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ABSTRACT

Precipitation extremes have a widespread impact on societies and ecosystems; it is therefore important to
understand current and future patterns of extreme precipitation. Here, a set of new global coupled climate
models with varying atmospheric resolution has been used to investigate the ability of these models to re-
produce observed patterns of precipitation extremes and to investigate changes in these extremes in response
to increased atmospheric CO2 concentrations. The atmospheric resolution was increased from 28 3 28grid
cells (typical resolution in the CMIP5 archive) to 0.258 3 0.258(tropical cyclone permitting). Analysis has
been conÞned to the contiguous United States (CONUS). It is shown that, for these models, integrating at
higher atmospheric resolution improves all aspects of simulated extreme precipitation: spatial patterns, in-
tensities, and seasonal timing. In response to 23 CO2 concentrations, all models show a mean intensiÞcation
of precipitation rates during extreme events of approximately 3%Ð4% K2 1. However, projected regional
patterns of changes in extremes are dependent on model resolution. For example, the highest-resolution
models show increased precipitation rates during extreme events in the hurricane season in the U.S.
Southeast; this increase is not found in the low-resolution model. These results emphasize that, for the study of
extreme precipitation there is a minimum model resolution that is needed to capture the weather phenomena
generating the extremes. Finally, the observed record and historical model experiments were used to in-
vestigate changes in the recent past. In part because of large intrinsic variability, no evidence was found for
changes in extreme precipitation attributable to climate change in the available observed record.

1. Introduction

Precipitation is of vital importance to societies and
ecosystems around the world (e.g.,Jackson et al. 2001).
In contrast, extreme precipitation events may have
widespread negative impacts. For example, in the con-
tiguous United States (CONUS) these impacts include
increased extreme streamßow (Groisman et al. 2001),
increased damage from ßoods (Pielke and Downton
2000), increased outbreaks of waterborne diseases

(Curriero et al. 2001), increased soil water stress (Fay
et al. 2003; Knapp et al. 2008), and increased crop
damage (Rosenzweig et al. 2002). The societal impor-
tance of precipitation extremes shows there is a need for
reliable projections of how these extreme events may
change in response to global climate change.

Theoretical understanding of precipitation extremes is
based on the idea that, within an atmospheric column, the
precipitation rate P during an extreme event depends on
precipitation efÞciency«, vertical velocities v ( p), and the
vertical derivative of saturation speciÞc humidity qs

along a moist adiabatS(T , p) 5 dqs/dpj
ue* (OÕGorman

and Schneider 2009; OÕGorman 2015):

P 5 2 «f v ( p)S(T , p)g, (1)

where the braces denote the mass-weighted vertical in-
tegral. Precipitation efÞciency is deÞned as the total
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storage of water vapor in the column and the transport
of water vapor to and from the column. In the absence of
dynamical or physical changes, the change of extreme
precipitation depends on the last factor onlyÑthe
thermodynamical change of moisture in the atmosphere.
This is often simpliÞed to a scaling related to the
ClausiusÐClapeyron relation of 6%Ð8% K2 1; for each
degree of surface warming it is expected that pre-
cipitation rates during extreme events increase by 6%Ð
8% (e.g., Allen and Ingram 2002; Trenberth et al. 2003;
Pall et al. 2007; Muller et al. 2011; Westra et al. 2014;
OÕGorman 2015). However, the relevant location (local,
regional, or global) for computing the temperature
change is unknown. Therefore, ClausiusÐClapeyron
scaling can only be used as a Þrst estimate of thermo-
dynamic climate change.

Global climate models can be used to extend such
theoretical considerations. Climate sensitivities [change
per degree warming (% K2 1)] estimated from model
experiments include thermodynamic, dynamic, and
physical contributions to changes in extreme pre-
cipitation. Based on analyses of model experiments in
phases 3 and 5 of the Coupled Model Intercomparison
Project (CMIP3 and CMIP5) archives, which were as-
sessed in the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4; IPCC
2007) and Fifth Assessment Report (AR5; IPCC 2013),
precipitation extreme events are expected to happen
more frequently and the extremes are expected to be
stronger by the end of the twenty-Þrst century. The
sensitivity of extreme precipitation to climate change
varies strongly between models and between regions
(e.g., Sun et al. 2007; Kharin et al. 2007, 2013; Sillmann
et al. 2013; Toreti et al. 2013; Villarini et al. 2013a;
Wuebbles et al. 2014; Fischer and Knutti 2015). Fur-
thermore, the sensitivity is larger the more extreme the
events that are considered (e.g., the 1-yr vs 5-yr return-
ing events; Shiu et al. 2012; Fischer and Knutti 2015).
The conclusions of these modeling studies are com-
plemented by trends in the observed record of extreme
precipitation (e.g., Kunkel et al. 1999; Kunkel 2003;
Villarini et al. 2013b ; Mallakpour and Villarini 2015 );
however, spatial and temporal availability of station
data is often a limiting factor for climate studies.

