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ABSTRACT

Obtaining multiple estimates of future climate for a given emissions scenario is key to understanding the
likelihood and uncertainty associated with climate-related impacts. This is typically done by collating model
estimates from different research institutions internationally with the assumption that they constitute in-
dependent samples. Heuristically, however, several factors undermine this assumption: shared treatment
of processes between models, shared observed data for evaluation, and even shared model code. Here,
a ÔÔperfect modelÕÕ approach is used to test whether a previously proposed ensemble dependence trans-
formation (EDT) can improve twenty-Þrst-century Coupled Model Intercomparison Project (CMIP) pro-
jections. In these tests, where twenty-Þrst-century model simulations are used as out-of-sample ÔÔobservations,ÕÕ
the mean-square difference between the transformed ensemble mean and ÔÔobservationsÕÕ is on average 30%
less than for the untransformed ensemble mean. In addition, the variance of the transformed ensemble
matches the variance of the ensemble mean about the ÔÔobservationsÕÕ much better than in the untransformed
ensemble. Results show that the EDT has a signiÞcant effect on twenty-Þrst-century projections of both
surface air temperature and precipitation. It changes projected global average temperature increases by as
much as 16% (0.28C for B1 scenario), regional average temperatures by as much as 2.68C (RCP8.5 scenario),
and regional average annual rainfall by as much as 410 mm (RCP6.0 scenario). In some regions, however, the
effect is minimal. It is also found that the EDT causes changes to temperature projections that differ in sign for
different emissions scenarios. This may be as much a function of the makeup of the ensembles as the nature of
the forcing conditions.

1. Introduction

The Coupled Model Intercomparison Project (CMIP)
climate model ensembles (Meehl et al. 2007a; Taylor
et al. 2012) that underpin Intergovernmental Panel on
Climate Change (IPCC) assessment reports (Meehl
et al. 2007b; CMIP 2013a) are commonly described
as ÔÔensembles of opportunityÕÕ (Tebaldi and Knutti
2007; Knutti et al. 2010a), in the sense that their makeup
is determined by the ability of climate research groups to
contribute to them. ScientiÞc ability is typically mitigated

by operational pressures, funding limitations, or com-
putational resource constraints, so that submissions from
any particular group, should they be able to participate,
generally reßect their institutionÕs internal priorities.

As a sampling strategy for projecting possible climate
futures, this approach is extremely difÞcult to disen-
tangle. Some groups may submit a single simulation for
a given emissions scenario, others an entire ensemble
(generated in a variety of different ways) or even several
ensembles from variants of their own model (seeCMIP
2013b). In addition, since research groups share expertise,
a literature base, observational datasets, and even model
code, the probability that climate models share systematic
errors is high and hence the assumption of model in-
dependence is correspondingly poor (S. Jewson and
E. Hawkins 2009, unpublished manuscript;Abramowitz
2010; Knutti et al. 2010a,b).
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Any quantitative deÞnition of dependence in this
context, however, requires assumptions about the re-
lationship between observations and model ensemble
spread, as well as what causes the spread. If, for exam-
ple, we believe that a ÔÔperfect modelÕÕ should essentially
match observations of a particular variable, excepting
some noise from model approximationsÑthe so-called
truth-plus-error or truth-centered paradigm of inter-
pretation ( Knutti et al. 2010a; Annan and Hargreaves
2010)Ñthen truly independent models should have zero
error correlation, as we would expect for independent
random variables.

While this conceptualization of an ensemble of in-
dependent models is intuitive, it is not appropriate for
ensembles of the climate system. If errors (i.e., model
minus observation) from independent models were un-
correlated, the error variance of the ensemble mean
would be inversely proportional to the ensemble size,
going to zero as the ensemble size approaches inÞnity.
The only barrier to the ensemble mean approximating
observations arbitrarily closely in this case is the number
of independent models in the ensemble. Aside from
there being strong anecdotal evidence contradicting this
paradigm of ensemble interpretation (e.g.,Knutti et al.
2010b; Annan and Hargreaves 2010), it implies that in-
ternal variability, such as El NiñoÐSouthern Oscillation
(ENSO) and even weather patterns, is predictable with
arbitrary precision. That is, the truth-plus-error para-
digm of interpretation implies that the climate system is
deterministic.

