Regulation of Southwestern United States Precipitation by non-ENSO Teleconnections and the Impact of the Background Flow

Cameron Dong,a Yannick Peings,a and Gudrun Magnusdottir a

aDepartment of Earth System Science, University of California Irvine, Irvine, California

ABSTRACT: In this study, we analyze drivers of non-El Niño–Southern Oscillation (ENSO) precipitation variability in the Southwest United States (SWUS) and the influence of the atmospheric basic state, using atmosphere-only and ocean–atmosphere coupled simulations from the Community Earth System Model version 2 (CESM2) large ensemble. A cluster analysis identifies three main wave trains associated with non-ENSO SWUS precipitation in the experiments: a meridional ENSO-type wave train, an arching Pacific–North American-type (PNA) wave train, and a circumglobal zonal wave train. The zonal wave train cluster frequency differs between models and ENSO phase, with decreased frequency during El Niño and the coupled runs, and increased frequency during La Niña and the atmosphere-only runs. This is consistent with an El Niño–like bias of the atmospheric circulation in the coupled model, with strengthened subtropical westerlies in the central and eastern North Pacific that cause a retraction of the waveguide in the midlatitude eastern North Pacific. As such, zonal wave trains from the East Asian jet stream (Eajs) are more likely to be diverted southward in the east Pacific in the coupled large ensemble, with a consequently smaller role in driving SWUS precipitation variability. This study illustrates the need to reduce model biases in the background flow, particularly relating to the jet stream, in order to accurately capture the role of large-scale teleconnections in driving SWUS precipitation variability and improve future forecasting capabilities.

KEYWORDS: Atmosphere; North America; Rossby waves; Teleconnections; Precipitation; Model evaluation/ performance

1. Introduction

One of the greatest scientific challenges in the field of atmospheric dynamics is providing skillful climate/weather predictions beyond the traditional 2-week time horizon and into the subseasonal-to-seasonal (S2S) range (Vitart et al. 2017). This challenge is particularly notable for precipitation prediction in the Southwest United States (SWUS), which is plagued by low prediction skill compared to other regions (Kumar and Chen 2020; Roy et al. 2020; Becker et al. 2022). In addition, the region contains the most populous and agriculturally productive state in the United States, California. As a result, improved prediction of precipitation is of utmost importance for local, state, and federal bodies to properly allocate and manage limited water resources in the SWUS (e.g., Sengupta et al. 2022).

The importance of improved prediction has been especially illustrated by the recent persistent multiyear drought in the region (Seager and Henderson 2016; Swain et al. 2014; Swain 2015). As of 2016, it was estimated to have resulted in billions of dollars in economic losses as well as shortages of water for rural consumption, agriculture, hydroelectric power, and other uses (Lund et al. 2018). However, despite numerous studies over the past decade analyzing the mechanisms regulating SWUS precipitation, there is little consensus regarding the drivers of the drought-inducing atmospheric circulation, and there are many gaps to fill regarding our understanding of SWUS precipitation variability.

In this study, we are primarily concerned with large-scale atmospheric patterns and teleconnections that regulate SWUS precipitation. Although SWUS precipitation is brought by midlatitude cyclones and associated atmospheric rivers (ARs) that form over the northern Pacific Ocean during boreal winter (Ralph and Dettinger 2011; Dettinger 2013; Rutz et al. 2014; Payne and Magnusdottir 2014), known limits in atmospheric predictability (Lorenz 1963) make it impossible to predict individual storms and ARs on S2S time scales. Despite this, there may still be potential to predict the large-scale atmospheric circulation pattern that regulates AR landfall and frequency (e.g., DeFlorio et al. 2019). AR landfall and SWUS precipitation anomalies are strongly associated with the presence of trough or ridge conditions in the midlatitude eastern North Pacific (ENP). A trough results in a strengthened subtropical east Pacific jet, which guides more storms and ARs toward the SWUS, while a ridge is associated with a weakened subtropical jet and decreased storm and AR activity in the SWUS (e.g., Gibson et al. 2020; Mundhenk et al. 2016; Swain et al. 2017; Teng and Branstator 2017; Payne and Magnusdottir 2016). Therefore, identifying the dominant S2S drivers of trough or ridge conditions in the ENP provides a path for improving SWUS precipitation prediction and areas to focus future model development.

Traditionally, ENSO has been the primary tool for SWUS precipitation prediction on seasonal (and to a lesser extent subseasonal) time scales. This is because of its large effect on the Northern Hemisphere atmospheric circulation during boreal winter and its slow evolution on seasonal time scales. During an average El Niño, eastern tropical Pacific warm SST
anomalies drive deep convection that leads to the propagation of Rossby waves to the midlatitudes (Hoskins and Karoly 1981), resulting in an extension of the northern subtropical Pacific jet and wet conditions in the SWUS (Trenberth 1997; Horem and Wallace 1981; Ropelewski and Halpert 1986; L'Heureux et al. 2015; Deser et al. 2018). During an average La Niña, the opposite occurs, with a weakening of the jet and dry conditions in the SWUS.