The societal value of climate projections based on
model experiments is limited by, among other factors,
the ability of a model to accurately simulate the ob-
served present-day climate. Common model biases re-
lated to precipitation include biases in seasonal mean
precipitation (dry regions receive too little precipitation
and wet regions too much;ShefÞeld et al. 2013) and an
overestimation of the number of days with precipitation
(the ÔÔdrizzle problemÕÕ; e.g.,Dai 2006; Schubert et al.

2008; Lee et al. 2009; Mehran et al. 2014). The drizzle
problem further leads to an overestimation of the fre-
quency of light precipitation and underestimation of the
frequency of extreme precipitation. In part, the bias in
the distribution of precipitation rates (light vs extreme)
reßects a misrepresentation of the atmospheric pro-
cesses that lead to precipitation in the real world, which
are often at scales smaller than those resolved in global
climate models (Wehner et al. 2010). Other impacts of
coarse model resolution include a smoothing of spatial
features such as orography, which limit the reliability of
projections on regional scales (Thibeault and Seth 2014;
Schoof and Robeson 2016).

Common approaches to work around such issues in-
clude the use of high-resolution atmosphere-only
models or downscaling techniques. The latter includes
methods based on the statistical distribution of pre-
cipitation in the present-day climate or further in-
tegration with a regional model, to add regional value to
coupled model output (e.g.,Dibike and Coulibaly 2006;
Frei et al. 2006; Gutowski et al. 2010; Ning et al. 2015;
Schoof 2015). However, such solutions may not be in
dynamical or thermodynamical equilibrium outside the
region considered. Furthermore, a regional modelÕs
hydrology is often constrained by the large-scale mois-
ture ßux convergence prescribed as an outer boundary
condition. Global models are needed to represent en-
ergetics, dynamics, and moisture consistently. In
atmosphere-only models it has been shown that models
with higher-resolution grids improve the spatial patterns
of seasonal mean precipitation, the statistics of daily
precipitation, and the magnitudes of precipitation ex-
tremes (Duffy et al. 2003; Iorio et al. 2004; Wehner et al.
2010). However, because of interactions between at-
mosphere and ocean, coupled atmosphereÐocean
models are more suitable tools for studies of climate
change than atmosphere-only models.

At the National Oceanic and Atmospheric Adminis-
tration (NOAA)/Geophysical Fluid Dynamics Labora-
tory (GFDL) a family of global coupled models has been
developed to test the impact of high atmospheric model
resolution in a global coupled atmosphereÐocean
framework. Three models with identical ocean and sea
ice model components have been coupled to atmo-
spheric and land model components of low (28 3 28; as
typically found in the CMIP5 archive), medium (0.5 8 3
0.58; a tropical cyclone-permitting model), and high
(0.258 3 0.258) resolution. In this paper, the impact of
atmospheric model resolution in a global coupled model
framework is investigated for the simulation of extreme
precipitation events in the CONUS.

There are two objectives to this study: Þrst, to test the
hypothesis that the quality of simulated extreme
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precipitation is improved when the horizontal resolution
of the atmospheric model component in a fully coupled
global climate model is increased and second, to in-
vestigate changes in extreme precipitation in response to
CO2 forcing and to investigate whether such projected
changes depend on model resolution.

The rest of this paper is organized as follows: The set
of coupled models and observation-based data products
used in this study are described insection 2. The meth-
odology is discussed insection 3. The results are dis-
cussed insection 4. A summary and a Þnal discussion are
given in section 5.