While it might be tempting to argue that each modelÕs
internal variability should be considered as part of the
ÔÔmodel noiseÕÕ within the truth-plus-error paradigm, the
internal variability in the observations will be common
to the model-minus-observation time series of all
models. That is, the model mean will not converge to the
observations, and the model-minus-observation time
series for independent models will have nonzero corre-
lation. Alternatively, suggesting that the truth-plus-
error paradigm applies only to long time scale averages
is to ignore the very high likelihood that internal vari-
ability operates on longer time scales (e.g.,Ault et al.
2013; James and James 1989). In short, we see no de-
fensible justiÞcation for the truth-plus-error paradigm.

An alternative is to conceptualize models and obser-
vations as being drawn from the same distribution (e.g.,
Annan and Hargreaves 2010; Bishop and Abramowitz
2013). Imagine, for example, a distribution deÞned by
sampling across many replicates of Earth under identical
climate forcing and different but observationally con-
sistent initial conditions. Chaotic aspects of the climate
system would then naturally lead to a range of possible
climate system states in the replicate Earths. This idea is

already well accepted in the context of weather pre-
diction ( Hamill et al. 2000; Gneiting and Raftery 2005)
and climate modelsÕ internal variability (Collins et al.
2001; Deser et al. 2012). In this conceptualization of
a perfect ensemble, our own Earth would effectively be
one random sample from the climate probability distri-
bution function (CPDF) deÞned by these replicate
Earths and a perfect model simulation, were we able
create such a thing, would be another random sample
(Bishop and Abramowitz 2013). The CPDF would
therefore deÞne the nature of the internal variability of
EarthÕs climate system and allow true probabilistic
prediction of greenhouse gasÐinduced change for
a given emissions scenario, not just in mean tempera-
tures but also the frequencies of high impact events such
as droughts, ßoods, heatwaves, storm surges, and tropi-
cal cyclones.

We clearly cannot claim that climate models are
replicate Earths in this sense, but viewing them as at-
tempts to create replicate Earths is useful. While we may
conceptually understand perturbed initial conditions
ensembles as being attempts to deÞne the CPDF, there
is evidence that they exhibit too little internal variability
(Haughton et al. 2014; Ault et al. 2013; England et al.
2014), and at least heuristically most would agree that an
ensemble generated by a single model is insufÞcient for
producing independent estimates of future climate.
Dependence within an ensemble increases the discrep-
ancy between the PDF of climate model forecasts and
the true CPDF associated with a prescribed emissions
scenario.

In attempting to ameliorate the ill effects of model
dependence on ensemble-based estimates of the CPDF,
Bishop and Abramowitz (2013) showed that an ensem-
ble of replicate Earths (perfect models) would have two
key statistical properties:

1) The best estimate to any replicate Earth (in a mean-
square difference sense) is the mean of the CPDF.
Over a long enough time period, the linear combi-
nation of replicate Earths that would minimize the
mean-square distance to observations of any variable
on our Earth would be the equally weighted ensem-
ble mean.

2) Over a long enough period, all replicate Earths would
have the same variance about the CPDF mean. In
particular, if the temporal change in the CPDF vari-
ance is slow, the time-averaged mean of the instanta-
neous CPDF variance will approximate the variance
over time of our Earth about the CPDF mean.

Bishop and Abramowitz (2013) developed a mathemat-
ical postprocessing procedure that transforms raw de-
pendent ensembles into ensembles that have the above
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two replicate Earth-like properties. We will refer to this
as the ensemble dependence transformation (EDT).
They also showed that the EDT resulted in much ßatter
rank histograms for surface air temperature when com-
pared to 1970Ð99 Hadley Centre/Climate Research Unit
Temperature data, version 3 (HadCRUT3; Brohan et al.
2006), suggesting that observations and the transformed
ensemble are more likely to be drawn from the same
distribution than observations and the original CMIP
ensemble. The work presented here aims to test the ef-
Þcacy of applying this approach to improve twenty-Þrst-
century CMIP projections and examines the results of
doing so.

