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ABSTRACT

The stationarity of relationships between local and remote climates is a necessary, yet implicit, assumption
underlying many paleoclimate reconstructions. However, the assumption istenuous for many seasonal relation-
ships between interannual variations in the El Ni~noÐSouthern Oscillation (ENSO) and the southern annular mode
(SAM) and Australasian precipitation and mean temperatur es. Nonstationary statistical relationships between
local and remote climates on the 31Ð71-yr time scale, deÞned as a change in their strength and/or phase outside that
expected from local climate noise, are detected on near-centennial time scales from instrumental data, climate
model simulations, and paleoclimate proxies.

The relationships between ENSO and SAM and Australasian precipitation were nonstationary at 21%Ð37% of
Australasian stations from 1900 to 2009 and strongly covaried, suggesting common modulation. Control simulations
from three coupled climate models produce ENSO-like and SAM-like patterns of variability, but differ in detail to
the observed patterns in Australasia. However, the model teleconnections also display nonstationarity, in some
cases for over 50% of the domain. Therefore, nonstationary localÐremote climatic relationships are inherent in
environments regulated by internal variability. The assessments using paleoclimate reconstructions are not robust
because of extraneous noise associated with the paleoclimate proxies.

Instrumental records provide the only means of calibratingand evaluating regional paleoclimate reconstructions.
However, the length of Australasian instrumental observations may be too short to capture the near-centennial-
scale variations in localÐremote climatic relationships, potentially compromising these reconstructions. The un-
certainty surrounding nonstationary teleconnections must be acknowledged and quantiÞed. This should include
interpreting nonstationarities in paleoclimate reconstructions using physically based frameworks.

1. Introduction

Climatic teleconnections describe dynamical links be-
tween the states of two remote atmosphereÐocean systems

Corresponding author address:Dr. Ailie Gallant, School of
Geography and Environmental Science, Building 11, Monash
University, Clayton, VIC, 3800, Australia.
E-mail: ailie.gallant@monash.edu

15 NOVEMBER 2013 G A L L A N T E T A L . 8827

DOI: 10.1175/JCLI-D-12-00338.1

� 2013 American Meteorological Society
�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&

mailto:ailie.gallant@monash.edu


(Liu and Alexander 2007). The processes deÞning tele-
connections are numerous but include the propagation of
atmospheric and/or oceanic wave trains, such as Kelvin or
Rossby waves (Gill 1980; Hoskins and Karoly 1981) and/
or the mass movement of transient eddies such as weather
systems (Seager et al. 2005; Li and Wettstein 2012). This
propagation induces remote effects, resulting in hemi-
spheric or even global responses in climate.

Teleconnections are responsible for a signiÞcant
proportion of Australasian climate variability, deÞned
as the region of the southwest PaciÞc that includes
Australia and New Zealand (Fig. 1). Annual and sub-
annual ßuctuations in the Australasian atmosphere and
ocean state have been linked to the El Ni~noÐSouthern
Oscillation (ENSO) (McBride and Nicholls 1983;
Gordon 1986; Karoly 1989; Drosdowsky 1993; Mullan
1995; Kidson and Renwick 2002; Kidson et al. 2002), the
southern annular mode (SAM) (Karoly 1990; Hendon
et al. 2007; Kidston et al. 2009), modes of variability in the
Indian Ocean (Nicholls 1989; Saji et al. 1999; Ansell and
Reason 2000; Verdon and Franks 2005; Ashok et al. 2007;
Ummenhofer et al. 2009), and the MaddenÐJulian oscil-
lation (Wheeler and Hendon 2004; Wheeler et al. 2009).

The relationships between local and remote climates
may be altered because of the effects of local small-
scale transients (e.g., synoptic-scale weather systems),
inßuences from other dependent and independent dy-
namical systems (Meyers et al. 2007; Fogt et al. 2011),
and changes in the large-scale state of the coupled
atmosphereÐocean system. Therefore, the strengths of
Australasian teleconnections (i.e., the relative inßuence
of the remote dynamical mechanism on regional and
local climates) are not perfectly stationary in time
(Mullan 1995; Nicholls et al. 1996; Verdon and Franks
2006; Risbey et al. 2009).

Reconstructions of the preinstrumental climate using
paleoclimate proxies have utilized teleconnection patterns

to estimate remote (local) climate variations from a lo-
cal (remote) source. For example, past variations in
ENSO have been inferred from tree-ring widths from
New Zealand and Australia (Cook et al. 2006; Fowler
2008; Fowler et al. 2012). Teleconnections to the PaciÞc
Ocean (Verdon and Franks 2006; McGowan et al. 2009),
Antarctica (van Ommen and Morgan 2010), and multi-
ple remote source regions (Gallant and Gergis 2011;
Gergis et al. 2012) have been used to infer past varia-
tions in Australian hydroclimates.