However, the ENSO–SWUS precipitation relationship is dependent on the spatial and temporal evolution of SSTs (Lee et al. 2018; Patricola et al. 2020), can be dominated by noise (Kumar and Chen 2020; Zhang et al. 2018; Swenson et al. 2019), and may vary nonlinearly with ENSO strength (Jong et al. 2016; Garfinkel et al. 2019). Therefore, the observed ENSO response in any particular period can deviate significantly from the composite ENSO response. Notably, the teleconnection has appeared weaker during the recent decade and persistent drought conditions (Lee et al. 2018). The water years 2013/14 and 2014/15 (defined as a November–March season) experienced severe drought conditions, despite neutral and weakly positive ENSO conditions, respectively. The following historically strong 2015/16 El Niño only resulted in average SWUS rain, followed by the region unexpectedly experiencing a brief respite during the ENSO-neutral 2016/17 deluge (Wang et al. 2017). Clearly, the ENSO state has not been sufficient to provide skillful predictions of SWUS precipitation during this time period, and it is necessary to find non-ENSO drivers of precipitation that can provide additional predictive skill.

There are many potential non-ENSO drivers of SWUS precipitation that researchers have explored. First, these include non-ENSO SST variability, such as western Pacific tropical SST (Hartmann 2015; Seager and Henderson 2016; Watson et al. 2016; Lee et al. 2015) and Indian Ocean SST (Siler et al. 2017; Seager and Henderson 2016), as well as sea ice concentration variability (Cohen et al. 2017; Lee et al. 2015), all of which may drive midlatitude circulation responses. Additionally, there may be a role for the Madden–Julian oscillation (MJO), due to its slow eastward propagation of organized tropical convection with a semiregular period of 30–90 days (Zhang 2005). The MJO has been found to excite different midlatitude circulation patterns depending on its phase (Arcodia et al. 2020; Moon et al. 2011; Riddle et al. 2013; Roundy et al. 2010), and it plays a role for subseasonal prediction (Mundhenk et al. 2018; Henderson et al. 2016; Stan et al. 2022; Lim et al. 2021) and potentially even seasonal prediction (Peng et al. 2019; Peings et al. 2022). Last, there are teleconnection patterns associated with internal midlatitude atmospheric dynamics, which may be intrinsic modes of the atmosphere that may also be excited by outside forcing. The most prominent of these teleconnections include the PNA pattern (Li et al. 2019; Lopez and Kirtman 2019) and the circumglobal teleconnection patterns (CGTs; Branstator 2002; Branstator and Teng 2017; Hoskins and Ambrizzi 1993), which are associated with Rossby wave trains guided by the jet stream that can set up trough or ridge conditions in the ENP (Teng and Branstator 2017).

Although many potential non-ENSO teleconnections have been explored, and there are indications that including these non-ENSO drivers can lead to improved predictions (e.g., through machine learning; Gibson et al. 2021), there is still a long way to go in providing skillful S2S predictions of SWUS precipitation. In addition, there is still a need to explore how non-ENSO SWUS precipitation variability can vary depending on the ENSO state and model choice. ENSO may modulate the tropical mean state that regulates tropical convective variability (e.g., MJO intensity and propagation; Liu et al. 2016; Kang et al. 2021) as well as the extratropical atmospheric background flow that is instrumental for Rossby wave propagation and breaking. Similarly, different model setups introduce their own unique biases in the mean state, feedbacks, and model physics and parameterizations that may influence SWUS teleconnection variability. Recent studies show that even in S2S forecasting, mean-state biases quickly emerge after initialization (Garfinkel et al. 2022). In addition, there may be large differences in tropical convective variability between atmospheric models often used in hindcast experiments and coupled models typically used in forecasting (e.g., MJO propagation; Wollnough et al. 2007; DeMott et al. 2019), as well as between models and observations.

Due to these issues, we supplement our analysis of observations and reanalysis data with the fully coupled CESM2 large ensemble experiment (Rodgers et al. 2021) and the atmosphere-only CESM2 Atmospheric Model Intercomparison Project (AMIP) experiment (NCAR Climate Variability and Change Working Group). This allows for a robust assessment and reduction of the influence of internal variability in statistical analyses for studying how a state-of-the-art climate model represents the key teleconnections that influence SWUS rainfall, during different ENSO states, as well as with either a freely evolving ocean or with prescribed observational SST. During our analysis of the model experiments and observational and reanalysis dataset, we aim to answer the following major questions with regard to subseasonal monthly variability of SWUS precipitation:

1) What are the dominant non-ENSO teleconnection patterns that interfere with the expected ENSO–SWUS precipitation teleconnection?
2) How do the different teleconnections interact with the ENSO basic state?
3) How well are these teleconnections represented in models, and how might that affect SWUS precipitation prediction?

Section 2 presents the data and methodology used. Section 3 describes the results from our analyses, and section 4 contains the conclusions and a discussion of the main findings.