In the next section, we brießy describe the model
simulations and observational data used to investigate
the effect of the EDT. In section 3, we review the work-
ings of the EDT process. Insection 4, we create an out-of-
sample testing environment to try to examine the ability
of the EDT to improve twenty-Þrst-century CMIP pro-
jections. In section 5, we examine the results of applying
the EDT to CMIP5 surface air temperature and pre-
cipitation projections. Section 6 contains discussion and
conclusions.

2. Model simulations and observational data

The EDT process uses properties 1 and 2 above, to-
gether with an observational dataset and a twentieth-
century CMIP ensemble, to try to infer characteristics of
the true CPDF. We examine surface air temperature
using the monthly 58 3 58HadCRUT4.2 dataset (Morice
et al. 2012) for the period 1970Ð2004 and precipitation
using the monthly Global Precipitation Climatology
Project, version 2.2 (GPCP2.2) 2.58 3 2.58 dataset
(Adler et al. 2003) for 1979Ð2004. Parameters for the
EDT are derived for both phase 5 of CMIP (CMIP5;
Taylor et al. 2012) and phase 3 of CMIP (CMIP3; Meehl
et al. 2007a) ensembles using all historical simulations
that have contiguous twenty-Þrst-century counterparts
for each scenario. We include representative concen-
tration pathways (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5; Meinshausen et al. 2011) and SRES scenarios
(B1, A2, and A1B; Nakicenovic and Swart 2000). Note
that for the three CMIP3 ensembles the in-sample pe-
riod is shortened to 1970Ð99 (temperature) and 1979Ð99
(precipitation). The CMIP5 projection period was
shortened to 2006Ð99 and CMIP3 was shortened to
2004Ð98 to maximize the number of simulations avail-
able. All parameter calculations weight grid cells by their
relative surface areas. The number of contiguous (e.g.,
1970Ð2099) simulations for each model and each scenario
is shown inTable 1. Once derived, the EDT parameters
are applied out of sample to each twenty-Þrst-century

scenario ensemble. The process, described in detail be-
low, is summarized in the ßowchart inFig. 1.

3. The ensemble dependence transformation

Since we only have one Earth, categorically deÞn-
ing the properties of the true CPDF is impossible. By

TABLE 1. The number of simulations from each CMIP5 model
used that had contiguous historical and RCP simulations, shown
separately for each RCP. Rows with boldface numbers indicate
models that contributed different numbers of runs to each RCP,
affecting the comparability of ensemble results for different RCPs.
Italicized rows indicate models that were excluded from the
pseudo-independent sampling strategy. Model acronym expan-
sions can be found at CMIP (2013b) and also at http://www.
ametsoc.org/PubsAcronymList.

