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ABSTRACT

Changes in the global water cycle are expected as a result of anthropogenic climate change, but large
uncertainties exist in how these changes will be manifest regionally. This is especially the case over the tropical
oceans, where observed estimates of precipitation and evaporation disagree considerably. An alternative
approach is to examine changes in near-surface salinity. Datasets of observed tropical Paci�c and Atlantic
near-surface salinity combined with climate model simulations are used to assess the possible causes and
signi�cance of salinity changes over the late twentieth century. Two different detection methodologies are
then applied to evaluate the extent to which observed large-scale changes in near-surface salinity can be
attributed to anthropogenic climate change.

Basin-averaged observed changes are shown to enhance salinity geographical contrasts between the two
basins: the Paci�c is getting fresher and the Atlantic saltier. While the observed Paci�c and interbasin-averaged
salinity changes exceed the range of internal variability provided from control climate simulations, Atlantic
changes are within the model estimates. Spatial patterns of salinity change, including a fresher western Paci�c
warm pool and a saltier subtropical North Atlantic, are not consistent with internal climate variability. They
are similar to anthropogenic response patterns obtained from transient twentieth- and twenty-�rst-century
integrations, therefore suggesting a discernible human in�uence on the late twentieth-century evolution of the
tropical marine water cycle. Changes in the tropical and midlatitudes Atlantic salinity levels are not found to
be signi�cant compared to internal variability. Implications of the results for understanding of the recent and
future marine tropical water cycle changes are discussed.

1. Introduction

Evidence is building that human-induced climate
change is changing the global water cycle (Zhang et al.
2007; Santer et al. 2007; Willett et al. 2007) and pre-
cipitation frequency, intensity, and spatial distribution
with consequences on hydrological extreme events such

as �oods and droughts (Trenberth 2011; Dai 2010; Min
et al. 2011). Increased heating will enhance land evapo-
ration and surface drying, leading to more severe droughts,
while increased air moisture due to an increase in satura-
tion vapor pressure with temperature will produce more
intense precipitation, enhancing the risks of �oods. While
much uncertainty still remains regarding the prediction
of how much warming will occur through greenhouse gas
buildup, observed and projected changes in the hydro-
logical cycle have recently been undergoing increased
levels of scrutiny. While there appear to be robust

Corresponding author address:Laurent Terray, CERFACS, 42
Ave. Gaspard Coriolis, 31057 Toulouse CEDEX 01, France.
E-mail: terray@cerfacs.fr

958 J O U R N A L O F C L I M A T E V OLUME 25

DOI: 10.1175/JCLI-D-10-05025.1

� 2012 American Meteorological Society
�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&



physical controls on the global hydrological cycle changes
due to atmosphere energy balance constraints (Allen
and Ingram 2002; Held and Soden 2006; Richter and
Xie 2008; Stephens and Ellis 2008), it is much more
problematic to project how regional precipitation and
evaporation patterns might be altered within the con-
text of climate change. This is particularly relevant for
the tropical oceans where projected hydrological cycle
trends appear to be in�uenced by spatial variations of
sea surface temperature (SST) change in addition to the
wet get wetter and dry get drier pattern associated with
quasi-uniform tropical SST warming (Xie et al. 2010).
Despite common features among projected spatial pat-
terns of SST change, deviations from uniform tropical
SST warming differ between models leading to large
uncertainty with regard to the future distribution of
tropical precipitation and evaporation changes. Further-
more, early detection and attribution of these changes
is also hampered by the dif�culty and lack of long-term
freshwater �ux observations over the oceans and their
high space and time variability. Present evidence for
a changing tropical marine hydrological cycle must then
be searched for elsewhere. It is now well established
that surface ocean salinity provides nature’s largest
possible rain gauge and can be ef�ciently used as an
indicator of the changing marine water cycle (Schmitt
2008). Large-scale salinity variations are mainly shaped
by the evaporation minus precipitation patterns and
oceanic circulation. While the former mechanism acts
to create salinity contrasts, ocean circulation and small-
scale mixing act to attenuate them. Furthermore and in
contrast with SST, there are to �rst order no strong direct
and local feedbacks between sea surface salinity (SSS)
and surface freshwater �uxes. This is in particular rel-
evant for the tropical oceans where SSS seasonal to
decadal variability mainly re� ects to �rst order the fresh-
water �ux changes linked to dominant variability modes
such as El Niño–Southern Oscillation (ENSO) and the
Paci�c decadal oscillation (PDO) for the Paci�c Ocean
(Delcroix 1998; Delcroix et al. 2007). SSS thus appears
to be an ef�cient integrated indicator of the marine hy-
drological changes. Here, we use observed SSS datasets
and large ensembles of climate model simulations to
identify possible human-induced changes in the tropi-
cal marine hydrological cycle evolution over the past few
decades. The observed and model data used in this study
are brie�y described in the following section. Section 3
details the two detection methodologies applied to infer
the nature of the surface salinity changes. Section 4 then
reviews and compares the observed and simulated (past
and future) changes in tropical surface salinity. Section 5
examines the question of the anthropogenic in�uences on
the recent SSS changes. This section begins by comparing

