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ABSTRACT

The spectrum of reßected solar radiation emerging at the top of the atmosphere is rich with Earth
system information. To identify spectral signatures inthe reßected solar radiation and directly relate them
to the underlying physical properties controlling their structure, over 90 000 solar reßectance spectra are
computed over West Africa in 2010 using a fast radiation code employing the spectral characteristics of
the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY).
Cluster analysis applied to the computed spectra reveals spectral signatures related to distinct surface
properties, and cloud regimes distinguished by their spectral shortwave cloud radiative effect (SWCRE).
The cloud regimes exhibit a diverse variety of mean broadband SWCREs, and offer an alternative ap-
proach to deÞne cloud type for SWCRE applications that does not require any prior assumptions. The
direct link between spectral signatures and distinct physical properties extracted from clustering remains
robust between spatial scales of 1, 20, and 240 km, and presents an excellent opportunity to understand the
underlying properties controlling real spectral reßectance observations. Observed SCIAMACHY spectra
are assigned to the calculated spectral clusters, showing that cloud regimes are most frequent during the
active West African monsoon season of JuneÐOctober in 2010, and all cloud regimes have a higher fre-
quency of occurrence during the active monsoon season of 2003 compared with the inactive monsoon
season of 2004. Overall, the distinct underlying physical properties controlling spectral signatures show
great promise for monitoring evolution of the Earth system directly from solar spectral reßectance
observations.

1. Introduction

Knowledge of the total reßected solar radiation
(RSR) by Earth is vital for quantiÞcation of the global
energy budget, and therefore essential for monitoring,
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predicting and understanding how climate is evolving
(Stephens et al. 2015). As a result, broadband (i.e.,
spectrally integrated) RSR has been observed from
satellites by dedicated energy budget missions for de-
cades (Vonder Haar and Suomi 1971; Barkstrom 1984;
Kyle et al. 1993; Wielicki et al. 1996; Harries et al. 2005).
These observations have had many uses, including
quantifying fundamental climate parameters such as the
planetary brightness (Vonder Haar and Suomi 1971),
understanding climate forcing and feedbacks (Futyan
et al. 2005; Loeb et al. 2007; Brindley and Russell 2009;
Dessler 2013; Ansell et al. 2014), and evaluating and
improving climate models (Forster and Gregory 2006;
Tett et al. 2013a,b; Hartmann and Ceppi 2014).

Although the RSR has most commonly been observed
and applied in its broadband form, it is fundamentally an
intricate spectral quantity. Such intricacy results from
wavelength speciÞc interactions between the incoming
solar radiation and atmosphericgases, aerosols, clouds, and
the surface. Since it is often precisely these atmospheric
and surface properties that we seek to understand from
RSR measurements, the spectral dimension contains a vast
amount of relevant information ( Feldman et al. 2011;
Coddington et al. 2012; King and Vaughan 2012). This also
applies to the longwave spectrum, where the spectral
variability has been widely investigated (e.g.,Harries et al.
1998; Huang and Yung 2005; Huang et al. 2014) and ap-
plied to evaluate model forcing and feedbacks (Huang
et al. 2007,2010;Leroy et al. 2008). In contrast, observation
and application of the RSR spectrum for identifying un-
derlying properties and processes of the Earth system is
less well developed (Brindley and Bantges 2016).

Perhaps the most notable investigations of the RSR
spectrum have utilized observations from the Scanning
Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY), which will be fully in-
troduced in section 2a. For example, SCIAMACHY
observations have helped to explain the observed sym-
metry in hemispheric albedo, which has long been known
(Ramanathan 1987) and has been investigated further in
recent years (Voigt et al. 2013, 2014, Stephens et al. 2015,
2016; Haywood et al. 2016). Essentially, the hemi-
spherical spectral albedo from the SCIAMACHY reveals
that near-infrared reßection from a higher fraction of
relatively bright landmass in the Northern Hemisphere is
balanced by visible reßection from a higher fraction of
relatively bright clouds in the Southern Hemisphere
(Stephens et al. 2015), a signal that is completely masked
in the equivalent broadband observations. Other pio-
neering work has revealed the dominant spectral contri-
butions to the variance in SCIAMACHY observations
(Roberts et al. 2011) that are expected to be related to
certain properties of the Earth system. While it was not