2. Data and diagnostics

a. Observational and reanalysis data

For historical global atmospheric variables, we use monthly data from the ERA5 global reanalysis product (Hersbach et al. 2020), which uses a data assimilation system to constrain observations from 1940 to the present with a horizontal spatial resolution of 31 km and 137 vertical levels. We use historical SST from the Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5) dataset, which is a monthly global sea surface temperature dataset derived from the International
Comprehensive Ocean–Atmosphere Dataset (ICOADS) release 3.0, with data from 1854 to the present on a 2.0° × 2.0° grid. Historical precipitation over the United States is taken from the Climate Prediction Center (CPC) monthly rain gauge dataset over the years 1948 to the present on a 0.25° × 0.25° grid.

b. Model experiment data

The model data come from two experiments running CESM2. The first set of simulations is the CESM2 large ensemble (LENS2; Rodgers et al. 2021), which uses the fully coupled version. We use the first 50 ensemble members, which use the original Coupled Model Intercomparison Project phase 6 (CMIP6) biomass burning protocol and simulate the period 1850–2010 (Danabasoglu et al. 2020). The second set of simulations [Global Ocean Global Atmosphere (GOGA)] uses the atmosphere-only component of CESM2, the Community Atmosphere Model version 6 (CAM6) on a 1.25° × 0.8° horizontal grid with 32 vertical levels and a model top at 2.26 hPa. GOGA is a 10 ensemble-member experiment where CAM6 is forced by prescribed global monthly SST from ERSSTv5 over the period 1880–2021, having been branched from the 11th LENS2 member on 1 January 1880 through perturbations to the air temperature field.

c. Data treatment and climate indices

Each dataset is trimmed to a common time interval, 1948–2020, which is also used to calculate climatological fields. Additionally, SST anomalies are calculated after first subtracting the global mean SST at each time step to account for the global warming trend. All data are analyzed in either monthly or seasonal averages during November–March (NDJFM) periods.

To represent ENSO, we use the Niño-3 index, calculated as the areal average of SST anomalies over the eastern tropical Pacific Ocean (5°S–5°N, 150°W–90°W). Analyses have also been tested using the Niño-3.4 index, which captures more central Pacific ENSO variability, but the results are similar. SWUS precipitation is calculated as an areal average over land within the box covering 31°–40°N, 235°–251°E. This region includes most of California, Nevada, Utah, and Arizona.

We perform linear regressions to measure and then remove the anomalies associated with ENSO, when analyzing non-ENSO mechanisms. This is performed individually at each grid point, such that for a variable X at latitude φ, longitude λ, and time step t, the linear part of X dependent on ENSO is calculated as

\[X_{\text{ENSO}}^{(\lambda, \phi)} = a \times \text{ENSO}_i + b, \]

where a and b are constants derived from a simple linear regression between the Niño-3 index and variable X at all time-steps i. Note that when calculated using variable anomalies, b is zero. Using this, we can also calculate “non-ENSO” anomalies by subtracting the linear ENSO anomalies from the total anomaly

\[X_{\text{non-ENSO}} = X - X_{\text{ENSO}}, \]

where we have omitted the subscripts i, φ, and λ for simplicity. Analyses have also been performed using a quadratic least squares regression to account for the influence of nonlinear ENSO dependence, but results are similar and the main conclusions do not change.

d. Clustering algorithm

The following analyses use an algorithm that places map patterns into separate clusters. Before clustering, we reduce the dimensionality of the data by using extended empirical orthogonal functions (EOFs), where we select multiple variables, inputting the anomalies of these variables during selected timeframes and locations. For example, later analyses use monthly 200-hPa meridional wind and streamfunction anomalies during NDJFM months over a longitude–latitude box (20°–70°N, 180°–260°E). After this selection, we compute the first 20 EOFs.

After computing the EOFs, we perform the clustering using a Gaussian mixture model (GMM) algorithm from the Scikit-learn library in Python (Pedregosa et al. 2011). Each time step is a sample data point with dimensionality equal to the number of selected EOFs. The clustering algorithm iteratively solves for N clusters from the data points, where N is a user-defined input, and each cluster is defined by a multivariate Gaussian probability distribution. Due to the possibility of local maxima, the clustering algorithm is randomly initiated 100 separate times. The highest scoring result is saved according to the Bayesian information criterion (BIC) score. After calculating the N clusters, each data point can be assigned to the cluster for which it has the highest probability (according to the multivariate Gaussian probability distributions).

Using a GMM has distinct advantages over the common clustering algorithm k-means, which can be formulated as a primitive version of the GMM expectation-maximization algorithm. While k-means has spherical distributions shapes, fixed partitions, and single cluster membership, GMM allows for elliptic distribution shapes, overlapping clusters, and probabilistic cluster membership. As such, GMM is more flexible and advantageous when analyzing monthly mean data that contain multiple overlapping atmospheric patterns.

e. Stationary wavenumber of Rossby waves

We use the 200-hPa mean flow to calculate the wavenumber for stationary Rossby waves from linear theory using a Mercator coordinate transform as in Hoskins and Ambrizzi (1993), where \(K_s \) is the stationary wavenumber, U is the zonal wind, a is Earth’s radius, \(\phi \) is latitude, and \(\beta_M \) is the Mercator coordinate equivalent of the meridional gradient of absolute vorticity:

\[K_s = a \left(\frac{\beta_M \cos \phi}{U} \right)^{1/2}, \]

\[\beta_M = 2 \Omega - \frac{1}{\cos \phi \sin \phi} \left(\frac{U \cos \phi}{a^2} \right) \cos^2 \phi. \]

We interpret the stationary wavenumber as follows. Under the assumption that locally the medium is varying only in the meridional direction, the zonal wavenumber \(k \) is constant, so that for each zonal wavenumber, the meridional wavenumber \(l \) can be deduced from the following: \(K_s^2 = k^2 + l^2 \). This
implies that for stationary, linear Rossby wave solutions, a
wave with zonal wavenumber \(k \) is restricted to regions of
\(K_s > k \), or else \(l \) will be imaginary and the waves will decay.
Put another way, linear waves are refracted toward regions
with higher \(K_s \). Naturally, this places larger restrictions on
short waves with higher zonal wavenumbers, particularly in
waveguides along the jet streams. However, even larger scale
waves with smaller wavenumbers will be refracted by the me-
dium. While many of the assumptions of linear theory are not
strictly valid, it can be useful for qualitative analysis.

