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ABSTRACT

In some regions of the world, soil moisture has a typical memory for atmospheric processes and can also
feed back to the latter. Thus, a better understanding of feedbacks between soil moisture and the atmosphere
could provide promising perspectives for increased seasonal predictability. Besides numerical simulations,
statistical analysis of existing GCM simulations or observational data has been used to study such feedbacks.
By referring to a recent statistical analysis of soil moistureÐprecipitation feedbacks in GCM simulations, the
authors illustrate potential pitfalls of statistical approaches in this context: (i) most importantly, apparent soil
moistureÐprecipitation feedbacks can often as well or even better be attributed to the inßuence of sea surface
temperatures (SSTs) on precipitation and (ii) the discrepancy between different GCMs is large, which makes
the aggregation of individual model results difÞcult. These aspects need to be carefully evaluated in statistical
analyses of landÐatmosphere coupling. Results for soil moistureÐtemperature feedbacks complement the
precipitation analysis.

1. Introduction

LandÐatmosphere feedbackshave been identiÞed as one
of the key sources of uncertainty in climate models and
are thus of central importance for climate change pro-
jections (Koster et al. 2004a; Friedlingstein et al. 2006;
Seneviratne et al. 2006a; Betts 2007; Pitman et al. 2009).
Despite these uncertainties, soil moisture (SM) initializa-
tion is promising for seasonal forecasting in regions where
the inßuence of soil states on the atmosphere is relevant
and soil moisture memory is large (see, e.g., Koster et al.
2004a; Seneviratne et al. 2006b; Koster et al. 2010). Un-
derstanding these feedbacks is therefore of crucial rele-
vance for climate research and applications.

Modeling and observational studies suggest that both
positive and negative feedbacks between soil moisture
and precipitation (P) may be expected, depending on the
climate regime and region [e.g., Eltahir 1998; Scha¬r et al.
1999; Douville et al. 2001; Findell and Eltahir 2003;
Koster et al. 2003; Ek and Holtslag 2004; Taylor and
Ellis 2006; Cook et al. 2006; AlÞeri et al. 2008; see also
Seneviratne et al. (2010) for an overview]. The underlying

mechanisms include both effects of enhanced moistening
associated with enhanced soil water content and indirect
(sometimes negative) feedbacks involving boundary layer
stability. In general, however, global climate models tend
to show positive soil moistureÐprecipitation feedbacks
(Seneviratne et al. 2010).

In a recent joint research effort [the Global LandÐ
Atmosphere Coupling Experiment (GLACE)], coordi-
nated numerical climate simulations by 12 coupled global
circulation models (GCMs) were used to analyze the in-
traseasonal soil moistureÐatmosphere coupling (Koster
et al. 2004b, 2006). For this analysis, three simulation
ensembles for the 1994 summer [JuneÐAugust (JJA)]
were generated by each GCM, with identical prescribed
sea surface temperature (SST) Þelds and initial atmo-
spheric conditions, but with varying degrees of coupling
between land and the atmosphere. By determining the
atmospheric variability that results from the coupling
[expressed by theV diagnostic; see Koster et al. (2006)
for a detailed description], regions across the world with
active soil moistureÐatmosphere coupling were identi-
Þed. Generally, such regions are characterized by tran-
sitional soil moisture regimes, alternating between wet
and dry soil conditions. These results are overall consis-
tent with an analysis (Seneviratne et al. 2006a) of the
correlation between evapotranspiration and temperature
in simulations of the twentieth century from the Fourth
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Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR4; see Solomon et al. 2007),
despite regional differences, for example, in the Mediter-
ranean area.

Given the scarcity of soil moisture observations, nu-
merical modeling studies such as GLACE constitute an
ideal approach. However, the required large computa-
tional resources limit a frequent replication of such joint
experiments. Alternatively, statistical measures can be
used to identify feedbacks in observational or modeling
datasets. For this, correlations including lagged and/or
partial correlations and regression analysis are obvious
candidates. Inference about their statistical signiÞcance
sometimes requires conditions, such as normality of the
data or vanishing autocorrelation, that are not always ful-
Þlled for climate data. Granger causality has also been
used in this context (Salvucci et al. 2002; Kaufmann et al.
2003) to check whether the information from past soil
moisture or vegetation states is relevant for the atmo-
sphere. However, Granger causality only detects whether
a feedback exists and does not quantify the strength of
the feedback itself. Furthermore, this statistical inference
usually relies on the normality of the data or is limited to
simpliÞed examples [e.g., rain/no-rain time series as in
Salvucci et al. (2002)]. Granger causality was therefore
not a choice for our purpose.