the signal-to-noise ratio between SSS and freshwater
�uxes. It then compares the basin-averaged and interbasin
observed SSS with model estimates of internal variability.
It further examines the relevance of the pattern scaling or
scalability assumption for the changes in response to an-
thropogenic forcing. Finall y, two detection methods are
applied to assess whether a human in�uence can be de-
tected in the recently observed SSS changes. The paper
concludes with a brief summary and a discussion of the
results within the context of the future marine water cycle
and ocean changes.

2. Observed and model data

a. Observed salinity data

For this investigation, we use a compilation of Paci�c
(308S–308N, 1950–2008) and Atlantic (308S–508N, 1970–
2002) SSS datasets, which consist of in situ salinity ob-
servations gridded on a monthly basis on a 18 3 18grid
[see Reverdin et al. (2007) and Delcroix et al. (2011) for full
details about the various data sources and postprocessing].
Due to the use and mix of multiple instruments, observed
sea surface salinity in this study is representative of near-
surface salinity, meaning the 0–10-m depth-averaged sa-
linity. Given that 90% of the time the observed vertical
gradient of salinity in the upper 10 m is less than 0.05
(Hénocq et al. 2010) and taking into consideration our
data processing and large-scale averaging, the mix of in-
struments and 0–10-m depth sampling is highly unlikely
to bias the present trend analysis. An optimal interpo-
lation analysis is applied to the quality controlled SSS
data to produce a monthly SSS gridded �eld at 18res-
olution. The algorithm solves a local problem at each grid
point by using closely located data and accounting for
the spatial and temporal scales of the physical variable.
In addition to the SSS values, the algorithm also yields
an error �eld at each grid point, which is given as
a percentage of the interannual variance. This allows us
to estimate at least qualitatively the con�dence we can
have when computing multidecadal trends. Complete
description of the datasets and optimal interpolation
methodologies, as well as additional references, can be
found online (http://www.legos.obs-mip.fr/observations/
sss). We only consider data with suf�cient coverage and
reasonable error estimates. We use observed SSS data
from the full observational period, meaning January
1950–December 2008 and January 1970–December
2002 for the Paci�c and Atlantic, respectively. We use
SSS monthly means only at locations where data are
present with an SSS error that is less than 90% of the
SSS standard deviation. For the mean SSS climatology,
we only consider grid cells that have at least 20% time
coverage. For the overlapping 1970–2002 period trend
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estimation, we only use grid cells containing at least �ve
SSS observations during each of the seven pentads. This
leads to the de�nition of an observational spatial mask,
which is then used in the trend detection analysis. For the
temporal detection analysis, we use regionally averaged
SSS annual means constructed from the selected monthly
means. Parts of the southeastern tropical Paci�c, as well as
a large area of the southern Atlantic, are poorly sampled
and are therefore excluded from the detection analysis.
The practical salinity scale (pss-78) is used throughout the
paper, meaning that the salinity is a ratio and does not
have physical units (Millero 1993).

b. Model data

The modeled data used in this study are those of the
coupled general circulation models archived by the World
Climate Research Programme’s (WCRP) Coupled Model
Intercomparison Project, Phase 3 (CMIP3), dataset

