: (optimal final patterns) 3 (first singular values) along the equator with 6-month
optimization times.

FIG. 9. Evolution of largest singular values (at the initial times)
with 6-month optimization, averaged from 1970 to 1990. (a) Solid
line: the initial and final errors are weighted by simulated analysis
error covariance (SST norm); (b) dotted line: same as (a), but using
seasonal Niño-3 SST rms errors (normalized) as weights; (c) dashed
line: same as (a) but using inverse seasonal Niño-3 SST rms errors
(normalized) as weights.

singular vector analysis technique that was used to ex-
plore the predictability of a coupled model for El Niño–
Southern Oscillation (ENSO). The above method has
proved very efficient in an intermediate coupled model;
its extension to more comprehensive global (coupled)
GCMs seems feasible.

Considering errors in the SST only, then, we find that
to predict SST anomalies in the whole tropical Pacific
12 months ahead, the important initial SST information
is located mainly in the eastern Pacific, whereas to pre-
dict SST anomalies in the western Pacific at 3-month
lead times, the initial SST information is located mainly
in the western Pacific itself.

We have to worry not just about errors in SST but
also about errors in the subsurface thermal structure,
represented in this model by the depth of the thermo-
cline. As there is no unique way of combining infor-
mation from two different variables, we have suggested
one method, namely, the use of the analysis error co-
variance matrix, which seems a logical choice in the
context of using singular vectors for forecasting. The
difficulty is in accurately estimating this matrix. Our
estimate is undoubtedly too crude and should be refined.
Using the simulated analysis error covariance matrix as
the norm to calculate the singular vectors, the results
suggest that the initial information of both the SST field
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and the thermocline field are important for SST predic-
tion in the tropical Pacific. This is in contrast to the
results using other norms, such as the energy norm
(Moore and Kleeman 1996), which suggest that only
thermocline information is important. If SST informa-
tion is as important for ENSO predictions as our results
suggest, then assimilating observed SST into forecast
models may also be important for improving ENSO
prediction. Intermediate models, such as this one or Ze-
biak and Cane, do not use SST information directly.
However, other models, such as Stockdale et al. 1998
and Ji et al. 1998, give considerable weight to SST
information.

Obviously, errors in SST forecasts can come from
different sources, such as errors in the initial SST fields
or in the initial ocean thermocline H fields or from model
error. Understanding the relative importance of different
initial error growth processes in the coupled system is
important in developing a prediction model. A simple
Eq. (16) can be used to quantify the relative importance
of different error growth processes in the coupled model.
The variability of the singular values and singular vec-
tors of the coupled model in the 1970s and 1980s is
explored. It reveals that both the singular values and
final singular vectors not only vary with seasonal cycle
but also show clear interannual variability, which is
closely associated with ENSO events. So any initial
errors in the SST and ocean thermocline fields, which
project well onto the optimal initial patterns, may po-
tentially induce or cancel an ENSO event and lead to a
failed forecast.

The seasonality of singular values was also explored
to some extent. The results suggest that the seasonality
of singular values is at least partly related to the seasonal
cycle in the variance in the predicted variables. Al-
though some results here may be model specific, they
may have some implications for other models.
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APPENDIX A

Estimation of the Linear Propagator
Rather than constructing the linear tangent model of

the original model, we use a similar method to that
suggested by Lorenz in 1965 to obtain the linear prop-
agator directly from the full coupled model. The main
difference is that we perturb the reference trajectory
using a limited number of EOFs, giving a more efficient
method of constructing the propagator. The procedure
is as follows.

a. Control run

We select an initial condition in a particular time pe-
riod of interest and run the coupled model from initial

time t to some later time t 1 t , say, 1 yr, saving the
intermediate (every 3 months) as well as final outputs
from this control run as the ‘‘reference trajectory.’’ This
control integration represents the model trajectory about
which we will perform the approximate linearization.

b. Use selected EOF patterns either from model
fields or from observed fields as initial
perturbations to obtain the approximate tangent
linear propagator L9

The above integration is repeated, but using each of
the obtained n EOF patterns (e.g., one of the first 50
EOFs) to perturb the selected initial oceanic state vector
at the initial time t. The control integration is then sub-
tracted from the perturbed model response at time t 1
t (for some t , chosen to be 3, 6, 9, and 12 months
below) to obtain the final perturbation 5 ( , . . . ,r9 r9i 1i

)T at time t 1 t . Here i (1 # i # n) represents ther9mi

ith EOF pattern and m represents the number of grid
points of the perturbed state vector:

r9 e   1i 1i
  
_ 5 L _ a9, (A1)    i  
r9 e   mi mi

where e i 5 (e1i, . . . , emi)T is the ith EOF pattern which
is normalized, is the size of the ith EOF perturbation.a9i

Repeating the above process using each selected EOF
pattern in turn, we can build the approximation to the
linear propagator (L9). For n EOFs, Eq. (A1) in matrix
form appears as

r9 · · · r9 e · · · e a9 0 0     11 1n 11 1n 1
     
_ 5 _ 5 L _ 5 _ 0 5 0 . (A2)     

    
r9 · · · r9 e · · · e 0 0 a9     m1 mn m1 mn n

If we define L9 as
21r9 · · · r9 a9 0 0   11 1n 1

   
L9 5 _ 5 _ 0 5 0 , (A3)   