A further alternative is proposed by Notaro (2008,
hereafter N08), who uses a methodology originating in
the investigation of coupling between SST and atmo-
spheric variables (Frankignoul and Hasselmann 1977).
The therein-derived l parameter is used in several studies
to quantify feedbacks between ocean and the atmo-
sphere (Frankignoul et al. 1998; Czaja and Frankignoul
2002; Frankignoul and Kestenare 2002; Liu and Wu
2004). Zhang et al. (2008) usel to analyze soil moistureÐ
precipitation feedbacks, combining observational and
model data. Other applications include studies of feed-
backs between vegetation and the atmosphere (e.g.,
Wang et al. 2008) based either on observations (Notaro
et al. 2006; Liu et al. 2006) or single-model experiments
(Notaro et al. 2008; Notaro and Liu 2008), which suggest
that l yields patterns similar to actual feedback patterns.

In N08, l is applied to quantify instantaneous feed-
backs between soil moisture and precipitation in the
preindustrial IPCC AR4 simulations based on monthly
data. The feedback patterns obtained in N08 agree to
some extent with the Þndings from the GLACE study,
despite the differing averaging time scales of the data
used in the two studies (monthly versus 6 days), and the
different time horizons of the analysis (multiyearÑi.e.,
interannualÑversus intraseasonal).

One drawback of such statistical analyses (such as cor-
relation or regression analysis, Granger causality, andl ,

among others) is that causality is difÞcult to establish. For
instance, Wei et al. (2008) argue that intraseasonal cor-
relations between soil moisture and precipitation may
indeed be attributed to precipitation persistence rather
than to a real feedback [in their study, Wei et al. (2008)
point to the possible role of the MaddenÐJulian oscilla-
tion (Madden and Julian 1971, 1972), but one can also
think of SST persistence effects]. Furthermore, and more
importantly, strong feedbacks between two variables can
be falsely suggested by the inßuence of a third variable on
both considered variables. This drawback was pointed
out in Frankignoul and Kestenare (2002), Notaro et al.
(2006) and Liu et al. (2006); however, to our knowledge, it
has not yet been studied or quantiÞed in this context.

Since SST is a candidate for such a third variable, we
extend the N08 study by calculating thel parameter of an
SST proxy and precipitation at each land grid cell. A joint
analysis of these l s and the l s of the soil moistureÐ
precipitation feedback can then be used to discriminate
between regions where soil moistureÐprecipitation feed-
back is likely to be dominant and other regions where
the SST inßuence appears as the controlling factor. This
discrimination is done for 40-yr European Centre for
Medium-Range Weather Forecasts Re-Analysis (ERA-40)
data as well as for transient twentieth-century and Special
Report on Emissions Scenarios (SRES) A2 simulations
from the IPCC AR4. For a more complete understanding
of the atmospheric response, the relationships of SST and
soil moisture to near-surface air temperature are analyzed
in the same way.

In the analysis of multimodel ensembles, the aggrega-
tion of the ensemble members is not necessarily trivial,
especially if the analyzed features vary strongly across the
models. We will therefore brießy consider the robustness
of the statistically identiÞed hot spots of landÐatmosphere
feedbacks within the IPCC AR4 simulations across dif-
ferent periods.

The employed datasets, the SST proxy series, and the
l parameter from N08 are described in section 2. Sec-
tion 3 presents the results. Interpretations and conclusions
are provided in section 4.