These and other paleoclimate studies are based on the
paradigm of uniformitarianism on sufÞciently long time
scales (Nairn 1965), which assumes that present-day cli-
matic processes are key to understanding past climate
variations. Based on this principle, the spatial and tem-
poral coherence in the climate system is presumed to be
large (i.e., stable). The assumption is made because
mechanistic studies of the present-day climate have
shown partial regulation of local climates by large-scale
dynamical mechanisms (e.g., ENSO) that have remote
and unique effects, for example, through altering local
circulation patterns (Drosdowsky 1993; Kidson 2000).

Most paleoclimate research acknowledges the poten-
tial problems surrounding the assumption of stationarity
but does not, or cannot, perform any rigorous testing. In
practice, those past paleoclimate studies previously de-
scribed have assumed that localÐremote climate relation-
ships are static and have characterized these relationships
using instrumental data for calibration. However, several
studies have described large variations in the behavior of
Australasian localÐremote climate relationships on inter-
decadal and longer time scales in the instrumental record
(Mullan 1995; Nicholls et al. 1996; Power et al. 1999; Pezza
et al. 2007; Ummenhofer et al.2011). If these variations
represent changes to Australasian teleconnection patterns
that are outside the inßuence of a change induced by local
climate noise, then a localÐremote climate relationship

FIG . 1. The map shows the Australasian domain (558SÐ08, 1108EÐ1758W) and the locations of the (left) instrumental
precipitation and (right) mean temperature stations used in this study.
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should be considered dynamic, not static. Thus, the as-
sumptions of stationarity applied to paleoclimate re-
search that reconstructs remote climate drivers from
local information, or vice versa, become tenuous.

This study tests the validity of the assumption that
Australasian teleconnections are stationary in time. We
deÞne these teleconnections as the statistical relationship
between interannual variations in seasonal Australasian
temperature and precipitation and two remote dynamical
drivers, ENSO and SAM. Stationarity, in other words,
a static relationship, is deÞned when the multidecadal
(31Ð71 year) variations in these statistical localÐremote
climatic relationships are consistent with stochastic vari-
ation associated with local climate noise.

Our study is presented as follows. First, the data and
methods are introduced in sections 2 and 3. We then
provide an overview of the relationships between the
local Australasian climate and ENSO and SAM from
the instrumental data in section 4. Stationarity in these
localÐremote climate relationships is tested using in-
strumental, climate model, and paleoclimate proxy data
in sections 5 and 6. The associated issues for paleo-
climate research are presented in section 7, and a dis-
cussion of our Þndings in section 8.

2. Data

Instrumental stations, paleoclimate proxies, and cli-
mate model simulations were employed. Australasia is
deÞned as the area encompassing the Australian and
New Zealand landmasses approximately covered by the
domain 558SÐ08, 1108EÐ1758W (Fig. 1).

a. Instrumental station data

Monthly mean temperature and precipitation data
from stations in Australia and New Zealand were used.
Australian high-quality station data were obtained from
the Australian Bureau of Meteorology (http://www.bom.
gov.au/climate/change/datasets/datasets.shtml). These
represent the highest quality data available and are free
from artiÞcial discontinuities and trends. Further in-
formation on these precipitation and temperature data
and a full list of stations are in Lavery et al. (1997) and
Trewin (2001), respectively. Data for New Zealand were
provided by the National Institute of Water and At-
mospheric Research (NIWA) and represent the best
and longest station records available in the country
(Table 1). The data have been extensively checked and,
although some precipitation records represent a com-
posite of multiple stations, artiÞcial inhomogeneities
were not detected (G. GrifÞths, National Institute
of Water and Atmospheric Research, 2011, personal
communication).

A total of 325 precipitation and 109 temperature sta-
tions were available for Australia and New Zealand
(Fig. 1). There were 307 and 18 precipitation records and
103 and 6 temperature records from Australia and New
Zealand, respectively. While many precipitation sta-
tions began recording in the late nineteenth and early
twentieth centuries, most temperature records did not
begin until the late 1950s and early 1960s.