possible to know the precise physical properties control-
ling each spectral contribution by analyzing SCIAMACHY
observations alone,Roberts et al. (2011)discussed likely
general causes such as cloud and various surface types.
Subsequent work has provided further understanding
via detailed comparisons with the spectral variability
simulated using climate model output (Roberts et al.
2013, 2014). However, a direct link between observed
RSR spectra and the underlying Earth system properties
controlling their structure remains elusive.

This study aims to quantitatively relate RSR spectral
signatures to speciÞc surfaceand atmospheric properties,
examine how this relationship changes with spatial scale,
and provide a route forward for monitoring these prop-
erties directly from spectrally resolved observations. Cen-
tral to achieving this aim is the extraction of spectral
signatures via clustering of RSR spectra that are computed
using atmospheric and surface properties derived from A-
Train satellite observations. Using this technique, the exact
properties controlling the RSR spectra are known and not
subject to climate model biases. Clustering has been widely
used in atmospheric science, for example to identify clus-
ters of CloudSat reßectivity proÞles in the tropics (Zhang
et al. 2007; Young 2015) and to identify ÔÔweather statesÕÕ
using joint histograms of cloud-top height and optical
depth (Jakob and Tselioudis 2003; Williams and Tselioudis
2007; Williams and Webb 2009; Oreopoulos et al. 2014),
but has not been directly applied to reßectance spectra.
This unique approach provides the opportunity to examine
cloud regimes emerging solely from spectral radiative ef-
fects, providing new insights at scales relevant to various
satellite observation, numerical weather prediction, and
climate modeling communities.

The satellite datasets and radiative transfer tools used to
compute RSR spectra are described alongside the method
of extracting spectral signatures insection 2. Spectral sig-
natures are presented insection 3, and the underlying at-
mospheric and surface properties associated with each
signature are examined in detail at different spatial scales.
Importantly, section 3highlights the key role of the spec-
tral shortwave cloud radiative effect (SWCRE) in identi-
fying cloud regimes that are markedly different to existing
classiÞcations, and the potential for monitoring the relative
frequency of these signatures in real SCIAMACHY ob-
servations. A brief summary is provided in section 4.

2. Data and methodology

a. Observed hyperspectral reßectance from
SCIAMACHY

SCIAMACHY was a hyperspectral imaging spec-
trometer aboard the sun-synchronous Environmental
Satellite(Envisat) from 2002 to 2012, crossing the equator

4806 J O U R N A L O F C L I M A T E V OLUME 32

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



at 1000 local time. It measured the incoming and reßected
solar spectrum between wavelengths of 0.214Ð2.386mm,
with spectral resolution between 0.000 22 and 0.00148mm
depending on the spectral region (Gottwald and
Bovensmann 2011). SCIAMACHYÕs primary objective
was to perform global measurements for trace gas retrieval,
but the measurements have also been used to retrieve cloud
and aerosol properties (Kokhanovsky et al. 2005; von
Hoyningen-Huene et al. 2007). The narrow spectral bands
used for trace gas retrieval are available with relatively short
measurement integration times, leading to spatial resolution
of around 26km 3 30km. However, the full spectrum is
only available with longer integration times, giving a nadir
footprint of around 30km 3 240km.