3. Results

Our goal is to analyze non-ENSO mechanisms and how
they regulate SWUS precipitation while interacting with
ENSO. However, it is important to recognize that ENSO vari-
bility may differ between reanalysis, GOGA, and LENS2.
This may impact the teleconnection strength between ENSO
and SWUS precipitation, as well as how ENSO interacts with
other non-ENSO mechanisms. In the first section we briefly
compare ENSO tropical SST and convective variability, its
induced large-scale atmospheric response, and the strength of
the ENSO teleconnection with SWUS precipitation in each of
the model experiments and reanalysis, before analyzing non-
ENSO variability in the latter sections.

a. Comparison of model variability of the ENSO-SWUS
precipitation teleconnection

In Fig. 1, we display the regressed fields associated with the
Niño-3 index during the NDJFM months. The SST expression
of ENSO (left column) is nearly identical between ERSSTv5
and GOGA, as expected due to the experimental design. How-
ever, in LENS2 there is a westward extension of the warm SST
pool during El Niño as previously shown by Capotondi et al.
(2020). As a result, the tropical atmospheric precipitation re-
sponse is also shifted westward. However, this shift is not clearly
manifested in a different ENSO extratropical response in LENS2,
compared to GOGA and observations.

When comparing 200-hPa streamfunction (SF200) and
200-hPa zonal wind (U200), each dataset displays a similar
meridional wave train in the central-eastern Pacific, which
results in a trough in the extratropical North Pacific and

![Fig. 1.](image-url)
strengthened subtropical North Pacific westerlies (Fig. 1, right panels). Calculating the longitude of maximum jet strengthening, we find that it occurs at 142.5°W in ERA5, 148.75°W in LENS2, and 155°W in GOGA. Thus, despite nearly identical monthly SST variability in GOGA and ERA5, there is about a 12° longitude westward shift in the jet strengthening maximum in GOGA. In contrast, despite a westward shift in warm tropical SST and convection in LENS2, the jet response maximum is shifted eastward relative to GOGA. This indicates that the zonal location of tropical warming and convection associated with ENSO is not necessarily a good predictor of small zonal shifts in the extratropical response, which could be important for SWUS precipitation prediction.

This concept is further elucidated when we construct regression maps with monthly NDJFM SWUS precipitation (Fig. 2). While we might have initially expected a weaker ENSO–SWUS precipitation teleconnection in LENS2 due to the westward tropical convection shift (Patricola et al. 2020), this is clearly not the case. When analyzing the relationship between SWUS precipitation and tropical SST, it appears that GOGA has the weaker ENSO–SWUS rain relationship, in contrast to stronger relationships in LENS2 and ERA5/ERSSTv5, which exhibit stronger SST and precipitation signals in the ENSO region. Potentially, this may be related to the aforementioned shifts in the ENSO-induced jet response, where an eastward shift results in a stronger SWUS precipitation response. However, it is also important to remember that GOGA uses prescribed SST in the extratropics, so the lack of air–sea feedbacks may also weaken this relationship, such as by changing feedbacks in Rossby wave forcing or storm feedbacks.

When analyzing the SF200 and U200 patterns regressed with SWUS precipitation (Fig. 2 right column), we identify similar patterns in the ENP in each dataset, with a trough and associated strengthened subtropical east Pacific westerlies. However, outside this region, there are numerous differences between GOGA, LENS2, and ERA5. Both LENS2 and ERA5 display a significant signal from ENSO, with a meridional wave train in the central-eastern Pacific and strong negative zonal mean SF200 responses in the midlatitudes that resemble the ENSO regressed responses. In GOGA, there are also similarities to the regressed ENSO pattern, but the influence is weaker. GOGA exhibits stronger hints of a zonal pattern with troughs over East Asia, east of Japan, and in the ENP, which does not overlap with the ENSO regressed response. Similar patterns...
have been identified in previous studies, associated either with atmospheric internal variability or convection in the western tropical Pacific (Gibson et al. 2020; Swain et al. 2017; Teng and Branstator 2017).