2. Data and methods

In this section we brießy present the datasets and
methods used in our study. We analyze monthly data from
which linear trends and annual cycles are removed.

a. Reanalysis data

We use monthly precipitation, near-surface air tem-
perature, soil moisture, and SST from the ERA-40 dataset
(available online at http://www.ecmwf.int) for the period
1958Ð2001, available on a Gaussian grid with grid cells of
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approximately 1.258 3 1.28 (Uppala et al. 2005). Soil
moisture is taken as the average volumetric soil water
over four layers in depths between 0.0 and 2.89 m. The
memory of soil moisture originating from the deep layers
is thus included in the soil moisture data. The employed
atmospheric variables are constrained through data as-
similation by observations from extensive station net-
works (radiosonde data, but not precipitation) and can
thus be expected to resemblereality. Soil moisture is
computed from the reanalysis modelÕs land surface scheme
and further modiÞed by an assimilation scheme that takes
near-surface relative humidity and temperature into ac-
count. This leads to a reduced quality of the soil moisture
Þelds. For instance, one known drawback of this scheme
is the resulting dampened annual cycle and reduced vari-
ability of soil moisture (Betts et al. 2003; Seneviratne
et al. 2004). However, since observational data are used
in the assimilation process wherever possible and because
we need long time series for estimating the feedback
strength statistically, ERA-40 soil moisture is among
the best choices available. Other more sophisticated soil
moisture datasetsÑfor example, from the second Global

Soil Wetness Project (GSWP-2; Dirmeyer et al. 2006) or
the Global Land Data Assimilation System (GLDAS;
Rodell et al. 2004), used, for example, in Zhang et al.
(2008)Ñare shorter in length or do not contain all the
variables needed for our study.

b. Model data

From the IPCC AR4 model runs available on the Pro-
gram for Climate Model Diagnosis and Intercomparison
(PCMDI) server (available online at http://www-pcmdi.
llnl.gov), we use simulations from 15 models that have
monthly data available for SST, near-surface air tem-
perature, precipitation, and soil moisture, both for the
twentieth century (20C3M) and the A2 scenario simula-
tions. Soil moisture is taken as the water in all phases
summed over all soil layers and averaged over the land
portion of the grid cell. By including the deep soil layers,
the associated long-term memory of soil moisture is pres-
ent in the data. We choose two periodsÑ1904Ð98 (20C3M)
and 2004Ð98 (A2 scenario)Ñthat are completely covered
in all of the respective runs. Table 1 provides an overview
of the selected models.

TABLE 1. GCMs from the IPCC AR4 used in this study and their horizontal resolution. If longitudinal resolution
varies, then its range is given, e.g., (0.3..1)8.

Institution/model Atmosphere Ocean

Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled GCM,
version 3.1 (CGCM3.1)

T31 1.98 3 1.98

National Center for Atmospheric Research (NCAR) Community Climate System
Model, version 3 (CCSM3)

T85 (0.3..1.0)8 3 1.08

National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid
Dynamics Laboratory (GFDL) Climate Model version 2.0 (CM2.0)

2.08 3 2.58 (0.3..1.0)8 3 1.08

NOAA GFDL CM2.1 2.0 8 3 2.58 (0.3..1.0)8 3 1.08
National Aeronautics and Space Administration (NASA) Goddard Institute for

Space Studies (GISS) ModelE20/Russell
48 3 58 48 3 58

National Institute of Geophysics and Volcanology (INGV), Italy, ECHAM 4.6
model

T31 0.58 3 1.08

Institute for Numerical Mathematics (INM), Russia, Climate Model version 3.0
(CM3.0)

48 3 58 28 3 2.58

LÕInstitut Pierre-Simon Laplace Coupled Model (IPSL)/Laboratoire de Me«te«orologie
Dynamique (LMD)/Le Laboratoire des Sciences du Climat et lÕEnvironnement
(LSCE), France, Coupled Model, version 4 (CM4) V1

2.58 3 3.758 28 3 28

Center for Climate System Research (CCSR)/National Institute for Environmental
Studies (NIES)/Frontier Research Center for Global Change (FRCGC), Model for
Interdisciplinary Research on Climate 3.2, medium-resolution version (MIROC3.2
(medres)

T42 (0.5..1.4)8 3 1.48

Meteorological Institute of the University of Bonn (MIUB), Germany, ECHAM and
the global Hamburg Ocean Primitive Equation (ECHO-G) model

T30 (0.5..2.8)8 3 2.88

Max Planck Institute for Meteorology (MPI), Germany, ECHAM5/MPI Ocean
Model (OM)

T63 1.58 3 1.58

Meteorological Research Institute (MRI), Japan, Coupled General Circulation
Model, version 2.3.2a (CGCM2.3.2a)