(available online at http://w ww-pcmdi.llnl.gov/). The
three datasets used here are referred to by the Program
for Climate Model Diagnosis and Intercomparison
(PCMDI) as the picntrl, 20c3m, and sresa1b multimodel
experiments (see Table 1 to see the model list and in-
tegrations used). The sresa1b simulations followed the
Special Report Emission Scenario (SRES) A1B scenario
for the anthropogenic forcing evolution. The 20c3m sim-
ulations have a wide variety of anthropogenic in�uences
(such as well-mixed greenhouse gases, ozone, sulfate, and
black carbon aerosols). Roughly half of them also include
changes in natural forcings (including total solar irradi-
ance and stratospheric aerosols following volcanic erup-
tions). The picntrl or control integrations have constant
and preindustrial values for the anthropogenic and natural
forcings. We consider only one realization from each of
the 23 models under these experiments. It is worth
noting that not all 23 models contribute to all calculated

TABLE 1. Summary of the various models and experiments used together with the relevant lengths of the control integrations: X, model
experiment used; N, no model data available. Here picntrl is a control simulation with constant preindustrial external forcings, 20c3m is
a twentieth-century simulation with observed historical forcings, and sresa1b is a twenty-�rst-century simulation with the Special Report
Emission Scenario A1B scenario for anthropogenic forcings.

CMIP3 model picntrl 20c3m sresa1b CMIP3 model picntrl 20c3m sresa1b

Bergen Climate Model,
version 2 (BCM2.0)

250 X X Flexible Global Ocean–Atmosphere–Land
System Model (FGOALS)

350 X X

Canadian Centre for
Climate Modelling
and Analysis (CCCma)
Coupled General Circulation
Model, version 3.1 (CGCM3.1)

1001 X X Istituto Nazionale di Geo�sica e
Vulcanologia (INGV) ECHAM4

100 X X

CGCM3.1-T63 400 X X L’Institut Pierre-Simon Laplace Coupled
Model, version 4 (IPSL CM4)

500 X X

Centre National de Recherches
Météorologiques Coupled
Global Climate Model,
version 3 (CNRM-CM3)

500 X X Model for Interdisciplinary Research on
Climate 3.2, high-resolution version
[MIROC3.2(hires)]

100 X X

CSIRO Mark version 3.0
(CSIRO-MK3.0)

380 X X MIROC 3.2, medium-resolution version
[MIROC3.2(medres)]

500 X X

CSIRO Mark version 3.5
(CSIRO-MK3.5)

950 X X Meteorological Institute of the
University of Bonn, ECHO-G
Model (MIUBECHOG)

341 X X

Geophysical Fluid Dynamics
Laboratory Climate Model,
version 2.0 (GFDL-CM2.0)

500 X X Max Planck Institute (MPI) ECHAM5 N X X

GFDL CM, version 2.1
(GFDL-CM2.1)

300 X X Meteorological Research Institute
Coupled General Circulation Model,
version 2.3.2a (MRI CGCM2.3.2a)

350 X X

Goddard Institute for Space
Studies Atmosphere–Ocean
Model (GISS-AOM)

251 X X CCSM3.0 455 X X

GISS Model E-H (GISS-EH) 400 X X National Center for Atmospheric
Research (NCAR) Parallel Climate
Model (PCM)

N X X

GISS Model E-R (GISS-ER) 500 X X HadCM3 422 X X
Hadley Centre Global

Environmental Model
(HadGEM)

70 X N CCSM3.0 N N 40 mem.
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quantities studied in this paper when relevant data are
missing or a speci�c subset of models is being examined.

We also use a 40-member ensemble for the period 2000–
61 performed with the Community Climate System Model
version 3 (CCSM3) forced by the SRES A1B greenhouse
gas emission and stratospheric ozone recovery scenarios
(Branstator and Teng 2010). Each member undergoes
the same external forcing and starts from the same ocean,
land, and sea ice initial conditions given by those on
1 January 2000 from a single twentieth-century CCSM3
integration. All members have different atmospheric
initial conditions taken from days during December
and January 2000 from the same CCSM3 integration,
and simulation differences are thus only due to the model
internal variability.