Model name RCP2.6 RCP4.5 RCP6.0 RCP8.5

ACCESS1.0 0 1 0 1
ACCESS1.3 0 1 0 1
BCC_CSM1.1 1 1 1 1
BCC_CSM1.1(m) 1 1 1 1
BNU-ESM 1 1 0 1
CanESM2 4 4 0 4
CCSM4 6 6 6 6
CESM1(BGC) 0 1 0 1
CESM1(CAM5) 3 3 0 3
CESM1(WACCM ) 0 1 0 1
CMCC-CESM 0 0 0 1
CMCC-CM 0 1 0 0
CMCC-CMS 0 1 0 1
CNRM-CM5 1 1 0 5
CSIRO Mk3.6.0 10 10 10 10
EC-EARTH 2 7 0 6
FGOALS-g2 1 1 0 1
FGOALS-s2 1 3 1 3
FIO-ESM 3 3 3 3
GFDL CM3 1 1 1 1
GFDL-ESM2G 1 1 1 1
GFDL-ESM2M 1 1 1 1
GISS-E2-H 3 13 3 3
GISS-E2-H-CC 0 1 0 0
GISS-E2-R 3 17 1 3
GISS-E2-R-CC 0 1 0 0
HadGEM2-AO 1 1 1 1
HadGEM2-CC 0 1 0 3
HadGEM2-ES 4 4 3 4
INM-CM4 0 1 0 1
IPSL-CM5A-LR 4 4 1 4
IPSL-CM5A-MR 1 1 1 1
IPSL-CM5B-LR 0 1 0 1
MIROC-ESM 1 1 1 1
MIROC-ESM-CHEM 1 1 1 1
MIROC5 3 3 1 3
MPI-ESM-LR 3 3 0 3
MPI-ESM-MR 1 3 0 1
MRI-CGCM3 1 1 1 1
NorESM1-M 1 1 1 1
NorESM1-ME 1 1 1 1
Pseudo-independent 18 21 12 21
Total simulations 65 109 41 86
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comparing climate model ensembles with observations,
we can, however, better utilize the information that they
provide toward estimating CPDF properties than simply
assuming that raw ensemble members are samples from
the true CPDF.

The Þrst step in this process is to obtain an estimate of
the (time varying) CPDF mean. To do this, we will Þrst
show that we can derive a linear combination of the
twentieth-century CMIP simulations that is closer to
observations (in a mean-square difference sense) than
their equally weighted mean. This shows that (i) the
CMIP ensemble in not replicate Earth like (it does not
satisfy 1 above) and (ii) the weighted mean we derive is
a better estimate of the CPDF mean than the equally
weighted mean. In statistically estimating this linear
combination, one avoids ÔÔoverÞttingÕÕ the in-sample
data by ensuring that one has many more observations
in the training dataset than the number of models used
to Þt the data.

All of the calculations below assume that each simu-
lation has been bias corrected, in the sense that each

simulation and observations have the same mean over
the entire space and time domain in the in-sample pe-
riod (i.e., 1970Ð2004 or 1979Ð2004). While there are
compelling reasons not to do this (Ehret et al. 2012), it
remains standard practice in the climate community
(e.g., Meehl et al. 2007b) and greatly simpliÞes the so-
lutions to the problems posed below. Key results below
follow Bishop and Abramowitz (2013), where they are
covered in detail; here, we only brießy summarize the
main points for completeness.

Suppose we wish to Þnd the linear combination of
model simulations that minimizes mean-square differ-
ence with respect to observations. That is,

mj
e 5 �

K

k5 1
wkxj

k so that �
J

j5 1
(mj

e 2 yj)2

is minimized, where xj
k is the jth spaceÐtime step of

the kth model simulation and yj is the jth spaceÐtime
step of the observational dataset (whereJ is the number
of grid cells multiplied by the number of months in the

FIG . 1. Step-by-step procedure for deriving and applying the ensemble dependence transformation (EDT).
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in-sample period). If we additionally require the co-
efÞcientswk sum to 1, we can obtain an analytical so-
lution using a Lagrange multiplier. Each wk in this
solution is proportional to the sum of the kth row of the
inverse of the symmetric matrix

A 5

2

6
6
4

s 2
1,1 � s 2

1,K

..

.
� ..

.

s 2
K ,1 � s 2

K ,K

3

7
7
5 ,

where s 2
i,j is the ÔÔerrorÕÕ covariance between theith

and jth simulations. This result is reported in both
Potempski and Galmarini (2009) and Bishop and
Abramowitz (2013) . Note that the solution for the kth
coefÞcient accounts for the performance of thekth
simulation (since s 2

k,k is the kth simulation ÔÔerrorÕÕ
variance) and depends heavily on the ÔÔerrorÕÕ co-
variance between thekth and other simulations: pre-
cisely what one might heuristically expect for weights
that account for dependence (e.g.,Jun et al. 2008).