  
21r9 · · · r9 0 0 a9   m1 mn n

then the a9 cancel out, and

L9 5 LE, (A4)

where E (where ETE 5 In) is the matrix of selected EOF
patterns that are used as basic perturbation fields. Here
L is a m 3 m square matrix and L9 is a m 3 n rectangular
matrix. Note that Eq. (A4) is equivalent to Eq. (9) with
PF 5 I, 5 E, and L̃ 5 L9.21PA

Postmultiplying both sides of Eq. (A4) by ET gives
LEET 5 L9ET. If E consists of a complete set of EOFs
(i.e., m 5 n), then Em 5 Im andTEm

L 5 L9 .TEm (A5)

In this case, exact singular vectors and singular values
of L are obtained from the SVD of L9, multiplying the
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right singular vectors by Em (see the definition of RA in
section 2b above). If, however, large parts of the initial
errors can be explained by a small number of selected
EOF patterns (n K m), then we can approximate L9 with
greater efficiency:

L ù L9 .TEnKm (A6)

The results from the 1970s and 1980s indicate that we
can obtain stable and consistent singular vectors using
only 10 model EOF patterns. Therefore, if not men-
tioned, all the results in this paper are based on 10 model
EOF patterns as the initial perturbations.

As stressed in the text, this procedure confines atten-
tion to large spatial scales, and therefore not all possible
error growth processes will be captured by this analysis.
We believe, however, that all processes that can real-
istically be simulated by this model are adequately rep-
resented.

APPENDIX B

Estimation of Analysis Error Covariance Matrices

The problem of estimation of the analysis error co-
variance matrices is twofold. On one hand, we need to
estimate the ‘‘physical’’ properties (magnitude and spa-
tial distribution) of the uncertainties in SST and H fields
(estimation of CA). On the other hand, we need a math-
ematical formulation compatible with our reduced-rank
linear propagator.

To estimate the uncertainties in SST we use the dif-
ferences between observations of SST and a model sim-
ulation forced with observed FSU winds for the period
1961–91. As the model simulation does not include in-
formation of the observed SST, it may well be that we
overestimate the magnitude of initial errors in SST for
a typical state-of-the-art analysis system. However, this
estimation is consistent with the initialization procedure
used in this study.

There is no record of thermocline depth measure-
ments that is long enough to allow estimation of the
error distribution in the H field. Instead, uncertainties
in the H field are computed using the differences be-
tween two model simulations forced with different wind
fields: FSU winds and ‘‘filtered’’ FSU winds. The fil-
tered winds are obtained by applying a linear filter to
the interannual anomalies of the FSU, with the idea of
removing undesirable noise. The linear filter is obtained
using a statistical relationship between observed SST
and FSU winds anomalies in such a way that only the
information of the winds that is coherent with the SST
evolution will be retained. This statistical filter is only
applicable near the equator (where the SST and winds
show stronger correlation). Outside the regions where
the filter is active, the original winds are used. There-
fore, differences between raw and filtered winds will be
restricted to the equatorial band, and so will be our
estimation of the uncertainty in the H field.

We obtain an estimate of the analysis error covariance
matrix CA in the original m-dimensional space simply by
averaging over the , available ‘‘error patterns,’’ thus:

ˆ1 C 0TTT ˆGG 5 C (m, m) 5 , (B1)A ˆ1 2, 0 CHH

where the columns of G, gi 5 ( , ), consists of theT9 H9i i

‘‘SST error’’ (control–observation difference) and the ‘‘H
error’’ (raw-forcing minus filtered forcing) at time i.

We now introduce a method of estimating PA and
from our estimate of the analysis error covariance21PA

matrix taking into account the fact that ĈA is noninver-
tible. At this stage we already know L9, which operates
in a reduced space spanned by the first n EOFs E of the
control run (as detailed in appendix A). The trick is to
recognize that we do not actually require the full inverse
of ĈA but only the pseudo-inverse in the subspace
spanned by these n EOFs. That is, we require

PA 5 .T (21)ˆ nP CA A (B2)

PA can be obtained as follows.

1) Project the G onto the n leading EOF patterns E (first
EOF space), which can also be used as the initial
perturbations, and Eq. (B1) can be written as

1
T T 2 TE GG E 5 C9(n, n) 5 US U (n, n), (B3)A1 2,

where U is a new set of EOFs, representing the ei-
genvectors of the analysis error covariance matrix in
the subspace defined by E. The new set of EOFs is
derived from ETG 5 USVT, with normalization
(1/,)VTV 5 I.

2) Further truncate, if necessary, and diagonalize C9 by
projection onto the first s elements of U:

1
T T T 2U E GG EU 5 S (s, s). (B4)1 2,

3) Estimate the truncated inverse analysis error co-
variance matrix , in the original m-dimensional(21)ˆ nCA

space from

211
(21) T T T T Tˆ nC 5 EU U E GG EU U EA 1 2[ ],

22 T T5 EUS U E . (B5)

4) Combining Eqs. (B5) with (B2) and (B3) we obtain
the expression for the projectors:

21 T TP 5 EUS U E (B6)A

21 T TP 5 EUSU E . (B7)A

Thus, the maximization problem (8) reduces to an
SVD of

21 T TP LP 5 P LEUSU E (B8)F A F

T T5 P L9USU E , (B9)F
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where L9(m, n) is our approximation to the tangent linear
propagator, described in appendix A. Since ET is an
orthonormal matrix, we only need to apply SVD to
PFL9USUT whose dimension is (m, n).

We can also obtain the PF using the above method.
Thus, the maximum possible error growth can be rep-
resented by the largest (first) singular value of the prop-
agator, PF . The optimal initial and final patterns21LPA

that accomplish this error growth are the right and left
singular vectors of PF .21LPA
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