T42 (0.5..2.0)8 3 2.58

NCAR Parallel Climate Model version 1 (PCM1) T42 (0.5..0.7)8 3 1.18
Met OfÞce, United Kingdom, third climate conÞguration of the Met OfÞce

UniÞed Model (HadCM3)
2.58 3 3.758 1.258 3 1.258

Hadley Centre (Met OfÞce) Global Environmental Model version 1 (HadGEM1) 1.3 8 3 1.98 (0.3..1.0)8 3 1.08
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c. In�uence of sea surface temperatures over land

To compare the inßuence of SST versus soil moisture
on atmospheric variables, time series of the SST effect
over land are needed. For each land grid cell, we derive
a time series from the global SST Þelds that optimally
correlates with the atmospheric variable of interest at this
grid cell. This is achieved in two steps. First, the SST Þelds
are reduced to the leading empirical orthogonal functions
(EOFs) obtained from a principal component analysis
(PCA). Second, by means of canonical correlation anal-
ysis (CCA), the linear combination of the leading EOFs
is determined that optimally correlates with the atmo-
spheric variable of interest at each grid cell. Since the sign
of these series from the CCA is not unambiguous, we
choose it such that their correlation with the atmospheric
time series is positive.

The resolution of the SST Þelds differs among dif-
ferent GCMs (see Table 1). Therefore, because they
should be analyzed in a coherent manner and given that
we only need the general SST patterns, prior to PCA the
GCM Þelds are interpolated to a common T31 Gaussian
grid that corresponds to the coarsest ocean grid within
the GCM ensemble.

From the PCA, we keep the Þrst 20 EOFs in the
analysis, explaining about 60% of the total variance.
Tests using between 15 and 50 EOFs give robust results
(not shown).

The feedback of these optimized SST proxy series on
the atmosphere will be compared to the local feedback of
soil moisture, which one might expect to be smaller since
any potential remote soil moisture feedbacks are not
taken into account. However, over large parts of the
globe, the averaged summer soil moisture shows a smooth
spatial distribution (see Fig. 1a), which suggests that most
of the grid cells are representative of their regional sur-
roundings.

d. Feedback parameterl

Following N08 (and origi nally Frankignoul and
Hasselmann 1977), the linear inßuence of a slowly vary-
ing variable s (in our case, SST or soil moisture) at timet
on a faster atmospheric variablea (precipitation or tem-
perature) at time t 1 dt can be expressed as follows:

a(t 1 dt) 5 l s(t) 1 � (t 1 dt), (1)

FIG . 1. (a) Averaged JuneÐSeptember (JJAS) SM from ERA-40 (volumetric soil water in %), (b) averaged
1-month lagged autocorrelations (JJAS) for SST and SM as a measure of memory from ERA-40, (c) subperiods of
the averaged IPCC 20C3M, and (d) the IPCC A2 simulations. In (b)Ð(d), horizontal (vertical) color bars give SST
(SM) autocorrelations.
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where l is called the feedback parameter and� (t 1 dt)
represents the atmospheric noise at timet 1 dt. By taking
the covariance of both sides withs(t 2 t ), where t . dt, it
follows that

l 5
cov[s(t � t ), a(t)]
cov[s(t � t ), s(t)]

. (2)

Thus, l measures the instantaneous feedback ofs on
a at time t. Theoretically, the value of l actually would
not depend on t (see Liu et al. 2006). In practice, the
error of the l estimation will grow with increasing t
because of the decorrelation and will increase with de-
creasing memory ofs(t). Therefore, we uset 5 1 month
only, since the typical memory of soil moisture is often
less than a month (Seneviratne et al. 2006b; Dirmeyer
et al. 2009). Note that when the time series are nor-
malized to unit variance, l is equal to the ratio of lagged
correlations instead of lagged covariances. Like any sta-
tistical covariability measure, l can be indicative of a
necessary condition for a causal relation, but it cannot
evaluate its sufÞcient conditions. Therefore, a high value
of l does not necessarily imply a real causal feedback.