The links between Australasian climate variables and
the two largest sources of interannual variability in the
Southern Hemisphere, ENSO (Diaz and Markgraf 2000)
and the SAM (Karoly 1990; Thompson and Wallace
2000), were examined. Indices were used that represent
variations in the centers of action of these modes, away
from Australasia. ENSO was represented by the Ni~no-3.4
index (Trenberth 1997), deÞned as the mean sea sur-
face temperature anomaly in the centralÐequatorial
PaciÞc Ocean (58SÐ58N, 1208Ð1708W) and is available
from the U.S. National Center for Atmospheric Research

TABLE 1. Data from the New Zealand monthly-mean tempera-
ture and precipitation stations used in this study. Station records
denoted as a composite include at least two records associated with
a slight change in site location and/or observing practice (e.g.,
a change from manual recording to an automatic weather station;
G. GrifÞths, National Institute of Water and Atmospheric Research,
2011, personal communication).

Station Lon Lat Period

Mean temperature
Milford Sound 167.928E 44.678S 1934Ð2011
Invercargill Airport 168.33 8E 46.428S 1948Ð2011
New Plymouth Composite 174.188E 39.018S 1944Ð2011
Paraparaumu Airport 174.988E 40.918S 1953Ð2011
Tauranga Composite 176.168E 37.698S 1913Ð2011
NapierÐNelson Park 176.918E 39.508S 1905Ð2011

Precipitation
Milford Sound 167.928E 44.678S 1929Ð2010
Invercargill Airport 168.33 8E 46.428S 1939Ð2010
Queenstown 168.668E 45.048S 1930Ð2010
Campbell Island 169.158E 52.558S 1941Ð2010
DunedinÐMusselburgh

Composite
170.518E 45.908S 1918Ð2010

Hokitika Airport 170.99 8E 42.728S 1964Ð2010
Christchurch Airport 172.548E 43.498S 1943Ð2010
Nelson Airport 173.238E 41.308S 1941Ð2010
New Plymouth Composite 174.188E 39.018S 1944Ð2010
WellingtonÐKelburn 174.778E 41.298S 1928Ð2010
Paraparaumu Airport 174.988E 40.918S 1945Ð2010
WanganuiÐSpriggens Park 175.048E 39.948S 1937Ð2010
HamiltonÐRuakura 175.318E 37.788S 1907Ð2010
Tauranga Airport Composite 176.208E 37.678S 1941Ð2010
NapierÐNelson Park 176.918E 39.508S 1964Ð2010
Gisborne Airport Composite 177.998E 38.668S 1937Ð2010
Raoul Island 177.928W 29.258S 1937Ð2010
Chatham Island 176.578W 43.958S 1951Ð2010
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from 1871 to 2009 (http://www.cgd.ucar.edu/cas/catalog/
climind/Nino_3_3.4_indices.html). The SAM index re-
presents the difference between the normalized zonally
averaged sea level pressure anomalies at 408and 608S,
which were generated from 12 stations near these lati-
tude lines (Marshall 2003). The SAM index was avail-
able from 1957 to 2009. Visbeck (2009) applied the
Marshall (2003) method with relaxed criteria for station
selection and an assumption of atmospheric mass con-
servation between the Southern Hemisphere subtropics
and midlatitudes. This produced an extended station
dataset that included subtropical stations, which were
used to construct a monthly SAM index from 1884 to
2005. For their overlapping period, the Visbeck SAM
index (hereafter referred to as SAMv) correlates strongly
with the Marshall SAM index ( r 5 0.85) (Visbeck 2009).

The Ni~no-3.4 and SAM indices and mean temperature
and precipitation data were examined from 1960 to 2009.
The precipitation stations were examined from 1900 to
2005 for the SAMv index, and from 1900 to 2009 for the
Ni~no-3.4 index. Hereafter, these data are described as
being examined over the period 1900-2005/09 to denote
the different data availability of the SAMv and Ni ~no-3.4
indices. A small subset of extended mean temperature
stations was also examined from 1920 to 2005/09.

b. Climate model data

Monthly surface temperature and precipitation data
from multicentennial control simulations from three dif-
ferent coupled oceanÐatmosphere general circulation
models (GCMs) were employed, namely the Geophysical
Fluid Dynamics Laboratory Climate Model version(s) 2.0
(GFDL CM2.0) and 2.1 (GFDL CM2.1), and the third
climate conÞguration of the Met OfÞce (UKMO) Hadley
Centre UniÞed Model (HadCM3). These three models
were selected as they have some of the most realistic
dynamical simulations of ENSO from phase 3 of the
Coupled Model Intercomparison Project (CMIP3) suite
of GCMs (Guilyardi et al. 2009). The Ni ~no-3.4 and SAM
indices were generated from model output using the
same deÞnitions as for the instrumental data.