2. Models and data

a. Model descriptions

We use a suite of global coupled climate models to
evaluate the impact of horizontal atmospheric resolu-
tion on the quality of simulated extreme precipitation
events and on potential changes in precipitation ex-
tremes in the CONUS. The GFDL coupled modelsÑthe
Low Ocean Atmosphere Resolution (LOAR) model,
the Forecast-Oriented Low Ocean Resolution (FLOR)
model, and the High-Resolution FLOR (HiFLOR)
modelÑshare the same atmosphere, land, ocean, and
sea ice model components that were derived for the
GFDL Coupled Model version 2.1 (CM2.1; Delworth
et al. 2006) and version 2.5 (CM2.5; Delworth et al.
2012). The LOAR model has an horizontal atmospheric
resolution of 28 3 28(C48 grid; i.e., 483 48 grid cells on
each face of the cubed sphere). In the FLOR model, the
horizontal resolution has been increased to 0.58 3 0.58
(C180 grid). In the HiFLOR model, the horizontal atmo-
spheric grid is further reÞned to be 0.258 3 0.258(C384 grid).

In all models, the atmospheric model component is
based on a Þnite-volume dynamical core on a cubed
sphere (Putman and Lin 2007), with 32 vertical levels.
The dynamical time step is modiÞed to match the indi-
vidual modelÕs atmospheric resolution. Atmospheric
physics is similar to that in GFDL CM2.5 ( Delworth
et al. 2006, 2012; Vecchi et al. 2014). Convection is pa-
rameterized following the relaxed ArakawaÐSchubert
formulation; large-scale supersaturation is condensed
into cloud water from which large-scale precipitation
ßuxes are derived. Details on these and other parame-
terization schemes can be found in Anderson et al.
(2004). The ocean model component is Modular Ocean
Model, version 5 (MOM5; GrifÞes 2012), conÞgured as
in Vecchi et al. (2014), with a 18 3 18horizontal grid. The
land model component is the Land Model, version 3
(LM3; Milly et al. 2014), with an equivalent horizontal
resolution as the atmospheric model component. The

sea ice model is the Sea Ice Simulator, version 1 (SIS1),
as in Delworth et al. (2012). More details on the FLOR
model setup can be found inVecchi et al. (2014)and Jia
et al. (2015) and for the HiFLOR model setup in
Murakami et al. (2015). To reach radiative balance at
the top of atmosphere, cloud parameters were tuned in
FLOR. These parameters have not been retuned in
LOAR and HiFLOR; therefore, physical parameteri-
zations are the same across models, but LOAR, FLOR,
and HiFLOR have a different global mean temperature,
with the lowest-resolution model being the warmest and
the highest-resolution model being the coldest.

LOAR, FLOR, and HiFLOR have been developed
from the older global coupled climate model GFDL
CM2.1 (Delworth et al. 2006). The atmospheric dy-
namical core, the land model component and the ocean
model component have been updated. LOAR has a
horizontal resolution that is similar to the GFDL CM2.1;
however, the vertical atmospheric resolution has been
increased from 24 to 32 levels. Since its development,
CM2.1 has been used for many climate studies and was
part of the IPCC AR4 ( IPCC 2007) and AR5 ( IPCC
2013). The higher atmospheric and land resolutions of
FLOR and HiFLOR have been shown to improve nu-
merous aspects of global climate compared to CM2.1Ñ
for example, the seasonal prediction of temperature and
precipitation ( Jia et al. 2015), sea surface temperatures
(SSTs;Stock et al. 2015), sea ice (Msadek et al. 2014),
orographic precipitation ( Kapnick et al. 2014), and
tropical cyclones (Vecchi et al. 2014; Murakami et al.
2015; Zhang et al. 2016). FLOR is considered to be a
new base model; LOAR and HiFLOR can be viewed as
low- and high-resolution versions of that newly de-
veloped base model.

b. Experiment descriptions

Present-day control experiments were created by in-
tegrating LOAR, FLOR, and HiFLOR for 300 years
with constant 1990 radiative forcing and land-use con-
ditions. These experiments were used to evaluate the
quality of the simulated precipitation Þelds in the three
coupled models. Any variability in these experiments is
the result of internal variability within the climate sys-
tem; all external forcing is constant. Years 171Ð270 were
used for analysis in the current paper.