We extract SCIAMACHY nadir spectral reßectance
observations (version 8) and use them to monitor the
frequency of spectral signatures and their controlling
properties as identiÞed from radiative transfer computa-
tions (seesection 2b). SCIAMACHY spectral reßectance
Rl ,SCIA is calculated within the SCIAMACHY product as

Rl ,SCIA 5
p I l ,SCIA

Sl ,SCIA cos(u)
, (1)

where p has units of steradians (sr); I l ,SCIA is the
observed SCIAMACHY outgoing spectral radiance
(W m2 2sr2 1); Sl ,SCIA is the observed SCIAMACHY
incoming spectral irradiance that is updated daily
(W m2 2); u is the solar zenith angle; and an assumption
of isotropic radiation has been made. The radiation
variables are all a function of wavelength l .

Several exclusions and modiÞcations are applied. First,
we focus on the spectral range from 0.250 to 1.750mm
because the spectrum beyond 1.750mm suffered from
unreliable optical throughput due to ice deposits on the
detectors (Gottwald and Bovensmann 2011). Second,
spurious signal is Þltered out by removing reßectance as-
sociated with large differences (. 20%) at neighboring
wavelengths. This threshold effectively removes the spu-
rious signal while retaining the sharpest real spectral
variability at the SCIAMACHY native spectral resolu-
tion. Finally, the SCIAMACHY spectral reßectance is
gridded to a consistent 0.001-mm spectral resolution. This
has been shown to be ample resolution to retain the var-
iance contributions from the dominant components of
spectral variability ( Roberts et al. 2011).

b. Computed hyperspectral reßectance

1) INPUT FROM A-T RAIN SATELLITE

OBSERVATIONS

To improve understanding of the physical controls on
spectral RSR variability, radiative transfer computations

are performed using input from A-Train satellite
observations. SpeciÞcally, we use release B1 of the
CERESÐCALIPSO ÐCloudSatÐMODIS (CCCM) prod-
uct (Kato et al. 2010, 2011), which collocates irradiance
derived from the Clouds and the EarthÕs Radiant En-
ergy System (CERES) with cloud, aerosol, and surface
properties retrieved from the CloudÐAerosol Lidar and
Infrared PathÞnder Satellite Observations(CALIPSO )
CloudÐAerosol Lidar with Orthogonal Polarization
(CALIOP), the CloudSatCloud ProÞling Radar (CPR),
and the Moderate Resolution Imaging Spectroradi-
ometer (MODIS). The product was designed to provide
detailed cloud and aerosol proÞles that are consistent
with the observed radiative ßuxes and thus is well suited
for process studies.

Among these sensors, the CERES has the largest
footprint size of ; 20 km. Within each CERES footprint,
up to 16 groups (henceforth referred to as ÔÔCCCM
groupsÕÕ) containing either clear-sky or different vertical
proÞles of cloud are determined, based on their cloud
boundaries [seeKato et al. (2010) for details]. For each
CCCM group that contains cloud, the mean cloud
properties from the CPR, CALIOP, and MODIS at a
spatial resolution of 1 km are combined, using the
method described in Bodas-Salcedo et al. (2016), re-
sulting in proÞles of liquid/ice water content and effec-
tive radii at a vertical resolution of ; 240 m. Other than
the cloud proÞles, all properties are horizontally uni-
form across the CERES footprint. These properties in-
clude vertical proÞles of aerosol extinction from
CALIOP and MODIS, vertical proÞles of atmospheric
temperature, water vapor and ozone that are added to
the CCCM dataset from the Goddard Earth Observing
System Model (GEOS) reanalysis, and surface spectral
reßectance over land from MODIS. Over ocean, where
surface reßectance is not provided, we use a default
spectrally ßat surface reßectance of 0.2; while this value
can range from approximately 0.02 to 0.4 depending on
solar zenith angle and wind speed (Li et al. 2006), our
default value is larger than most estimates. It is therefore
more demanding for our clustering technique to distin-
guish clear-sky scenes over the ocean from other scenes;
despite this, we will show that clear-sky ocean scenes are
very effectively identiÞed, and this would have been
even more effective had a lower value been used. The
exact value of ocean surface albedo used is not expected
to change our conclusions.