We only analyze model data between 308S and 508N
to �t the observational geographical domain. To ease
the analysis, all model SSS results have been �rst in-
terpolated onto a common regular grid (similar to the
observational 18 3 18 grid) accounting for the model
differences in the land–sea mask. Before the trend
analysis and detection part of the process, observed and
simulated SSS data were further gridded onto a common
58 3 58grid in order to remove the small-scale noise and
variability present in both the observations and simula-
tions. Model data were then processed in the same way as
were the observations, so that the model values are only
used at the same places as those indicated by the obser-
vational mask.

c. Freshwater �ux observed estimates

We only use one precipitation and one evaporation
dataset. The monthly mean precipitation totals from the
Global Precipitation Climatology Project dataset ver-
sion 2.1 are based on both satellite and gauge datasets
and cover the 1979–2008 period (Huffman et al. 2009).
Monthly mean evaporation results from the Objectively
Analyzed air–sea Fluxes (OAFlux) objective analysis
dataset are based on a blending of satellite retrievals and
three atmospheric reanalyses, as well as on the version 3.0
of the Coupled Ocean–Atmosphere Response Experi-
ment (COARE) bulk algorithm, for the estimation of the
turbulent �uxes and cover the 1958–2008 period (Yu and
Weller 2007). Here, we use data over the period 1979–2008
to get the maximum overlap between the two datasets.

3. Detection methods

To assess the extent to which signi�cant SSS changes
may be detected as being signi�cantly different from
those expected from internal variability, we apply two
different optimal detection methodologies. The �rst
one, the optimal �ngerprint approach (OF hereafter),

has already been extensively used to detect changes in
atmospheric temperature and precipitation among other
parameters (Allen et al. 2006; Hegerl et al. 2007). Here,
we use the OF approach to compare quantitatively cur-
rent and future trends in observed and simulated SSS,
respectively. The second approach, named here the
temporal optimal detection approach (TOD thereafter),
is a recently developed alternative to the standard opti-
mal �ngerprint analysis (Ribes et al. 2010). It consists of
searching for a smooth temporal pattern in the obser-
vations. While any pattern can theoretically be used,
we focus here on temporal patterns best suited to rep-
resenting the mean response of the upper tropical and
subtropical ocean to anthropogenic forcing. Consider-
ation of the two approaches is interesting as they make
very different assumptions and use different ways of
enhancing the signal-to-noise ratio.

a. Optimal �ngerprint methodology

The OF method can be simply described as an optimal
regression of the response guess patterns (the �nger-
prints) to some given external forcings against the cor-
responding observed patterns. Here, we are focusing
on one (anthropogenic) signal. The optimal �ngerprint
method then assumes the following statistical model:

C s,t 5 C 0
s 1 bXs,t 1 F s,t, (1)

where C is an observed climate variable (here annual
mean SSS) andC 0 its climatological mean, X is the re-
sponse to anthropogenic forcing,F is a centered noise
term representing internal variability, and s 5 1, . . . , S
and t 5 t0, . . . , T are the spatial and temporal indices,
respectively. The observations are thus represented as
the sum of a scaled simulated response to anthropogenic
forcing and internal variability. The �ngerprints and
observations are a priori depending on space and time.
Due to the relatively short length of the tropical ob-
served SSS record, we follow the common procedure
and mask the time dimension by using linear trend and
epoch difference spatial patterns for the observations
and �ngerprints, respectively. The observed patterns are
taken to be 33-yr SSS linear trends over the 1970–2002
period, thereby masking the time dimension from (1).
Using a scalability hypothesis (see below), the �nger-
print patterns are taken as multimodel ensemble mean
epoch differences between the last 30 yr of the twenty-
�rst century (2070–99) and that of the twentieth century
(1970–99). To account for sampling noise not only in the
observations but also in the signal estimates, the total
least squares (TLS) approach is used to derive unbiased
estimates of the scaling regression coef�cients and con-
�dence intervals (Allen et Stott 2003).
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The optimal detection also requires two independent
estimates of internal variability needed for optimization
(Cn1) and signi�cance testing (Cn2). Simulated and ob-
served spatial patterns are then projected onto a reduced
space spanned by the leadingp empirical orthogonal
functions of Cn1 (see the appendix). The optimal de-
tection then calculates the scaling factor (regression co-
ef�cient) by which the simulated response guess pattern
can be scaled up or down while remaining consistent
with the observed pattern. The 5th–95th percentile un-
certainty range in the scaling factor is then assessed from
the independent internal variability estimate Cn2 and the
anthropogenic forcing response pattern is detected if the
scaling factor is found to be positive and inconsistent with
zero at the 10% signi�cance level.

b. Temporal detection methodology

The statistical model behind the temporal optimal
detection approach can be written as