As expected, ENSO is the dominant climate pattern associated with SWUS precipitation in each of ERA5, LENS2, and GOGA, although the connection appears weaker in GOGA. However, SWUS precipitation is highly variable, and ENSO only explains a small fraction of its variance. Figure 3 shows the correlation between the Niño-3 index and SWUS precipitation at monthly time scales, where it is under 0.2 for each model and in observations (at seasonal time scales, the correlation is \(0.26\) for GOGA and \(0.42\) for observations and LENS2). Despite this low correlation, the dominant ENSO signal in the large-scale atmospheric dynamics makes it difficult to ascertain the role of non-ENSO teleconnection patterns. To address this, we next analyze non-ENSO anomalies during wet and dry SWUS periods with similar background ENSO states.

b. Variability of the ENSO–SWUS precipitation teleconnection in LENS2 and GOGA

Focusing on non-ENSO teleconnections, we first calculate non-ENSO anomalies by regressing out the Niño-3 index as described in section 2c. Then, we create composites for NDJFM months with high non-ENSO SWUS rainfall minus low non-ENSO SWUS rainfall. In GOGA, which has 10 ensemble members, we composite the three wettest minus the three driest ensemble members at each time step. Note that in this case, each group has identical SST variability. In LENS2, which has a freely evolving ocean, we take the wettest 30% minus the driest 30% of months over all the data. Using non-ENSO anomalies in conjunction with the composite method is effective at removing the ENSO signal from our analyses. We perform the analysis on NDJFM months rather than seasons, due to the larger sample size, although results are overall similar. Composite analyses are not performed on reanalysis data due to the small sample size.

In anticipation that the ENSO background may affect which non-ENSO teleconnections drive SWUS precipitation variability, we compare El Niño periods where Niño-3 anomalies are greater than 0.5°C to neutral/La Niña periods where Niño-3 anomalies are less than 0.5°C. In addition, due to the wider distribution of Niño-3 anomalies in LENS2, only months with anomalies of magnitude 3.3°C and less are considered, in line with the historical record.

Figure 4 displays the composite results for 200-hPa meridional wind (V200) and SF200. There are two clear dominant patterns that are associated with non-ENSO SWUS precipitation. First, there is a zonal wavenumber-5 CGT with troughs over northern Africa, eastern India, the subtropical west Pacific, the ENP, and the Atlantic. This pattern is the dominant pattern in GOGA during both ENSO states, as well as being present in LENS2 neutral/La Niña months. Comparatively, the pattern is weaker in LENS2 El Niño months. This result supports the previous findings of Teng and Branstator (2017) regarding the significant role CGTs may play in ENP ridges and troughs.

The second dominant pattern in Fig. 4 is a meridional El Niño–like wave train in the central-eastern Pacific, with a ridge in the subtropical east Pacific and trough in the ENP. This pattern is most apparent in LENS2 El Niño months, which coincidentally had the weakest zonal pattern. The pattern is also apparent, albeit slightly weaker, in LENS2 neutral/La Niña months. In GOGA, the meridional wave train signal is much weaker if present at all.

Although the meridional wave train resembles an El Niño response, it is not a result of linear ENSO variability, due to the composite method and removal of linearly regressed ENSO anomalies. To affirm this and identify tropical forcing patterns for the circulation patterns in Fig. 4, identically constructed composites for non-ENSO precipitation and non-ENSO SST are displayed in Fig. 5. Analyzing SST first, there is no GOGA SST signal as expected. By contrast, LENS2 contains weak SST signals in the tropics and stronger SST signals in the extratropics, which are likely driven by the atmospheric circulation. All
tropical SST differences are less than 0.25 K, so it appears that tropical SST variability is only weakly related to the differences in SWUS precipitation. However, it is possible that SST anomalies induced by the atmospheric variability may feed back on and modulate the atmospheric circulation in LENS2, even if they are not the direct drivers (e.g., Watanabe and Kimoto 2000; Lau and Nath 1996).

Despite the lack of significant tropical SST differences, there are still significant tropical precipitation differences that appear unforced by SST and may explain the different circulation patterns present in each model experiment and ENSO state. First, in LENS2, there is a tropical Pacific precipitation pattern that resembles a southward shift and weakening of the inter-tropical convergence zone (ITCZ). This pattern is stronger during LENS2 El Niño months relative to neutral/La Niña months, while not showing any significant presence in GOGA. The meridional wave train varied in a similar way with model experiment and ENSO state, so this tropical precipitation pattern may be associated with the meridional wave train pattern.

FIG. 4. Difference between high vs low SWUS rainfall months in (left) GOGA and (right) LENS2, and during (top) positive ENSO and (bottom) neutral/negative ENSO. In each panel, 200-hPa meridional wind (shading) and 200-hPa streamfunction (contours) are plotted. The contour interval is 2.5×10^3 m$^{-2}$ s$^{-1}$. The zero contour is omitted.

FIG. 5. As in Fig. 4, but for precipitation (shading) and SST (contours). Contour interval is 0.25 K, with the zero contour omitted. The red box is the NEIO (5$^\circ$–20$^\circ$N, 80$^\circ$–100$^\circ$E). The green box is the rain region (0$^\circ$–10$^\circ$N, 140$^\circ$–170$^\circ$E).
When we analyze precipitation in the west Pacific and Indian Ocean in Fig. 5, we note two significant features. First, there is a common signal in the rainA region (0°–10°N, 140°–170°E), highlighted by the green box, during each ENSO phase and each model experiment. Teng and Branstator (2017) found this precipitation signal to be associated with zonal wave train patterns that set up ridges or troughs in the ENP. Second, we highlight in red the region in the northeast Indian Ocean (NEIO), which only contains a precipitation signal during GOGA neutral/La Niña months. Due to its proximity to the EAJS, we hypothesize that this precipitation signal may be related to the zonal wave train pattern. Later, in section 3e, we will analyze the atmospheric responses to precipitation in each of these regions to investigate why the rainA signal is common for each model experiment and ENSO phase, while the NEIO precipitation signal is strongest during GOGA neutral/La Niña months.