FIG . 2. Histograms of percentage improvement in RMSD in ensemble mean surface air temperature (over time and
space; weighted for gridcell area) afforded by the EDT when tested out of sample in the twenty-Þrst century, for each
RCP. Histograms are collated over all possible simulations as ÔÔobservationsÕÕ for each RCP. Means are shown on the
horizontal axis.
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Note that ÔÔerrorÕÕ is in quotations here since a signiÞ-
cant component of modelÐobservation difference is a
result of chaotic internal system variability, rather than
error per se.

Since the coefÞcientswk are an analytical solution
to the problem posed above, the linear combination me

is by deÞnition the best possible linear combination of
the simulations at hand, at least for the in-sample period
(we will test it out of sample in the next section). We
therefore chooseme as our CPDF mean estimate.

The next step is to estimate the variance of the CPDF.
Using our CPDF mean estimate obtained above, we

calculate the sample variance of observations about this
CPDF mean estimate for the in-sample period,

s2
e 5

�
J

j5 1
(mj

e 2 yj)2

J 2 1
.

While this variance is calculated over time, rather than
across an ensemble, it does provide us with an estimate of
the time average of instantaneous CPDF variance over
the in-sample period (following property 2 above), if the
rate of change of true instantaneous CPDF variance is

FIG . 3. As in Fig. 2, but only using members of the pseudo-independent ensemble.
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slow. If, for example, instantaneous CPDF variance were
static over the in-sample period,s2

e would provide a very
accurate estimate of instantaneous CPDF variance.

If we had a true replicate Earth ensemble, we would
expect s2

e to be approximately equal to the average of
CPDF variance at each grid cell at each time step in the
in-sample period,

s2
e �

1
J

�
J

j5 1
s 2j

e .

The fact that the CMIP ensembles do not satisfy this
equation shows that they do not satisfy property 2
above. To transform them so that they do, we deÞne

~wk 5
[wk 1 (a 2 1)/K ]

a
and

~xj
k 5 mj

e 1 b[(xj 1 ax0j
k) 2 mj

e] ,

wherea 5 12 Kmin(wk) and min(wk) is the lowest (most
negative) wk (note that the minimization problem

FIG . 4. Histograms of percentage improvement in ensemble standard deviation for surface air temperature (over
time and space; weighted for gridcell area) afforded by the EDT when tested out of sample in the twenty-Þrst century,
for each RCP. Histograms are collated over all possible simulations as ÔÔobservationsÕÕ for each RCP. Means are
shown on the horizontal axis.
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above did not ensure positive wk). In the second ex-
pression, xj is the multimodel mean for the jth spaceÐ
time step, x0j

k is the kth simulationÕs deviation from that
mean, andb is a scalar parameter that ensures thats2

e is
equal to the average of CPDF variance, as described
above [see Bishop and Abramowitz (2013) for more
detail]. These linear transformations ensure that (i) the
~w still sum to 1 and are now all positive, (ii) the minimum
ÔÔerrorÕÕ variance estimate is preserved,

mj
e 5 �

K

k5 1
wkxk

j 5 �
K

k5 1
~wk ~xk

j ,

and (iii) the variance condition described above,

s2
e �

1
J

�
J

j5 1
�
K

k5 1
~wk(~xk

j 2 mj
e)

2 ,

is satisÞed (where the inner sum is simply a weighted
estimate of the instantaneous CPDF variance). Details,
including proofs, can be found inBishop and Abramowitz
(2013).

The transformation for the entire ensemble therefore
relies only on the original wk estimated from the mini-
mization of errors problem above and the two scalar
constants,a andb. From the expression for ~xk

j
above, we

can see thata acts to expand ensemble variance about
the multimodel mean, and b then acts to contract it
about the CPDF mean estimate.

With this transformed ensemble we now have a more
credible estimate of the CPDF mean mj

e and of CPDF
variance s 2j

e 5 � K
k5 1 ~wk(~xk

j 2 mj
e)

2
. To apply these to

CMIP projections, the wk, a, andb are derived on the in-
sample twentieth-century data for each scenario subset
and then applied to the appropriate projection (see
Fig. 1). The derivation of these weights, the trans-
formation parameters, and global means described be-
low all use area weighting to account for the range of
surface areas represented by each grid cell in the 58 3 58
HadCRUT4 and 2.58 3 2.58GPCP2.2 grids.