To understand radiative signatures under a variety of
surface, atmospheric, and cloud conditions, we extracted
CCCM data for all seasons in 2010, and for the region
bounded by 208WÐ208E and 08Ð308N, henceforth re-
ferred to as ÔÔWest Africa.ÕÕ This results in 90 917 CCCM
groups. The year of 2010 was chosen because the West
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African monsoon was particularly active during this year
(as we will show later in Fig. 14a), providing the possi-
bility to extract a diverse range of atmospheric signa-
tures across West Africa. West Africa was chosen
because it has attracted substantial interest in recent
years due to complex atmospheric physics, poor cli-
mate model performance, and a growing population
(Knippertz et al. 2015; Hill et al. 2016, 2018; Hannak
et al. 2017). The diverse surface types (from dark ocean,
to vegetated surface, to bright desert) and diverse cloud
systems (from marine boundary layer clouds, to multi-
layer clouds, to deep convective clouds;Stein et al. 2011)
also provide variety to ensure the representativeness of
our spectral signature extraction. Snow cover is one
important physical property not represented in this re-
gion. It is expected that the dataset described byBodas-
Salcedo et al. (2016)and used byHill et al. (2018) will be
extended globally in the future to address this issue.

2) FAST RADIATIVE TRANSFER

Using the detailed scene properties provided by
CCCM as input, corresponding top-of-atmosphere re-
ßectance spectra are computed using the HavemannÐ
Taylor Fast Radiative Transfer Code (HT-FRTC)
(Havemann et al. 2018). The HT-FRTC is a 1D radiative
transfer code that relies on a principal component ap-
proach to expedite hyperspectral computations, and can
be applied to the spectral regions from ultraviolet to
microwave. Relative to line-by-line calculations, the
principal component approach is capable of producing
spectral reßectance to an accuracy well within 0.01, and
mostly to within 0.005 (see Fig. 6 in Havemann et al.
2018). ProÞles of water vapor, carbon dioxide, ozone,
and methane are input to the code, while standard
concentrations of more minor absorbing species are
prespeciÞed. Gaseous absorption coefÞcients are de-
rived from line-by-line calculations as described in
Havemann et al. (2018).

Hyperspectral radiance was computed at substantially
higher spectral resolution than that of SCIAMACHY
and was then averaged over the SCIAMACHY spectral
response functions to obtain a radiance spectrum con-
sistent with SCIAMACHY spectral sampling (hence-
forth referred to as ÔÔSCIAMACHY-likeÕÕ). For a given
CCCM group, a SCIAMACHY-like reßectance spec-
trum Rl ,CCCMÐ1km, is given by

Rl ,CCCM2 1km 5
p I l ,CCCM2 1 km

s*Sl ,0 cos(u)
, (2)

where I l ,CCCMÐ1km is the computed SCIAMACHY-like
nadir outgoing radiance spectrum at the top-of-
atmosphere; s* is a factor that accounts for variations

in the EarthÐsun distance; andSl ,0 is the incoming so-
lar irradiance spectrum at the mean EarthÐsun dis-
tance from Kurucz and Bell (1995) averaged over the
SCIAMACHY spectral response functions. The solar ze-
nith angle u is calculated to be consistent with the date,
time, and location of the CCCM observation. As in Eq. (1),
an isotropic assumption is made, and for consistency with
the SCIAMACHY observations ( section 2a), the radiation
variables are gridded at a 0.001-mm spectral resolution for
wavelengths from 0.250 to 1.750mm.