c. Clustering to identify unique teleconnections that bring SWUS precipitation

So far, we have visually identified two non-ENSO circulation patterns that can regulate SWUS precipitation: a zonal CGT and an east Pacific meridional wave train. However, it is possible that there are other unidentified patterns hidden within the composite, as it is difficult to disentangle individual circulation patterns. Additionally, the composite method offers no quantitative measure of the frequency of occurrence for individual patterns. To address this, we use a clustering algorithm to analyze wet SWUS months individually and to identify unique circulation patterns associated with SWUS precipitation. Then, we can assess the relative frequencies of the unique patterns, the tropical forcing associated with each pattern, and how the cluster frequencies change in each model setup and with different ENSO backgrounds.

The method used for clustering anomalies is described in section 2d. Using non-ENSO SWUS precipitation, input months are selected as the wettest 30% of NDJFM months from the ten GOGA ensemble members and the wettest 30% of NDJFM months from the first 10 ensemble members of LENS2, in order to equalize the influence from each one. Input variables include the first 20 EEOF’s of non-ENSO V200 and non-ENSO SF200 over the ENP and North America (20°–70°N, 180°–260°E).

We find that searching for three clusters produces the best results, based on the BIC score and by visual inspection. Composites are constructed by assigning each month to one of the calculated clusters. The composites for precipitation and SF200 are displayed in Fig. 6, along with the relative

Fig. 6. Composite non-ENSO anomalies for each cluster in ERA5, GOGA, and LENS2. Monthly NDJFM SF200 (contours) and precipitation (shading). Contour interval is 2.5×10^6 m2 s$^{-1}$. The zero contour is omitted. The frequency of each cluster in each dataset is displayed in the subplot title, with the ensemble member standard deviation in parentheses.
frequency of each cluster within each model experiment. Cluster frequencies and composites are also calculated for ERA5, although the results are less statistically reliable due to the smaller sample size. Additionally, we calculate the cluster frequencies for each ensemble member individually, then calculate the standard deviation of the ensemble spread.

Cluster 1 (Fig. 6, top row) can be described as an arching wave train that strongly resembles the PNA teleconnection pattern and is similar to patterns found previously associated with non-ENSO precipitation in the SWUS (e.g., Li et al. 2019; Lopez and Kirtman 2019; Jiang et al. 2022). The cluster is associated with different tropical precipitation patterns in each dataset. In ERA5, there are only very weak tropical anomalies. By contrast, the arching wave train is associated with precipitation in the west Pacific rainA region in GOGA. In LENS2, it is associated with a quadrupole of precipitation anomalies over the equatorial and off-equatorial Pacific. These differences highlight a potentially strong role for internal atmospheric variability for cluster 1. Despite this, cluster 1 is the most common cluster in ERA5 and GOGA, and second most common in LENS2, despite not being one of the wave trains identified earlier in our composite analysis.

Cluster 2 (Fig. 6, middle row) is associated with a meridional wave train, shifted slightly westward relative to the meridional wave train found earlier (Fig. 4, right column), so that it resembles more closely the regressed ENSO response (Fig. 1). This pattern, compared to the other clusters, is associated with stronger precipitation anomalies in the tropical Pacific. In particular, in each model experiment this cluster is associated with a north–south dipole of precipitation in the central tropical Pacific, as well as a north–south dipole of opposite sign in the tropical west Pacific. This cluster is nearly twice as common in LENS2 (38.7%) as it is in ERA5 (22.7%) and GOGA (23.7%).

Last, cluster 3 is a zonal wave train that resembles the composite atmospheric pattern associated with SWUS precipitation in GOGA (Fig. 4, left column). It is a zonal wavenumber-5 wave train that propagates through the EAWS and sets up a trough over the ENP region. It is associated with excess precipitation in southeast China and the off-equatorial central North Pacific in each dataset, although this signal is weaker in GOGA relative to ERA5 and LENS2. This cluster is more frequent in GOGA (38.7%) than it is in LENS2 (26.6%) and ERA5 (30.9%).

In addition to variations with model, cluster frequencies may also depend on the ENSO background state, which may modulate non-ENSO variability (e.g., by changing preferential non-ENSO convection patterns in the tropics, propagation of Rossby waves in the extratropics). Figure 7 displays the frequency for each cluster during El Niño and neutral/La Niña backgrounds for each experiment. For all datasets, the zonal and arching wave train clusters are more prevalent during neutral/La Niña backgrounds than during El Niño, while the meridional wave train cluster is more prevalent during El Niño backgrounds. The fact that each of ERA5, GOGA, and LENS2 displays similar cluster relationships with ENSO phase, despite their differences, indicates the robustness of this dependence on ENSO.

d. Role of the background flow on Rossby waveguide characteristics

So far, we have identified three clusters associated with non-ENSO SWUS rainfall and found that both model choice and the ENSO background state influence cluster frequency. There are many potential causes for these differences, such as differences in tropical convective variability (e.g., MJO, ITCZ), modulations of Rossby wave source and propagation by the atmospheric mean state, and different internal midlatitude atmospheric dynamics. All of these likely play a role in modulating cluster frequencies, and each may be affected by model setup and ENSO phase. However, for the rest of this paper, we will focus on the waveguide effect of the atmospheric mean state, with a brief discussion of the differences in tropical convective variance and Rossby wave source in section 3f. We now turn to how changes in the background flow due to model biases and ENSO can affect the characteristics of the waveguide in the North Pacific, with potentially significant effects on Rossby wave trains that impact SWUS precipitation.