4. Can we trust the EDT on twenty-Þrst-century
projections?

Bishop and Abramowitz (2013) showed that the EDT
described above resulted in much ßatter rank histograms
for surface air temperature, suggesting that observations
and the transformed ensemble are more likely to be
drawn from the same distribution than observations and
the original CMIP ensemble. While this reassures us that
ensemble variance estimates are improved, can we have
any conÞdence that applying the process to the twenty-
Þrst-century CMIP projections will yield improved re-
sults? Is the twenty-Þrst century likely to be different

enough from the twentieth century that the EDT may
in fact degrade projections rather than improve them?
Are the dependence weights~wk favoring models whose
internal variability happens to coincide with observa-
tional variability (e.g., El Ni ñoÐSouthern Oscillation
or Indian Ocean dipole phenomena) or simply Þtting to
noise?

To address these questions, we construct a model-
as-truth or perfect model experiment. This involves
nominating a single model simulation (i.e., a contiguous
twentieth-century 1 RCP simulation for 1970Ð2099) to
be treated as ÔÔobservationsÕÕ and using the remaining
simulations as the raw ensemble. The parameters de-
Þning the EDT of this raw ensemble are deÞned by
ÔÔobservationsÕÕ from the in-sample 1970Ð2004 period.
The performance of the transformed ensemble is then
tested out of sample by comparing it to ÔÔobservationsÕÕ
from 2006 to 2099. This approach is designed to test the
ability of the EDT approach by effectively providing ÔÔob-
servationsÕÕ of the twenty-Þrst century. It allows us to di-
rectly test (i) whether the tra nsformed ensembleÕs mean lies
closer to the ÔÔobservationsÕÕ than the raw multimodel mean
in the out-of-sample period 2006Ð99 and (ii) whether the
transformed ensemble variance is closer to the estimated
CPDF variance in the out-of-sample period than the raw

FIG . 5. Relationship between percentage improvement in en-
semble standard deviation, as deÞned forFig. 4, and ensemble
RMSD over space and time in the in-sample period (1970Ð2004).
Results are shown for surface air temperature (tas). RMSD values
for each in-sample RCP subset ensemble compared to HadCRUT4
are shown by horizontal lines.
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ensemble variance. The process is repeated for every sim-
ulation as ÔÔobservationsÕÕ to get a reasonable statistical
representation of how this strategy performs out of sample
in an environment as similar as possible to the one we wish
to apply it in. Collated results are shown in Figs. 2Ð4.

Figure 2 shows histograms of the percentage im-
provement in root-mean-square difference (RMSD;
over time and space) between the dependence-weighted
and unweighted ensemble mean. Results are shown for
both in-sample (1970Ð2004; shown in hatched bars) and
out-of-sample (2006Ð99; gray bars) periods. Histograms
are collated over every possible simulation as truth (see
the bottom row of Table 1 for the number of simulations
for each RCP). The in-sample mean is shown in black
and the out-of-sample mean is shown in gray on the
horizontal axis. Note that we describe root-mean-square

difference rather than error since a considerable pro-
portion of modelÐobservation difference is a result of
internal variability, rather than model error.

Critically, the in-sample and out-of-sample distribu-
tions are indistinguishable. None of these out-of-sample
experiments shows the weights degrading performance
relative to the unweighted multimodel mean (all
values are positive), and the performance gain in the
twentieth-century period afforded by the weighted mean
is representative of the performance improvements in
the twenty-Þrst century. The approach reduces the root-
mean-square difference of the multimodel mean in all
RCPs by an average of more than 30%. While not shown
here, the equivalent experiment with optimal perfor-
mance weighting (weights inversely proportional to error
variance are optimal for RMSE), as opposed to weights

FIG . 6. Projected global surface temperature mean and standard deviation of the CMIP5 ensemble for the original
ensemble (black and gray) and EDT ensemble (red). Results are shown for all four RCPs, with observed values for
2005Ð12 shown in blue.
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