The GFDL CM2.0 and CM2.1 control simulations were
500 years long and are described in detail in Delworth et al.
(2006). Both are fully coupled atmosphereÐocean models
with no ßux adjustments and differ primarily in their
dynamical treatment of the atmosphere. They have the
same grid resolution and the land and atmosphere com-
ponents utilize a 2.08latitude by 2.58longitude grid with
24 vertical levels. The ocean component has 50 vertical
levels and is on a 1.08latitude by 1.08longitude grid pole-
ward of 308with resolution increasing to 1/38at the equator.

The control simulation from the UKMO-HadCM3
model spans 341 years. The UKMO-HadCM3 is also

a fully coupled model without ßux adjustments but has
coarser resolution in both atmosphere and ocean compo-
nents compared to the GFDL models. The resolution of
the atmospheric component is 2.758latitude by 3.758lon-
gitude with 19 vertical levels,and the ocean component has
resolution of 1.258latitude by 1.258longitude with 20 ver-
tical levels. Detailed descriptions of the model can be
found in Johns et al. (1997) and Gordon et al. (2000).

c. Paleoclimate proxy data

Three published Australasian paleoclimate proxy re-
cords and reconstructions, and two remote proxy re-
constructions of the Ni~no-3.4 index, were examined.

The Þrst Australasian record was a precipitation re-
construction for tropical northeast Queensland, Australia
(Lough 2007). Variations in luminescence from up to 25
coral cores were used to generate four local river ßow
reconstructions within the approximate domain 178Ð238S,
1468Ð1518E. Reconstructed river ßow was then regressed
against precipitation across the same domain, producing
a precipitation reconstruction spanning AD 1631Ð2005.

The second Australasian proxy record was theAgathis
australis (kauri) tree-ring master chronology, generated
from 196 trees at 14 sites in the northwest of the North
Island of New Zealand (Fowler et al. 2008). Nonclimatic
trends were removed using a 200-yr spline. The kauri
tree-ring width is responsive to local temperature and
precipitation (Buckley et al. 2000) but shows a stronger
statistical response to the Southern Oscillation index and,
therefore, ENSO (Fowler et al. 2008). The chronology
used here was uncalibrated and the record spans AD
1580Ð2002.

The third Australasian record was a temperature recon-
struction for Tasmania. The reconstruction was developed
from living and subfossil tree-ring records of the Huon Pine
from around Mt. Read in western Tasmania (Cook et al.
2000). The well-replicated record is sensitive to warm sea-
son (NovemberÐApril) temperatures and has been Þltered
to remove outliers associated with summer freeze events.
The full record extends from 1600 BC to AD 1991.

The Þrst reconstruction of the Ni~no-3.4 index was de-
veloped from up to eight coral records in the central
and eastern equatorial PaciÞc in a region where the local
observed SSTs were strongly, positively correlated
with the observed Ni~no-3.4 index. The reconstruction
(hereafter COA) has limited input data prior to 1850,
making replication and validation difÞcult (Wilson et al.
2010). However, we use it because of its proximity to the
Ni~no-3.4 region. The reconstruction extends from AD
1607Ð1998.

The second reconstruction of the Ni~no-3.4 index was
generated from a network of 404 tree-ring width records
in the southwest United States and Mexico (hereafter
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called TEXMEX) (Cook et al. 2008). The tree-ring net-
work utilizes the existence of teleconnections between
North America and the tropical PaciÞc Ocean. The tree-
ring records were used to develop a Þeld reconstruction
of SSTs in the tropical PaciÞc Ocean over a domain that
included the Ni~no-3.4 region previously deÞned. The re-
constructed SST variations were then used to generate
the TEXMEX Ni ~no-3.4 index using the same method-
ology as in Trenberth (1997).

The relationships between the Ni~no-3.4 reconstruc-
tions and the two Australasian proxy reconstruction data-
sets were examined over the period of AD 1631Ð1998.
Those running correlations calculated using the Tasmanian
temperature reconstruction were computed to AD 1991
only.

3. Historical relationships between ENSO/SAM
and the Australasian climate

The historical relationships between ENSO/SAM and
the Australasian climate are well understood. A review
of these relationships is now presented, employing data
that were described in section 2.

Typically, higher sea level pressures over the west
PaciÞc have occurred during El Ni~no events, which are
associated with changes to the Walker circulation (Troup
1965; Drosdowsky and Williams 1991; Allan et al. 1996;

Diaz and Markgraf 2000). The correlations between the
Ni~no-3.4 index and Australian stations conÞrmed that
much of the country was warm and dry during past El
Ni~no events and cool and wet during La Ni~na events, with
the strongest relationships during austral spring and early
summer (Fig. 2) (McBride and Nicholls 1983; Drosdowsky
and Williams 1991; Nicholls et al. 1996; Risbey et al. 2009).
During DecemberÐFebruary (DJF) the magnitudes of
these correlations were often above 0.5, although in-
verted for precipitation.