To investigate the role of the basic state on Rossby wave propagation, we calculate the ERA5 NDJFM climatological U200 and the mean U200 biases in GOGA and LENS2, respectively (Fig. 8, left column). We also calculate the climatological NDJFM stationary wavenumber for each experiment (section 2e).

In ERA5, the climatological jet stream over Southeast Asia forms a narrow strip of maximum K_s that serves as an effective waveguide through the EAWS. This waveguide extends toward the eastern North Pacific, while a separate waveguide forms in the tropical/subtropical eastern Pacific that is later associated with the Atlantic jet stream.

In the model experiments, LENS2 displays stronger zonal wind biases in the North Pacific that have more significant effects on the stationary wavenumber field, compared to GOGA. While GOGA is characterized by a similar North Pacific waveguide as in reanalysis, LENS2 displays a nearly 10 m s$^{-1}$ strengthening of the subtropical eastern Pacific westerlies, which is associated with a strong increase in the
meridional vorticity gradient in the central and eastern subtropical Pacific, with a smaller decrease on the poleward side of the jet. This is associated with a southward shift in the waveguide, with a westward retraction in the midlatitude ENP region and eastward extension in the subtropics.

This change in the waveguide can have significant effects on Rossby wave propagation, particularly for high-wavenumber (short-length) waves. Considering regions with \(K_s \geq 5 \), where CGTs of zonal wavenumber 5 are theoretically bound, both ERA5 and GOGA are characterized by a North Pacific waveguide that extends toward the ENP, so that wavenumber-5 wave trains from the EAJS propagate zonally into the ENP. In LENS2, changes in the east Pacific waveguide cause the same waves to deviate southward to join the southern waveguide, at least according to linear theory and on a climatological basis.

Similarly, differences in the background flow due to ENSO may alter the stationary wavenumber field and Rossby wave propagation. Figure 8 displays the regressed U200 anomalies associated with El Niño (center column) and La Niña (right column), as well as the average stationary wavenumber field that occurs during each ENSO phase. Notably, the ENSO-driven jet response is similar to the mean bias in LENS2, and it has similar effects on the waveguide. During El Niño, there is a westward retraction of the midlatitude waveguide in the North Pacific, while in La Niña there is greater eastward extension into the midlatitude ENP region. Curiously, La Niña can be thought to counteract the LENS2 mean-state bias, such that during LENS2 La Niña, the waveguide is similar to that which occurs during ERA5 and GOGA El Niño.

The dependence of the waveguide on model mean-state biases and ENSO phase may partially explain some of the cluster frequency dependencies found earlier, particularly for the zonal wave train pattern, which has a higher zonal wavenumber. For example, during La Niña, EAJS zonal wave trains may propagate into the ENP more frequently, due to the eastward and northward extension of the waveguide relative to El Niño. Through identical reasoning, GOGA may be dominated by the zonal wave train variability more than LENS2. In this way, it appears that large-scale changes in the background flow, due to ENSO, model biases, or other variabilities, may result in significant changes to the waveguide, Rossby wave propagation, and potentially teleconnection sign and strength.

e. Effect of the background state on SWUS precipitation teleconnections

Although we have demonstrated how changes in the background flow can affect the waveguide, it is still necessary to
confirm its effects on Rossby wave propagation and SWUS precipitation. We now construct composites on rainfall in the NEIO (red box from Fig. 5) and in the rainA region (green box from Fig. 5) to demonstrate how the waveguide affects two types of Rossby wave trains. Composites are calculated in an identical manner to Figs. 4 and 5, but replacing SWUS precipitation with the NEIO or rainA precipitation, in order to analyze the non-ENSO response to NEIO and rainA precipitation.

In Fig. 9, the atmospheric circulation associated with NEIO precipitation consists of a zonally oriented wave train in the EAJS, which is similar in each model experiment and ENSO phase. However, significant differences emerge as the wave train propagates downstream toward the east Pacific.

During GOGA El Niño months, the wave train deviates southward in the east Pacific before continuing zonally eastward. In contrast, in GOGA neutral/La Niña months, the wave train continues to propagate zonally eastward through the midlatitudes over the ENP and the United States. This aligns with the subtropical bias of the east Pacific waveguide during El Niño, relative to La Niña. Due to the meridional shift of the wave train, NEIO precipitation is associated with a neutral SWUS rain response in GOGA El Niño months and a dry SWUS in GOGA neutral/La Niña months (Fig. 10).