Starting at year 101 of the present-day control ex-
periments, forced integrations with additional CO 2

forcing were performed. For the Þrst 70 years of these
experiments, the CO2 concentration was increased by
1% yr2 1. In year 170 the CO2 concentration has doubled
relative to the present-day control experiment. From
year 170 onward, the models were integrated for
an additional 100 years with constant, double-CO2
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concentration relative to the present-day control ex-
periments. We will refer to years 171Ð270 of this in-
tegration as the 23 CO2 experiment.

Finally, an ensemble of historical integrations was
created in which the model sea surface temperature SST
was restored to the interannually varying observed Þeld
SSTT. To do so, a restoring tendency was added to the
SST tendency as computed in the coupled modelO
over a set restoring time scalet :

dSST
dt

5 O 1
1
t

(SSTT 2 SST). (2)

The observed SST Þeld was taken from the Met OfÞce
Hadley Centre Sea Ice and SST dataset (HadISST1.1;
Rayner et al. 2003). The historical experiment consists
of six ensemble members each for FLOR and HiFLOR
and covers the period 1971Ð2012 (three witht 5 5 days
and three with t 5 10 days). Individual ensemble
members have been created using different initial con-
ditions generated from a previous set of restoring ex-
periments; more details can be found in Murakami
et al. (2015).

In all experiments the models were integrated globally
but analysis in this paper is restricted to the CONUS.

c. Observationally based data

The simulated precipitation data are compared to the
National Centers for Environmental Prediction
(NCEP)/Climate Prediction Center (CPC) uniÞed
gauge-based analysis of daily precipitation over the
CONUS ( Higgins et al. 2000). This dataset provides
estimates of daily precipitation totals on a 0.258 3 0.258
grid for the CONUS. The estimates are based on gauge
data, interpolated using the optimal interpolation
scheme ofGandin and Hardin (1965) (Chen et al. 2008).
The CPC dataset covers the time period 1 January
1948Ð31 December 2006. To address uncertainties in
the CPC data and their potential impact on the result of
this study, similar analyses as those presented have
been performed on other datasets based on different
observational data sources. The results of these ana-
lyses are documented in theappendix and will be ref-
erenced throughout this study.

3. Methods

There are many different deÞnitions of extreme events
in the scientiÞc literature. For precipitation, these are
generally based on either precipitation rates (e.g., total
annual precipitation, annual maximum daily or monthly
precipitation, and the precipitation rate of the 99th per-
centile of daily or monthly precipitation; Sen Roy and
Balling 2004; Min et al. 2011; OÕGorman 2015) or the

number or duration of precipitation events (e.g., number
of days with precipitation exceeding 25mm, frequency of
wet days, and the duration of dry periods;Curriero et al.
2001; Durman et al. 2001; Sen Roy and Balling 2004). In
some cases the resulting data are Þtted to a statistical
distribution (e.g., a generalized extreme value distribu-
tion or z scores;Curriero et al. 2001; Min et al. 2011).

Here, we have chosen to focus on the precipitation
rate (i.e., intensity) of daily precipitation events with a 1-
and 5-yr return period. All days of the year were in-
cluded in the analysisÑboth days with precipitation and
days without precipitation. We did not Þt a statistical
distribution to the data before analysis because the
model integrations were sufÞciently long to accurately
estimate the precipitation rate of the 1- and 5-yr re-
turning event. In addition to annual extremes, we have
also investigated seasonal extreme events, using events
with a 1- or 5-season return period. For the evaluation of
the quality of simulated precipitation in the different
models (section 4a), we have also computed the simple
daily intensity index (SDII; e.g., Peterson et al. 2008),
which is a measure of the mean precipitation rate on
days with precipitation. The SDII is computed by di-
viding the total annual precipitation by the number of
days with precipitation equal or greater than 1 mm.

Potential changes in extreme precipitation due to
climate change were investigated using the 23 CO2

experiments. We investigated the change in the pre-
cipitation rate of the 1- or 5-yr returning events, as well
as the change of the seasonality of extreme events.