There were inverse correlations between the Ni~no-3.4
index and mean temperatures in New Zealand. These
were strongest on the North Island (2 0.27, r , 2 0.53)
and link El Ni ~no (La Ni ~na) events to cooler (warmer)
temperatures (Mullan 1995, 1998; Kidson 2000). In New
Zealand, the precipitation patterns associated with
ENSO are complex owing to orographic inßuences (Fig.
2). La Ni ~na events have previously been linked to wetter
conditions, especially in the North Island, and El Ni ~no
events with wetter conditions in the south and west of
the South Island and dry conditions elsewhere, partic-
ularly during DJF (Mullan 1998; Kidson 2000; Lorrey
et al. 2007).

A positive SAM is deÞned as having stronger than
normal high-latitude westerly winds and a more poleward
storm track, and vice versa for negative SAM (Marshall
2003). The positive correlations with surface pressure

FIG . 2. The mean of the 31-yr running correlations between (top) mean temperature and the Ni~no-3.4 index and
between (middle) precipitation and the Ni ~no-3.4 index, during (left) DJF and (right) JJA for Australasian stations.
Contours show the correlations between mean sea level pressure and the Ni~no-3.4 index for each season. All cor-
relations were computed using the period of 1960Ð2009. (bottom) The time series shows the Ni~no-3.4 index from 1900
to 2009 during DJF (red) and JJA (blue).
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over the southern half of the Australasian domain are
consistent with this deÞnition (Fig. 3).

The links between SAM and the Australasian climate
varied seasonally and spatially (Fig. 3) (Hendon et al.
2007; Meneghini et al. 2007; Kidston et al. 2009; Risbey
et al. 2009). Warm conditions in southern Australia and
New Zealand were associated with positive SAM during
DJF (Kidston et al. 2009). These relationships were in-
verted during JuneÐAugust (JJA) in southern Australia
only. During DJF almost all stations on the Australian
mainland had higher precipitation totals with positive
SAM (Hendon et al. 2007; Meneghini et al. 2007; Risbey
et al. 2009). However, for Tasmania and much of New
Zealand, positive SAM was associated with lower pre-
cipitation totals in both seasons.

4. Methods

This study examines multidecadal variations in the
strength of interannual relationships between Aus-
tralasian temperature and precipitation and ENSO and
SAM. Given that teleconnections have distinct sea-
sonal signals, monthly data were averaged over the
austral summer, DecemberÐFebruary (DJF), and win-
ter, JuneÐAugust (JJA). Stations from the high-quality
instrumental datasets were included only if they were
more than 80% complete. Seasonal anomalies were
generated relative to 1971Ð2000 for the instrumental
data and relative to all years from the model simulations
and the paleoclimate proxy data. However, note that,

because anomalies are linear transformations, the choice
of base period has no effect on the correlation. All data
were detrended using linear regression so that there was
no inßuence from long-term trends, including model drift.

The relationships between Australasian and remote
climate data were measured as 31-yr running correlations.
While correlations do not include any dynamical inter-
pretation, they are useful tools for elucidating climatic
relationships. Using 31 years minimized data loss due to
the use of running correlations and was particularly im-
portant for the instrumental data, which mostly spanned
only 50 years. Longer windows of 51 and 71 years were
also applied to the model data to examine sensitivity of
the results to the sample length (see section 6).

Nonstationarity implies the existence of dynamical
(i.e., variable) relationships between local and remote
climates, rather than static relationships. Our null hy-
pothesis was that the multidecadal-scale (31Ð71 yr)
variations in the correlations between the Australasian
mean temperature or precipitation and the Ni ~no-3.4 and
SAM indices are stationary. A nonstationary tele-
connection was deÞned if the running correlation time
series fell outside a two-tailed 95% conÞdence interval
generated from synthetic, stochastic data.

We used synthetic running correlations, similar to van
Oldenborgh and Burgers (2005) and Sterl et al. (2007),
to develop our 95% conÞdence interval. The synthetic
running correlations were developed from stochastic
precipitation and mean temperature series that had the
same statistical properties as the instrumental, model, or

FIG . 3. As in Fig. 2 but for the SAM index. The time series shows the SAM index from 1960 to 2009.
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proxy data and the same relationships with the Ni~no-3.4
or SAM indices. Thus, the relationship was assumed to
be static and to vary because of stochastic variation in
local mean temperature or precipitation only.