Since the set of Rl ,CCCMÐ1km spectra are based on
cloud proÞles at the Þnest spatial resolution, we discuss
their characteristics and associated controlling factors in
detail in section 3a. However, as mentioned earlier,
SCIAMACHY has a much coarser horizontal resolution
of ; 240 km in the cross-track direction, and thus aver-
aging of computed spectra is required to better match
SCIAMACHY observations. We Þrst calculate the
mean reßectance for each CERES; 20-km footprint
Rl ,CCCMÐ20km by summing up the computations for
individual CCCM groups weighted by their fraction F,
that is,

Rl ,CCCM2 20 km 5 �
M

i5 1
Fi 3 Rl ,CCCM2 1 km,i , (3)

where i and M represent the index of the CCCM group
and the total number of CCCM groups in the CERES
footprint, respectively. By averaging Rl ,CCCMÐ20kmover
12 consecutive CERES footprints that form a long strip
of around 240 km, the mean Rl ,CCCMÐ240km represents
spectra at a similar spatial resolution to SCIAMACHY
and is given by

Rl ,CCCM2 240km 5
�
12

j5 1
Rl ,CCCMÐ20 kmj

12
, (4)

where j is the CERES footprint index. Equation (4)
implies that only cases where 12 consecutive CERES
footprints are available are included, which is sometimes
not possible if the edge of the domain is reached, or if all
observations within one of the CERES footprints fail
basic quality checks (e.g., if the observed cloud proÞles
and reanalyzed temperature proÞles result in liquid
cloud at temperatures below 233 K or ice cloud at tem-
peratures above 273 K). As a result, theRl ,CCCMÐ240km

values do not incorporate all Rl ,CCCMÐ20km, but the en-
tire West Africa domain remains well represented so we
do not expect this to impact our conclusions. Since Eqs.
(3) and (4) introduce inhomogeneity in the along-track
direction only, homogeneity remains in the cross-track
direction, where the cloud information remains at a
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smaller scale than the width of the SCIAMACHY
footprint.

Finally, to quantify the spectral SWCRE of computed
spectra, the process from Eqs. (2)Ð(4) is repeated
with cloud removed from the input proÞles. At each
spatial scale, the spectral SWCRE, in reßectance units,
is simply calculated as the difference between the
SCIAMACHY-like reßectance computed with and
without cloud. This is the standard and recommended
method for computing SWCRE in models (Cess and
Potter 1987; Potter et al. 1992), although it can be biased
relative to observations. We also present the broadband
(i.e., integral over 0.250Ð1.750mm) SWCRE (in units of
W m2 2) at the satellite overpass time, calculated as the
difference between the SCIAMACHY-like radiance
computed with and without the cloud, using an isotropic
assumption to convert the radiance difference to a ßux
difference.

While CCCM provides information on seven common
aerosol species, only four of them (large dust particles,
small dust particles, sulfate, and sea salt) are used, since
their optical properties have been included in the
training phase of HT-FRTC. These four types account
for over 85% of the total aerosol fraction in the study
region and time period considered such that aerosol
variability is expected to be reasonably well repre-
sented. Training of the HT-FTRC for other aerosol
types, including more strongly absorbing types that may
be of particular signiÞcance in the study region, is cur-
rently being investigated and will allow inclusion of
more aerosol types in the future.

c. Radiative signature clustering and monitoring

To identify distinct spectral signatures, we performed
k-means clustering analysis (Anderberg 1973) for
SCIAMACHY-like reßectance spectra across the vari-
ous spatial scales (i.e.,Rl ,CCCMÐ1km, Rl ,CCCMÐ20km, and
Rl ,CCCMÐ240km). To avoid confusion among spatial
scales, clusters are identiÞed with lowercase letters for
Rl ,CCCMÐ1km (e.g., cluster a, b, etc.), roman numerals
for Rl ,CCCMÐ20km (e.g., cluster I, II, etc.), and numbers
for Rl ,CCCMÐ240km (cluster 1, 2, etc.). The clustering
procedure works by starting with a predeÞned number
of random spectra from the full dataset, calculating the
mean of the individual spectra that are closest to each of
these starting spectra, and iterating until convergence.
The Þnal set of mean spectra are referred to as cluster
centroids. Once cluster centroids are identiÞed, we an-
alyzed the input surface and atmospheric properties
used to compute the SCIAMACHY-like reßectance
spectra belonging to each cluster.