Statistical signiÞcance ofl . 0 is tested by means of
Monte Carlo (MC) experiments with 500 runs, for which
the series a(t) is shufßed and l is calculated for each
shufßed series, while thes(t) series remains unchanged.
On the one hand, this preserves the memory in the slow
s(t) series; on the other hand, it simulates the null hy-
pothesis that no relation betweens(t) and a(t) exists. The
signiÞcance ofl corresponds to the percentage of MC-
simulated l s, which are smaller in magnitude than thel s
of the original series.

For ERA-40, l is calculated on the original grid. For
the GCM simulations, the l s on the original grids are
interpolated to a common T42 Gaussian grid. This choice
is somewhat arbitrary and is based on the fact that several
GCMs of the ensemble already use this grid and that it is
close to the 23 28resolution of N08. To ensure compa-
rability of the l s of soil moisture and SST, all time series
are normalized to unit variance prior to the analysis. The
following results are therefore without any physical unit.

3. Results

We focus here on the analysis of thel parameter for
the boreal summer (JJA). Studies such as Frankignoul
et al. (1998) or Notaro et al. (2006) calculatel for the
Þrst three lags and then derive weighted averages. How-
ever, we follow the approach used in N08 for consistency
(see also section 2d) and average the 1-month lagged co-
variance ratios in Eq. (2) between the multidecadal time
series of JuneÐJuly, JulyÐAugust, and AugustÐSeptember.

Our l s thus evaluate the instantaneous feedbacks within
the single summer months on the interannual time scale.
Calculating the patterns from the weighted Þrst three lags
does not lead to signiÞcantly differing results (not shown).

Results from the l analysis are presented in two parts.
The Þrst part addresses SST and soil moisture inßuences
on precipitation and temperature in the ERA-40 data.
The second part deals with the l patterns and their
robustness in multimodel ensembles of 100-yr GCM
simulations from the IPCC AR4. Robustness of the pat-
terns in a shorter subperiod comparable to ERA-40 and
changes in future climate simulations are also presented.
Wherever maps are compared quantitatively, we use
the rank-based SpearmanÕsr correlation coefÞcient and
apply it to maps deÞned on a Gaussian T42 grid. Corre-
lations are signiÞcant at the 5% level unless otherwise
speciÞed.

Figures 1bÐd give some indication of the memory in
SST and soil moisture. Since our data are monthly, we
calculate the averaged denominators ofl as a measure of
memoryÑthat is, the averaged 1-month lagged correla-
tions over JJAS of SST and soil moisture, respectivelyÑ
and display them in one map with different color scales.
Both soil moisture and SST show more spatial variability
in the ERA-40 data (Fig. 1b) compared to the IPCC
maps (Figs. 1c and 1d), probably as a result of the av-
eraging of the IPCC simulations. These maps will be
helpful in interpreting the l parameters in the follow-
ing subsections.

a. The l parameters of SST versus soil moisture in
ERA-40

From a simple physical reasoning, we derive three pos-
sible pathways of the inßuence of soil moisture and/or
SSTs onto precipitation on the monthly time scale (see
Fig. 2). The underlying assumptions are that (i) SST has
an effect on precipitation of the same time step and is
related to the SSTs of the next time step through per-
sistence, but that it has no direct effect on soil moisture
except through precipitation; (ii) precipitation and soil
moisture interact within the same time step and that
soil moisture affects soil moisture of the next time step
through persistence; and (iii) precipitation does not af-
fect precipitation of the next time step directly. Note
that there are cases that are not captured by these con-
ditions, for example, possible effects of SSTs on soil
moisture or precipitation that are mediated through air
temperature and evapotranspiration. Also, precipitation
can be related to past precipitation through internal at-
mospheric oscillations. For this paper, however, we focus
on the simple framework of the three pathways sketched
in Fig. 2.
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The Þrst pathway simply consists of SM1 inßuencing
SM2 affecting P2. The strength of the inßuence along
this pathway can be measured byl (SM, P), if inßuences
from SST1 on both SM1 and P2 can be excluded. The
second and third pathways both lead from SST1 to P2.
The second is SST1 inßuencing SST2 affecting P2. The
third is SST1 inßuencing P1 affecting SM1 inßuencing
SM2 and thereby P2. If the inßuence of SST on precipi-
tation is measured byl (SST, P), then it is generally not
possible to distinguish between the individual contribu-
tion of these two pathways. Thus, if the inßuence of SST1
onto P2 is through SM1, a strong l (SST, P) can concur
with a strong l (SM, P). However, also in the case of
no interaction between SM1 and P2, a large value of
l (SM, P) can arise if SST1 controls both SM1 and P2,
in which casel (SST,P) would be large, too. Therefore,
without further information, nothing can be said about
the importance of soil moisture for precipitation if both
l (SM, P) and l (SST, P) are large. Pathways can only
be distinguished if either l (SM, P) or l (SST, P) is
large while the other is small. This is illustrated in the
following.