These variables were deÞned as

y(t) 5 a0 1 a1c(t) 1 s y

�������������
12 r2

p
[hy(t) 1 bhy(t 2 1)] ,

(1)

where y(t) is the synthetic precipitation or temperature
series. The coefÞcientsa0 and a1 describe the regression
relationship between local precipitation or temperature
and the Ni~no-3.4 or SAM index, c(t). The Þnal term
describes the magnitude of the local climate noise that
inßuences the strength of this regression relationship.
This was weighted by the standard deviation of the
variable s y and the proportion of the variance not as-
sociated with the regression relationship

������������
12 r2

p
, where

r is the correlation between the climate index and pre-
cipitation or mean temperature. We used red noise
[hy(t) 1 bhy(t 2 1)], deÞned as the combination of ran-
dom Gaussian noisehy(t) with unit standard deviation
and zero mean, and the autocorrelation at lag 1 (b). One
thousand variants of y(t) were generated and the run-
ning correlations between these and the Ni~no-3.4 or
SAM index, c(t), were computed. From these, a proba-
bility density function (PDF) of the range of running
correlations that could be expected from a relationship
only inßuenced by local climate noise was generated and
the 95% conÞdence interval was estimated. Note that
a second conÞdence interval was generated using an
estimate of the PDF directly from the data being tested
(i.e., an empirical conÞdence interval). The results were
insensitive to the method applied, particularly for the
longer GCM and paleoclimate proxy datasets.

In statistics, the variance of strong sampled correla-
tions is implicitly lower than weak sampled correlations
due to the Þnite bounds of correlations between minus
one and plus one. So, all running correlations were
translated to Fisher z scores (Wilks 2011) in order to
stabilize variance for statistical testing using

Z 5
1
2

ln
�
(1 1 r)
(1 2 r)

�
, (2)

whereZ is the Fisherz score andr is the correlation. The
resulting PDFs of Z for each location were normally
distributed, so the 95% conÞdence interval (CI) was ap-
proximated as CI5 Z 6 1:96SDZ , whereZ was the mean
from all simulations and SDZ the standard deviation.

The mean of the 31-yr running correlations (r) was
used to deÞne the typical strength of the teleconnection.

The mean was calculated as an inverse transform of the
mean Fisherz score (Z) given by

r 5
eZ 2 e2 Z

eZ 1 e2 Z
. (3)

Spatiotemporal coherence in any nonstationary time
series was examined by computing empirical orthogonal
functions (EOFs) and their related principal components
(PCs) from the running z scores (Wilks 2011). All stations
were weighted using Thiessen polygons (Thiessen 1911)
so that the EOFs were not biased toward areas with
higher station density.

Field signiÞcance was computed to determine whether
the number of stations registering nonstationarity was
greater than that expected by random chance, as in
Livezey and Chen (1983). Field signiÞcance levels were
adjusted to account for the reduced number of degrees of
freedom associated with this spatial coherence between
stations and grid boxes. Field signiÞcance was determined
as in Sterl et al. (2007) using adjusted degrees of freedom
N, deÞned as

N 5 sin2 2L
2

, (4)

where L is the decorrelation length scale:L was com-
puted for each station i (L i) and was the median
e-folding distance in degrees along a great circle arc, that
is, the distance at which the correlation between stationi
and all other stations reached 1/e. The distanceL i varied
between stations and was dependent on aspects such as
topography and remoteness from other stations. For
example, New Zealand stations generally had smaller
values of L i compared to Australian stations. Thus, we
usedL as the median ofL i.

To assess the ability of the GCMs to simulate the re-
lationships between local and remote data, irregular sta-
tion observations had to be translated to the model grids
to allow for direct comparison. The instrumental grids
were computed as area averages from nearby stations
where the station weights were deÞned using Thiessen
polygons. A station was only included in a gridbox aver-
age if it was within a minimum distance of inßuence from
the grid box. Given the differences between L i as pre-
viously described, the distance of inßuence was deÞned as
the conservative estimate ofL 5 min(L i). The grid boxes
where no station was within distanceL were ignored.

5. Testing stationarity in the relationships between
ENSO/SAM and the Australasian climate

Stationarity in the variations of the 31-yr running corre-
lations between Australasian temperature and precipitation
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and the Ni~no-3.4 and SAM indices were tested using
instrumental (section 5a), climate model (section 5b),
and paleoclimate proxy (section 5c) data. The results
highlight the existence of a signiÞcant number of non-
stationary localÐremote climate relationships.

a. Instrumental data

Nonstationarities were detected in the 31-yr running
correlations between the observed Ni~no-3.4 and SAM
indices and Australasian meteorological stations. These
were most evident in the longer time series beginning in
1900 or 1920. In the shorter time series spanning 1960Ð
2009, there was a total of 49 nonstationary time series
(Fig. 4). These relationships were mostly associated with
precipitation (8% of stations) and mean temperature
(26% of stations) and the SAM index during DJF and
were Þeld signiÞcant at the 5% level.