Using the resulting clusters derived from SCIAMACHY-
like reßectance spectra at a spatial scale similar to the

SCIAMACHY footprint (i.e., Rl ,CCCMÐ240km), we then
use actual observations from SCIAMACHY to gain
insight into the controlling properties of spectral re-
ßectance. SpeciÞcally, each SCIAMACHY observed
spectrum is assigned to a particular cluster for which the
root-mean-square difference (RMSD) between the
SCIAMACHY observation and the simulated cluster
centroid suggested byRl ,CCCMÐ240km is smallest. The
RMSD is deÞned as

RMSD 5

�������������������������������������������������������������������������

�
l N

l 5 l 1

(Rl ,SCIA 2 Rl ,CCCMÐ240km,centroid)2

N

vu
u
u
u
t

, (5)

where Rl ,CCCMÐ240km,centroidis a given centroid from the
cluster analysis ofRl ,CCCMÐ240km; N is the total number
of wavelengths; and {l 1, l N} are the Þrst and last wave-
lengths of 250 and 1.750mm, respectively.

3. Results

a. Clusters of computed reßectance spectra

1) SPECTRAL SIGNATURES AND THEIR

CONTROLLING PROPERTIES

Clustering of more than 90000 computed SCIAMACHY-
like reßectance spectra for individual CCCM groups
over West Africa in 2010 leads to the 10 centroids shown
in Fig. 1. The standard deviation of computed spectra
belonging to each cluster is relatively small (Fig. 2), in-
dicating that the centroids represent the spectra in each
cluster well. The spread of reßectance in gaseous ab-
sorption bands is relatively small for all clusters, but in
atmospheric windows it is more variable between clus-
ters, showing that the spread of reßectance due to vari-
ability in the properties controlling each cluster can be
different. The choice of 10 clusters works appropriately
to separate surface, liquid cloud, and ice cloud signa-
tures. For all clusters, gaseous absorption is evident; for
example, the relatively broad water vapor absorption
bands around 0.93, 1.13, and 1.39mm, and sharp oxygen
A and B absorption bands centered at 0.762 and
0.688mm, respectively. The cluster analysis not only
captures the differences in the magnitude of the spec-
trum (e.g., the ÔÔdarkerÕÕ spectrum in cluster d versus the
ÔÔbrighterÕÕ spectrum in cluster h), but also the shape
(e.g., the relatively ßat spectrum in cluster c versus the
much more variable spectrum in cluster e).

The clusters fall into two broad categories: those
dominated by surface reßectance (henceforth ÔÔsurface
clustersÕÕ) and those dominated by cloud reßectance
(henceforth ÔÔcloud clustersÕÕ); seeTable 1. The surface
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clusters (clusters aÐd;Fig. 1a) are characterized by
spectra with relatively small spread in the input surface
reßectance (Figs. 3aÐd), are highly constrained to loca-
tions with certain surface types (Figs. 4aÐd), and have
very little cloud liquid or ice in the mean input proÞles
(Figs. 5aÐd). Cluster a has the largest sample size
(Table 1), representing signatures mainly associated
with rocky desert surface reßectance that increases from
around 0.2 in the visible to 0.5 in the near-infrared
(Fig. 3a). As shown in Fig. 4a, spectra from cluster
a predominantly originate from outskirts and rocky
hamada of the Sahara desert (i.e., elevated stone pla-
teaus where most of the sand has been removed by de-
ßation), with notable gaps over brighter surfaces
containing sand dunes. Data points over these sand
dunes are captured by cluster b (Fig. 4b), which has a
surface reßectance spectrum similar to cluster a, but
with larger magnitude (Fig. 3b). Clusters c and d rep-
resent signatures from darker ocean and vegetated sur-
faces, respectively, as conÞrmed byFigs. 4c and 4d.
Unsurprisingly, the ocean surface represented by cluster
c has a spectrally ßat surface reßectance value of 0.2
(Fig. 3c), as this is the default value used for ocean
surfaces [see section 2b(1)]. The vegetated surface rep-
resented by cluster d exhibits a sudden jump in surface
reßectance around 0.67mm (Fig. 3d), commonly re-
ferred to as the ÔÔred edge.ÕÕ Overall, all of these surface
clusters have mean vertically integrated cloud water
content less than 10 g m2 2 (Figs. 5aÐd), allowing the
underlying surface to be the primary factor that controls
the top-of-atmosphere reßectance spectra.