Figure 3 displays maps ofl (SM, P) and l (SST,P) for
the ERA-40 data. Hot spots of l (SM, P) in Fig. 3a in-
clude the Amazon, parts of the western United States,
sub-Saharan Africa. and southeast Asia. This pattern
is partly consistent with the Þndings in N08 (based on
IPCC simulations; see also section 3b for a direct com-
parison of our analysis of IPCC AR4 simulations to
N08), for example, for the African hot spot. Note that
the African hot spot is located farther south than the belt
of low soil moisture memory (Fig. 1b) and is thus not just
a consequence of a small denominator forl . In fact, soil
moisture memory is large in this rain forest region. Since
soils are mostly saturated there (and one might suspect
them not to be very interactive with the atmosphere;
see Fig. 1a), the large values ofl are puzzling. Note,

however, that GLACE also Þnds strong interactions in
this region.

In general, the ERA-40 hot spots are more extensive
than the hot spots identiÞed in the GLACE experi-
ments. Furthermore, they do not show hot spots that are
found in GLACE or N08, for example, over India or the
Great Plains in the United States. Findell and Eltahir
(2003) Þnd the reversed pattern over the United States,
with positive soil moistureÐprecipitation feedbacks over
the eastern United States and no soil moisture inßuence
over the western United States, based on an analysis of
radiosonde data. This disagreement may either reßect
shortcomings of ERA-40 or of their study data, or a lim-
itation of the l parameter. Neither the ERA-40 pattern
nor the Findell and Eltahir (2003) pattern can be ex-
plained by the diagnosed soil moisture memory pat-
tern alone (Fig. 1b), which shows elevated memory both
for the western and eastern United States (which might
be inaccurate, since it is derived from the reanalysis
model).

The l (SM, P) pattern in Fig. 3a coincides in many
regions with the l (SST,P) pattern in Fig. 3b ( r 5 0.31),
which hints at a possible misinterpretation of l (SM, P)
as a meaningful measure of soil moistureÐprecipitation
feedbacks as done, for example, in N08. To detect which
of the two inßuences is dominant in which region, in the
sense that thel of one process is large while thel of the
other one is small (with respect to the diagnosed range
of the l s), Fig. 3c summarizes the two upper Þgures by
means of a two-dimensional color map (A. J. Teuling
et al. 2010, unpublished manuscript). In this map, red
or blue colors indicate dominant values of l (SM, P) or
l (SST, P), respectively, white indicate no covariability
at all, grayish colors indicate medium values of both
l (SM, P) and l (SST,P), and green indicates large values
of both parameters.

From the analysis in Fig. 3c, we Þnd that much of the
apparent soil moistureÐprecipitation feedback diagnosed
with l (SM, P) in Fig. 3a can just as well or even better
be attributed to an inßuence of SSTs. Over the northern
extratropics, the only pronounced patch of strongl (SM, P)
without strong l (SST, P) is located over the western
United States, while most of the area is dominated by
the inßuence of SST. The coupling hot spot found in the
GLACE study over sub-Saharan Africa shows large l s
with both soil moisture and SST in our analysis, although
l (SM, P) . l (SST,P) still holds, which agrees with N08
and GLACE.

For temperature, the soil moisture inßuence is expec-
ted to be mostly negative (in contrast to precipitation)
because of the cooling effect of increased evaporation,
which may result from positive soil moisture anomalies.
Otherwise, the pathways of inßuence sketched in Fig. 2

FIG . 2. Schematic view of the inßuence pathways between SST,
SM, and P, respectively, andT, at two monthly t. Solid lines for
interactions between different variables; dashed lines for persis-
tence effects. Note that for P, further possible pathways viaT and
evaporation are not considered here; see text.
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