Nonstationarities were detected in eight cases for
temperature stations with data available from 1920. Five
of these were in southeast Australia or on the east coast
of the North Island of New Zealand. These stations had
nonstationary relationships with the SAMv during DJF
or JJA and represented 33% and 43% of all available
temperature stations, respectively. The remaining three
cases represented 50% of all available temperature sta-
tions and all occurred on the southeast Australian coast
for the DJF relationships between mean temperature the
Ni~no-3.4 index.

Using precipitation data from 1900, nonstationary
correlations with the Ni ~no-3.4 and SAMv indices were

detected at 61 and 99 stations (21% and 34% of all avail-
able stations) during DJF and 68 and 108 stations (23%
and 37% of all available stations) during JJA (Fig. 5).
This represents a 4-fold to 68-fold increase compared to
the data from 1960. The number of nonstationary loca-
tions was Þeld signiÞcant at the 5% level in every case.

The increases in the number of nonstationarities using
the longer time series suggest that variations in localÐ
remote climate relationships are inconsistent with
stochastic variations in the local climate on time scales
longer than 50 yr. Provided the running correlations
represent a real change in the relative inßuence of the
ENSO or SAM on the Australasian climate, then the
station time series should display some spatiotemporal
coherence, which was examined using EOF analysis.

Figure 5 identiÞes those stations that most strongly
loaded the Þrst two EOFs of the nonstationary 31-yr
running correlations between precipitation and the
Ni ~no-3.4 and SAMv indices from 1900 to 2005/09 and
shows their corresponding PCs. The strongest EOF
loadings were commonly concentrated in eastern and/or
southwest Australia. Furthermore, the temporal co-
herence of these modes was consistent between those
relationships based on the Ni~no-3.4 and SAMv indices.
The strongest similarities were between the variations
of the PCs computed using the Ni~no-3.4 and SAMv
indices during DJF and the SAMv index during JJA.
The magnitudes of the correlations between these PCs
were between 0.84 and 0.94, although they were some-
times out of phase (Fig. 5). Accounting for sample sizes

FIG . 4. The map shows the precipitation stations where there were nonstationary relation-
ships with the Ni~no-3.4 index (light blue triangles) and the SAM index (dark blue squares) over
the period 1960 to 2009 during DJF (open symbols) and JJA (closed symbols). Also shown are
the temperature stations where there were nonstationary relationships with the SAMv index
during DJF (light yellow squares) from 1960 to 2005. The inset plot shows the corresponding
31-yr running correlation time series associated with each station, where the colors of each time
series match the color of the symbol used for the stations on the map. The thinner and thicker
lines represent DJF (open symbol locations) and JJA (closed symbol locations), respectively.
The points in each time series represent the center of the running 31-yr window.
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and large autocorrelations as in Bretherton et al. (1999),
these 31-yr running correlations were statistically sig-
niÞcant at the 3% level.

Figure 6 shows examples of the similarities in the
variations of the 31-yr running correlation time series at
the stations most strongly associated with the Þrst PCs
from all precipitation-based relationships from 1900Ð
2005/09. Note that these precipitation-based variations
also resemble the variations in the nonstationary re-
lationships based on temperature from 1920Ð2005/09.
During DJF, the common signals were manifest at sta-
tions in western and eastern Australia but were out of
phase in the two regions (Fig. 6). During JJA, the vari-
ations associated with SAMv were out of phase com-
pared to those associated with the Ni~no-3.4 index, but
were in phase at all stations regardless of their location.

This temporal coherence between stations suggests
that there might be a common modulator of localÐ
remote ENSO- and SAM-based climatic relationships in

Australasia. Note that the SAMv index is partially based
on station data from the subtropics early in the record
and so may be displaying some dependence on ENSO.
However, the similarities in the data from 1960 with the
Marshall (2003) SAM index, which uses high-latitude
stations only, suggests this is not necessarily the case.

Any mechanism causing the larger-than-expected var-
iations in the teleconnected relationships would fall into
one or both of two general categories. The Þrst is that
there is a common, but external, process affecting the
relative inßuence that ENSO and SAM have on local
climatic variations. The second is that there is a direct
change in the characteristic behavior of ENSO and/or
SAM (Kestin et al. 1998; Power et al. 1999; Verdon et al.
2004) perhaps resulting from, or at least including, an
interaction between the two (Fogt et al. 2011).