Cloud clusters (clusters eÐj;Fig. 1b) all contain a
substantial amount of cloud water on average (Figs. 5eÐj)

and can be less well constrained by location (Figs. 4eÐj)
and therefore typically exhibit large spread in spectral
surface reßectance (Figs. 3eÐj). Starting with the cen-
troids of clusters e, f, and g, which are associated with
relatively large reßectance up until 1.3mm but with
different spectral shapes between 1.3 and 1.7mm com-
pared to other centroids (Fig. 1b), since ice absorption is
much stronger than liquid absorption around 1.6mm and
much weaker around 1.4mm (Pilewskie and Twomey
1987), the reduced reßectance around 1.6mm and in-
creased reßectance around 1.4mm for these centroids
indicates the presence of ice clouds. This is conÞrmed by
their average cloud proÞles (Figs. 5eÐg), revealing pre-
dominantly ice cloud that peaks in ice water content at
around 11-km altitude.

Compared to clusters eÐg that are dominated by ice
clouds, the centroid of cluster h has similar magnitudes
of reßectance up until 1.3mm, but lower around 1.4mm
and higher around 1.6mm (Fig. 1b). The generally large
reßectance throughout the spectrum and opposite
spectral signature to ice cloud between 1.3 and 1.7mm
indicates the presence of liquid cloud and the absence of
ice cloud, as conÞrmed byFig. 5h. The centroids of
clusters i and j have similar spectral shapes to cluster h,
but with smaller magnitudes (Fig. 1b). The smaller
magnitudes indicate that clouds are, on average, opti-
cally thinner in these two clusters than cluster h.
Therefore, surface inßuence cannot be ignored, as evi-
denced by the location of the spectra in cluster j (Fig. 4j),
which avoid the brightest desert surfaces.

Figure 6 shows that the aerosol loadings are similar
between clusters, suggesting that no particular cluster is
dominated by aerosolÐradiation interactions. The mean

FIG . 1. Cluster centroids of top-of-atmosphere reßectance spectra at a spatial scale of 1 km. Ten clusters are
shown, separated into (a) surface clusters and (b) cloud clusters; further details are provided inTable 1. The cluster
centroids are identiÞed from 90 917 computed SCIAMACHY-like reßectance spectra that are regridded to a 0.001-
mm spectral resolution. Input for the computations is derived from A-Train satellite observations over West Africa
in 2010. Computations are performed using the HavemannÐTaylor Fast Radiative Transfer Code.
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FIG . 2. The 10 cluster centroids presented inFig. 1, but each plotted separately. The shaded
regions represent one standard deviation either side of the cluster centroid for individual spectra
that fall into each cluster.
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column integrated aerosol for each cluster, as shown in
the top right of each panel in Fig. 6, is within one stan-
dard deviation either side of the mean for any other
cluster. Some notable differences in aerosol proÞles do
exist between surface clusters that appear to be a by-
product of the location of the spectra. For example, the
highest mean percentage of sea salt is found in cluster c,
but this is because cluster c is predominantly controlled
by ocean surface reßectance. The absence of aerosol
signature in our clusters is perhaps surprising given that
West Africa is associated with diverse aerosol types and
loadings (Knippertz et al. 2015). However, recall that
only a subset of the aerosol types are included in the
computations [see section 2b(2)] and of the aerosol
types considered here, the variety is dominated by dust,
which constitutes over 90% of the mean aerosol loading
for all clusters.