C s,t 5 C 0
s 1 gsmt 1 F s,t, (2)

with the same de�nitions as above. Within this approach,
the climate change signal is decomposed as a product
gsmt, where m and g are the climate change temporal
and spatial patterns, respectively, and therefore use the
scalability assumption. The idea behind the TOD ap-
proach is to assume thatm is known from model simu-
lations, while g is estimated from the observations via
generalized regression. The TOD approach can then be
seen as a two-step process: �rst, one needs to estimatemt.
Here, rather than using the global mean surface air
temperature (Ribes et al. 2010), we prefer to use an
oceanic integrated variable that can better re�ect upper-
ocean thermal changes linked to changes in radiative
forcing. The second step is the statistical test of the null
hypothesis H0: gs 5 0 against H 1: gs 6¼ 0 assuming
knowledge of mt (see Ribes et al. 2010). TOD also uses
one assumption on the nature ofF , namely that F is
a stationary autoregressive process of order one in time
[AR(1) or red noise, F s,t 5 aF s,t2 1 1 Qs,t, with Qs,t

independent identically distributed random variables].
The TOD hypothesis testing procedure requiresT $ S1 2,
implying that it cannot be applied over the global scale
taking each individual grid point into account. Instead,
we consider a small number of regions in each basin (see
section 5 and Fig. 9a) based on the mean SSS distribution
and data availability and use the spatially averaged an-
nual mean SSS over these regions as pseudogridpoints in
the detection test. Results from the TOD approach are
presented in terms of thep value, which is the probability
of obtaining a value of the test statistic more extreme than
that actually observed under the null hypothesisH0. The

time evolution of the p value is presented in order to il-
lustrate the evolution of the anthropogenic signal and its
emergence. Thep value for a given date, say 1990, is then
the p value of the detection test applied to the data over
the periods 1956–90 and 1970–90 for the Paci�c and At-
lantic, respectively.

4. Observed and future salinity changes

a. Observed and recent salinity changes

SSS changes over the past decades exhibit a strong
Paci�c freshening and Atlantic salinity increase leading
to a strengthening of the mean SSS interbasin contrast,
which re�ects to a large extent the mean pattern of
freshwater �uxes (Fig. 1). The salty Atlantic due to net
evaporation contrasts with a low-salinity Paci�c associ-
ated with a net input of freshwater. Regional SSS changes
of large amplitude seem to follow the rich gets richer
paradigm: the warm and fresh pool of the western Paci�c
has freshened (Cravatte et al. 2009) whereas the salty
subtropical North Atlantic has become saltier (Gordon
and Giulivi 2008). The western equatorial Paci�c and
South Paci�c convergence zone (SPCZ) salinity fronts
have both migrated eastward during the last decades,
leading to a spatial extension of the Paci�c fresh pool
(Cravatte et al. 2009). Salinity increases occurred in the
western Coral Sea and the southeastern and central
North Paci�c. Atlantic changes show more contrast with
freshening of the deep tropical central and north-western
part and saltier waters over the northern subtropics and
southern regions. Whether the equatorial band freshen-
ing is due to decadal variability or represent a lower-
frequency signal is still a matter of debate (Grodsky et al.
2006). Although the density of SSS observations is scarce
in the South Atlantic, the available data show increased
salinity on the eastern and western sides. The main spatial
features of the tropical SSS trend seem to be robust to
the inclusion or not of the recent Argo pro�ling �oat
data (Hosoda et al. 2009; Durack and Wijffels 2010).
Furthermore, the recent (2003–08) Argo-derived South
Atlantic positive SSS anomaly suggests that the corre-
sponding low-frequency signal has a basin spatial scale.
Further examination of Argo data also suggests that the
recent salinity changes are not restricted to the surface
layer and extend at depth, in particular in the subtropical
Atlantic (Von Schuckmann et al. 2009; Durack and
Wijffels 2010).

The observed SSS evolution thus shows intensi�ed
spatial contrasts, suggesting an increase in the marine
tropical hydrological cycle strength. These SSS changes
have been documented in recent studies using related
or independent datasets (Curry et al. 2003; Boyer et al.
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2005; Bindoff et al. 2007; Reverdin et al. 2007; Cravatte
et al. 2009; Durack and Wijffels 2010). However, none of
these studies has tried to formally detect an anthropo-
genic �ngerprint in the observed tropical SSS changes. A
�rst attempt using a one-model detection and attribu-
tion study has recently been done and focused only on
the Atlantic, using as detection vector SSS zonal means
from a coarser observed dataset (Stott et al. 2008).