To investigate, we identiÞed signiÞcant associations
between the changes in the characteristics of the Ni~no-
3.4 or SAM indices and the timing of nonstationarities,

FIG . 5. The maps show the stations where there were nonstationary relationships between
precipitation and the Ni ~no-3.4 (triangles) and SAMv (squares) indices from 1900Ð2005/09
during (top) DJF and (bottom) JJA. The 30% of stations most strongly loading the Þrst (blue)
and second (red) EOFs computed from the running z scores (see section 4) are in color. The
inset plots show the standardized variations of the principal components associated with each
EOF. The variance explained by each component is provided in the top left of each plot.
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deÞned as the time when the running correlation fell
outside the two-tailed 95% conÞdence interval. This
identiÞed how likely the nonstationarity was to be di-
rectly associated with a change in the behavior of the
driving mechanism(s) compared to an injection of ex-
ternal noise or forcing into the system. Two statistics
representing the characteristics of ENSO and the SAM
were calculated: (i) the mean state, deÞned as the 31-yr
mean value of the Ni~no-3.4 and SAM indices, and (ii)
the magnitude of the interannual variations, deÞned as
the standard deviation of each index over running 31-yr
periods. These statistics were averaged over then non-
stationary periods identiÞed in each 31-yr running cor-
relation time series. The nonstationary values were then
compared to a 95% conÞdence interval generated from
up to 120 randomized permutations of the remaining
n-averaged stationary periods, deÞned as those times
where the 31-yr correlation did not exceed the 95%
conÞdence interval. Both successive and nonsuccessive
stationary periods were used to generate the conÞdence
interval to ensure that any temporal dependence was

retained. We deÞned a statistically signiÞcant associa-
tion between the state of the remote climate driver and
nonstationary localÐremote climatic relationships when
the mean value calculated over the nonstationary pe-
riods was outside this 95% conÞdence interval.

There were signiÞcant relationships between non-
stationarities and the statistical characteristics (i.e., the
mean and variance) of the Ni~no-3.4 and SAMv indices at
23% and 40% of nonstationary precipitation stations, re-
spectively, during JJA. There were fewer signiÞcant re-
lationships during DJF, at 16% and 18% of nonstationary
precipitation stations. Likewise, more nonstationary
temperature stations had statistically signiÞcant links to
the statistical characteristics of the climate indices dur-
ing JJA (two stations) than in DJF (one station). The
signiÞcant changes described were more likely to be as-
sociated with a change in variance than the mean and more
likely to occur in JJA. These results suggest that internal
changes in the ENSO and SAM explain the observed
behavior, rather than changes in the teleconnections.

b. Climate model data

We do not attempt to directly compare the GCM
output described in section 2 to the instrumental data.
As shown below, the GCMs are inconsistent in their
ability to simulate the spatiotemporal variations in the
relationships between the Australasian climate and re-
mote climate drivers realistically. Instead, our assessment
examines whether we should expect nonstationarity in an
environment solely regulated by the internal dynamics of
the atmosphereÐocean system. In other words, is it pos-
sible that internal dynamical interactions alone can cause
signiÞcant changes to the relationships between the
Australasian climate and the remote processes impor-
tant to its regulation?

The ability of the simulated Ni ~no-3.4 and SAM in-
dices to represent ENSO- and SAM-like dynamics in the
models was Þrst tested. Figure 7 shows that the indices
produce ENSO-like and SAM-like patterns in sea sur-
face temperatures (SSTs) and sea level pressure (SLP)
(e.g., Figs. 2 and 3). However, there were some differ-
ences compared to the observed patterns that inßuenced
their subsequent relationships with the Australasian
climate in the simulations. For example, in all models,
the canonical coupled atmosphereÐocean ENSO pattern
over the tropical PaciÞc Ocean extended too far to the
west. Also, the correlations between modeled SAM and
SLP over Australasia were stronger than observed and
extended too far north compared to Figs. 2 and 3, partic-
ularly in the GFDL CM2.0 simulation. These differences
in the dynamical representations of the Ni~no-3.4 and
SAM indices mean that the teleconnections have different
strengths and/or spatial patterns compared to reality.

FIG . 6. Each plot shows the time series from the 30% of stations
most strongly loading the Þrst EOFs of the 31-yr running correla-
tions, indicated by the labels, from 1900 to 2005/09. The orange
time series are from stations in the western half of the domain and
the green from the eastern half of the domain, deÞned as west or
east of 1308E.
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