2) CLOUD RADIATIVE EFFECTS OF EACH CLUSTER

Cloud clusters exhibit distinct spectral SWCRE (in
reßectance units) and a large range in mean broadband
SWRCE (in W m 2 2) as shown inFig. 7. Surface clusters
are not shown because SWCRE is low throughout the
spectrum (broadband SWCRE less than 30 W m2 2) due
to their low average cloud water content. However, the
standard deviation of broadband SWCRE for surface
clusters is greater than the mean, suggesting that proÞles
with nonnegligible cloud amount can occasionally fall
into surface clusters.

For cloud clusters, a number of key features are found.
First, the mean broadband SWCREs range from 200 to
over 500 W m2 2 for clusters with relatively optically
thick clouds (clusters e, f, g, and h) and between 110 and
170 W m2 2 for clusters with relatively optically thin
clouds (clusters i and j). The stated values of broadband

SWCRE are instantaneous at the time of satellite
overpass; the annual cycle of solar zenith angle will
therefore lead to some variations in the amount of in-
coming solar radiation, but the sun-synchronous orbit of
the A-Train satellites with an equator crossing of around
1330 local time provides diurnal consistency over the
West Africa region considered.

The second key feature is the swing from positive to
negative spectral SWCRE around 1.5mm for clusters
associated with ice cloud (clusters e, f, and g). The
presence of the swing is a good example of the added
value from monitoring SWCRE spectrally; in an
equivalent broadband measurement, the positive and
negative SWCRE from different parts of the spectrum
partly compensate. This can make the broadband
SWCRE from two distinctly different cloud regimes
appear quite similar (e.g., the mean broadband SWCRE
for clusters g and i, respectively associated with ice cloud
and vertically distributed thin liquid cloud, are within
40 W m2 2), despite relatively large spectral differences.

Finally, the spectral SWCRE in water vapor absorp-
tion bands (e.g., around 0.93, 1.13, and 1.39mm) have
reversed directions (i.e., bump vs dip) among cloud
clusters. Pronounced bumps occur when ice clouds are
present (most notably clusters e, f, and g). Ice clouds
reßect solar radiation back to space at high altitudes
before it can interact with the large water vapor con-
centrations in the lower troposphere. Therefore, the
reßectance difference in water vapor bands between
cloud-free conditions, corresponding to low reßectance
due to strong water vapor absorption, and cloudy con-
ditions, corresponding to higher reßectance due to more
reßection back to space at high altitudes, is larger than
the difference at surrounding wavelengths. Conversely,
pronounced dips occur when optically thick liquid

TABLE 1. Summary of the 10 clusters presented inFig. 1 and their dominating properties, based on 90 917 computed SCIAMACHY-like
reßectance spectra over West Africa in 2010.

Cluster
identiÞer

Assigned
color

Comment on controlling
property

Designated as surface or
cloud dominated?

No. of
spectra

a Orange Rocky desert Surface 12 408
b Red Bright desert (sand dunes) Surface 11 882
c Blue Ocean Surface 10 816
d Green Vegetation Surface 9258
e Purple Very optically thick ice cloud Cloud 5872
f Cyan Optically thick ice cloud Cloud 8267
g Gray Ice cloud Cloud 9045
h Magenta Liquid cloud Cloud 3354
i Lime Vertically distributed but optically

thin cloud, mostly liquid
Cloud 8487

j Brown Vertically distributed but optically
thin cloud, mostly ice, over
dark surface

Cloud 11 528
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FIG . 3. The mean surface spectral reßectance used as input in computed SCIAMACHY-like
reßectance spectra belonging to each of the 10 clusters presented inFig. 1. The dashed lines
represent one standard deviation either side of the mean.
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