To identify trends of extreme precipitation, we used
the peak-over-threshold approach; that is, for every year
we counted the number of days with precipitation ex-
ceeding the precipitation rate of the 1- or 5-yr returning
event. By design, the mean of these counts is 1.0 and
0.2 yr2 1, respectively. We have used a Poisson re-
gression model to examine whether trends exist in the
frequency of extreme precipitation events, as was done
in Villarini et al. (2013b) and Mallakpour and Villarini
(2015). Poisson regression was chosen because the data
are discrete (yearly counts), and it is assumed that the
data follow a Poisson distribution. We Þtted a Poisson
model that depended linearly on time through a loga-
rithmic link function:

l i 5 exp(b0 1 b1ti ) , (3)

in which l i is the predicted number of extreme events for
year ti. If coefÞcient b1 was different from zero at a 5%
signiÞcance level, we have reported that grid point as
having a trend in the frequency of extreme events.

For the CPC data, to reduce the inßuence of noise, we
have taken into account a box of 3 3 3 grid points
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around each grid point when counting the extreme
events. This corrects for storm systems that are shifted
by one grid point ( ; 25 km) in any direction but do ex-
ceed the threshold. The computed trends using this 33 3
box method are of similar size as the computed trends
using the normal one-gridpoint method; however, a
much larger fraction of the grid points showed a statis-
tically signiÞcant trend when the 33 3 box method was
used. For the model data this correction was not nec-
essary because of the availability of the ensemble of
historical integrations.

Chen and Knutson (2008) discuss the inßuence of
different interpretations of simulated precipitation data
on the evaluation of extreme precipitation in climate
models. Following their recommendation, we interpret
model-simulated precipitation data as area mean esti-
mates rather than point-based estimates. Therefore, in
section 4aall output from FLOR and HiFLOR and the
CPC data have been remapped onto the LOAR hori-
zontal grid to facilitate a fair comparison of the three
models and the observed data. When output from
FLOR and HiFLOR is compared, the analysis has been

done on the FLOR horizontal grid. All remapping was
done by means of a conservative remapping scheme and
was done before the computation of any index of (ex-
treme) precipitation.

4. Results

a. Evaluation of simulated precipitation in coupled
models with increasing horizontal atmospheric
model resolution

As shown in the spatial distribution of the annual
mean precipitation rate in the CPC observations
(Fig. 1a) and in the present-day control experiment of
the three models (Figs. 1bÐd), FLOR and HiFLOR both
improve the simulated pattern compared to LOAR. The
observed eastÐwest precipitation gradient is most re-
alistic in HiFLOR, although it is not as strong as ob-
served. The western CONUS is too wet in all models
(Figs. 1eÐg). The precipitation maximum along the Gulf
Coast is most realistic in HiFLOR; the dry bias de-
creases with increasinghorizontal atmospheric resolu-
tion. The spatial pattern of precipitation biases is similar

FIG . 1. Annual mean precipitation rate (mm day2 1) in (a) CPC observations, (b) LOAR, (c) FLOR, and (d) HiFLOR. Difference
between the model simulations and the observations (mm day2 1) for (e) LOAR, (f) FLOR, and (g) HiFLOR. Black dots in (e) indicate
the locations of Santa Fe, New Mexico, and New Orleans, Louisiana (see text).
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in all models, except Florida, which is too dry in LOAR
and too wet in HiFLOR. The size of the biases decreases
with increasing horizontal atmospheric resolution.

Furthermore, the increased horizontal spatial resolu-
tion in FLOR and HiFLOR allows for a more realistic
representation of orography (Delworth et al. 2012;
Kapnick and Delworth 2013). Consequently, the pre-
cipitation maximum associated with the Sierra Nevada
and Cascade Range appears in FLOR and HiFLOR,
although precipitation is overestimated compared to
CPC data. This wet bias is not present in LOAR, which
makes direct model comparison for this region difÞcult:
LOAR seems to get ÔÔbetterÕÕ values, although it is for
the wrong reasonÑthe absence of realistic orography.
As a side note, there is evidence that conventional gridded
precipitation products, including the CPC dataset used
here, severely underestimate precipitation over the west-
ern CONUS mountain ranges (Lundquist et al. 2015). The
wet bias of FLOR and HiFLOR to reality may, therefore,
not be as grave over the Sierra Nevada and Cascade Range
as one would infer from this comparison.