To support the idea that recent tropical SSS evolution
may re�ect changes in the tropical marine hydrological
cycle, we compare recent observed trends in freshwater
�ux estimates with that of SSS. As we recognize that
there are still large uncertainties regarding the recent
evolution of the two main components of the ocean
freshwater �ux, we are only interested in the presence
or lack thereof of qualitative agreement with SSS changes.
Consequently, we view differences in observed SSS and
freshwater trend estimates as indicative of observed
datasets biases and/or the importance of ocean circula-
tion changes in addition to that of the freshwater forcing.
Coherent changes with recent SSS evolution include in-
creased freshwater �uxes in the western Paci�c and along
the south and intertropical convergence zones, as well
as decreased ones in the central equatorial Paci�c and
central-eastern subtropics (Fig. 2). The observed salinity
increase along the east Australian coast seems to be
partly related to an increase in evaporation combined
with reduced precipitation. Changes in precipitation
usually dominate evaporation ones in particular in the

convergence zones. The much larger zonal and me-
ridional extents of the negative SSS anomalies in the
western Paci�c may be explained through the spread of
SSS anomalies due to the in�uence of mean advection,
including the Ekman divergent drift near the equator and
weakening of the south equatorial current (Huang et al.
2005). The comparison is even more dif�cult for the At-
lantic as the overlap period between the SSS and fresh-
water component datasets is smaller and the decadal
variability is strong in particular in the tropics, which
raises questions concerning the use of a linear trend to
represent the observed changes. Nevertheless, both fresh-
water components seem to contribute to more saline
surface waters in the northern subtropics and midlatitudes
and to a freshening in the western tropical Atlantic.

b. Projected and future salinity changes

Before formally addressing the detection question,
we �rst compare observed SSS trends with twenty-�rst-
century climate model simulations. A �rst guess of the
SSS response to anthropogenic forcing is simply the
changes over the twenty-�rst century as simulated by
the CMIP3 multimodel average. The multimodel mean
SSS change displays large-scale features very similar to
the observed trend with an increased interbasin contrast,
as well as a fresher western Paci�c warm pool and a saltier
subtropical North Atlantic (Figs. 3a,b). Main differences
are located in the equatorial and midlatitude North
Atlantic as well as in the equatorial and subtropical

FIG . 1. Observed SSS trends and means. (a) The 33-yr (1970–2002) linear surface salinity
trend (century2 1) computed from monthly anomalies. White grid boxes indicate regions with
insuf�cient or no data and stippling denotes areas where trends are statistically signi�cant from
0 at the 5% level using a two-sided Student’st test. (b) Climatological mean observed surface
salinities estimated over 1950–2008 and 1970–2002 for the Paci�c and Atlantic, respectively.
Geographical masks were applied in order to prevent mixing of data across the land boundaries.
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central Paci�c. The projected twenty-�rst-century
equatorial Atlantic salinity increase and midlatitude
freshening suggests that the recent and corresponding
observed trend may not necessarily re�ect the long-term
response to anthropogenic forcing. We further note that
most individual models consistently exhibit quite simi-
lar large-scale spatial patterns, suggesting that the mul-
timodel mean can be used as a robust estimate of the
response to anthropogenic forcing, at least in the
tropical and subtropical oceans (Figs. 3 and A1). Although
most models indicate freshening north of 508N, it has
been suggested that the twenty-�rst-century evolution of
the North Atlantic SSS may not be necessarily linear due
to the competing in�uences between the advection of

saltier water from the tropics and local precipitation and
evaporation changes (Stott et al. 2008). Finally, there is no
systematic difference in the projected SSS changes be-
tween models with and without freshwater �ux correc-
tions, suggesting that they can both be used to characterize
the response to anthropogenic forcing. This also indicates
that there is no clear relationship between model skill
levels in simulating the mean state and in capturing the
response to anthropogenic forcing (Santer et al. 2009).

c. Evaluation of model performance in simulating
variability

Most detection studies use climate model control
simulations in which there is no change in forcing as

FIG . 2. Observed freshwater �ux trends: 30-yr (1979–2008) linear trends using annual means
for (a) evaporation from OAFlux and (b) precipitation from the Global Precipitation Clima-
tology Project (GPCP). (c) Total freshwater �ux de�ned as precipitation minus evaporation.
Units are mm day2 1 century2 1.
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