For a more quantitative comparison, all high-
resolution data are Þrst remapped to a common low-
resolution grid ( Chen and Knutson 2008). As discussed
in section 3, such a procedure ensures that an equal
comparison of area mean precipitation rates with equal
degrees of freedom (grid points) is made. On a common
28 3 28grid (as in LOAR) over the CONUS, the highest-
resolution model (HiFLOR) performs best ( Table 1, top
four rows). The CONUS mean precipitation bias de-
creases, the root-mean-square error (RMSE) decreases,
and the pattern correlation increases with increasing
horizontal atmospheric resolution. The comparison on a
common 0.58 3 0.58grid (as in FLOR) shows HiFLOR
improves the simulation of mean precipitation from
FLOR ( Table 1, rows 5Ð7).

As discussed before, besides correct simulation of
mean precipitation the simulation of extreme pre-
cipitation is highly relevant for society. The spatial dis-
tribution of the precipitation rate for the 1-yr returning
event in CPC observations and associated model biases
are shown in Fig. 2. For completeness and to show the
impact of remapping, the observed distribution and
model biases are shown on all model grids.

The largest precipitation intensities of the 1-yr
returning event in the observed data are found along
the Gulf Coast (70Ð110 mm day2 1) and the PaciÞc coast,
Sierra Nevada, and Cascade Range (70Ð150 mm day2 1;
Fig. 2c). Furthermore, the Appalachian Mountains are a
local maximum. Generally, the precipitation rate during
extreme events decreases traveling inland and is higher
in regions with higher mean precipitation. The pattern
correlation of annual mean precipitation ( Fig. 1a) and
the precipitation rate of the 1-yr returning event
(Fig. 2c) is 0.89. If the CPC data are remapped to lower-
resolution horizontal grids these patterns are generally
maintained, although the precipitation rate decreases
(e.g., the precipitation rate along the Gulf Coast is 70Ð
90 mm day2 1 on the FLOR grid and 50Ð70 mm day2 1 on
the LOAR grid; Figs. 2a,b). However, the extrema on
the West Coast, on the windward sides of the mountain
ranges, are not evident once the data are coarsened.

As was found for the annual mean precipitation rate,
model biases of the 1-yr returning event have a similar
pattern in all models and decrease with increasing hor-
izontal atmospheric resolution (Figs. 2dÐi). Areas with a
mean dry bias are areas in which the precipitation rate
during the 1-yr returning event is underestimated (e.g.,
the Gulf Coast); areas with a mean wet bias are areas in
which precipitation associated with the 1-yr returning
event is overestimated (e.g., the U.S. Southwest). The
Sierra Nevada are a hot spot for model bias in FLOR
and HiFLOR, although the comparison is based on an
observational data product that underestimates mean
and extreme precipitation there (Lundquist et al. 2015).

Quantitatively, on the LOAR grid, HiFLOR out-
performs the other two models (i.e., lower mean bias,
lower RMSE, and higher pattern correlation; Table 2,
top four rows). On the FLOR grid, HiFLOR is less bi-
ased than FLOR (Table 2, rows 5Ð7). There is a con-
sistent improvement of the simulated 1-yr returning
event of precipitation when the atmospheric model
resolution is increased in a global coupled model for the
yearly returning event (Fig. 2 and Table 2) and events in
individual seasons (not shown).

A similar analysis was done for the precipitation rate
of the extreme event with a 5-yr return period. The
spatial pattern of precipitation rate was found to be very
similar to that of the 1-yr returning event (pattern

TABLE 1. CONUS mean statistics of annual mean precipitation
rate (mm day2 1); included are the spatial mean, mean bias, RMSE,
and pattern correlation (corr). Boldface values are shown for the
best-performing model by that measure. Note that the data have
been remapped onto relevant lower resolution horizontal grids
before computation of the mean and statistics.

Model or dataset Grid Mean Bias RMSE Corr

CPC LOAR 2.07 Ñ Ñ Ñ
LOAR LOAR 2.67 0.60 0.90 0.78
FLOR LOAR 2.64 0.57 0.73 0.92
HiFLOR LOAR 2.55 0.48 0.61 0.93

CPC FLOR 2.07 Ñ Ñ Ñ
FLOR FLOR 2.65 0.57 0.79 0.88
HiFLOR FLOR 2.54 0.47 0.67 0.91

CPC HiFLOR 2.07 Ñ Ñ Ñ
HiFLOR HiFLOR 2.54 0.47 0.69 0.90
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