Analyzing LENS2, there is a notable similarity between the circulation pattern during LENS2 neutral/La Niña months and GOGA El Niño months. However, this is not surprising considering that the waveguide and stationary wavenumber field during LENS2 La Niña was similar to that during GOGA El Niño. Slight differences do lead to a slightly drier SWUS in LENS2 neutral/La Niña months.

During LENS2 El Niño months, there appears to be even farther southward deviation of the EAJS wave train once it approaches the east Pacific, so that the weak trough over Alaska in LENS2 neutral/La Niña months has shifted southward into the ENP. However, it is important to note that NEIO precipitation during LENS2 El Niño is associated with relatively higher precipitation variability in the central tropical Pacific, relative to La Niña and GOGA, which may obfuscate the response. In any case, NEIO precipitation is associated with a wet SWUS during El Niño in LENS2, contrasting the drier response during neutral/La Niña months.

Last, we have analyzed the response to precipitation in the rainA region (Fig. 11). It is associated with an arching wave train response that resembles the PNA, and thus may be related to cluster 1. Comparing El Niño to neutral/La Niña in GOGA, there does seem to be a slight southward shift during El Niño, but it is not significant enough to change the dry SWUS response (Fig. 12). In LENS2, there are more impacts from covarying tropical precipitation patterns in the central Pacific, but the wave trains are largely similar and set up a ridge in the ENP, associated with dry anomalies in the SWUS. Thus, differences in the waveguide due to model bias and ENSO did not significantly alter Rossby wave propagation enough to alter SWUS rain anomalies. In this way, it is likely that the role of the waveguide is more important for short wavelength zonal wave trains than long wavelength arching wave trains. This may potentially explain why the zonal wave train cluster frequency differs between GOGA and LENS2, while the arching wave train cluster frequency is comparable for both.

f. Potential role of tropical forcing and Rossby wave source

While we have shown how biases in the waveguide can modulate zonal wave trains and likely affect the frequency of the cluster 3 zonal wave train pattern, we still do not have an adequate explanation for the increased frequency in LENS2 (38.7%) for
the cluster 2 meridional wave train, relative to GOGA (23.7%) and ERA5 (22.7%). Due to the strong tropical precipitation signal associated with SWUS precipitation in the LENS2 composites (Fig. 5) and in cluster 2 (Fig. 6), the frequency difference is likely related to tropical forcing. In particular, we are interested in two possible mechanisms related to tropical forcing. First, there is the amount of tropical convective activity (represented by standard deviation), where we expect that if LENS2 has increased convective activity in the tropics, there might be increased activity in the meridional cluster 2 pattern. Second, the LENS2 subtropical Pacific jet bias, which increases the meridional vorticity gradient in the vicinity of the strengthening, may increase the sensitivity of Rossby wave source to meridional divergent flow (Sardeshmukh and Hoskins 1988). In this section, we briefly analyze and link these two possibilities to the meridional wave train pattern by comparing the tropical upper-level divergence activity between each of LENS2, GOGA, and ERA5, and analyzing the extratropical response to a region of increased tropical divergence activity in LENS2.

Analyzing the standard deviation of tropical divergence (Fig. 13, left), most of the variance is associated with the North Pacific ITCZ and the South Pacific convergence zone (SPCZ) in each of the datasets. However, both LENS2 and GOGA exhibit increased activity over the western Pacific and the ITCZ, relative to ERA5. The regions of increased divergence activity are associated with regions of increased meridional divergent flow activity (Fig. 13, center). In GOGA, this increased activity occurs in the equatorial central-western Pacific, between the SPCZ and the ITCZ. In LENS2, there is increased meridional divergent flow activity in the eastern and western Pacific, in particular. We expect that regions of increased meridional wind activity are also associated with increased variance in Rossby wave source from the advection of the mean-state vorticity and potentially Rossby waves propagating to the extratropics.

To relate the tropical divergence activity differences to the meridional wave train frequency, we now choose a region at the eastern tip of the ITCZ where LENS2 exhibits increased activity relative to both GOGA and ERA5 (blue box;
5°–15°N, 150°–130°W), which is associated with lobes of increased meridional divergent flow activity to the north and south. We calculate the non-ENSO regression response to the areal mean of divergence in this region (Fig. 13, right), normalized by the standard deviation in LENS2 (1.85 × 10^{-6} \text{s}^{-1}), which was nearly 20% higher than the standard deviation in GOGA (1.60 × 10^{-6} \text{s}^{-1}) and in ERA5 (1.56 × 10^{-6} \text{s}^{-1}). Positive (negative) divergence is associated with a meridional wave train that weakens (strengthens) the subtropical jet and induces a dry (wet) response in the SWUS. Thus, there appears to be a clear link between the overestimation of tropical convective activity and the higher frequency of the meridional cluster 2 wave train pattern in LENS2.

It is less clear, however, whether the subtropical jet bias affects the wave train response to the tropical divergence. Based on previous studies (e.g., Wang et al. 2020; Garfinkel and Hartmann 2010), we would have expected an equal tropical divergence to produce a stronger wave train amplitude in LENS2 due to the increased meridional vorticity gradient. However, while there is a change in orientation of the wave train in ERA5 and GOGA compared to LENS2, the amplitude of the response is similar in ERA5 while much weaker in GOGA. It is possible that other factors are affecting the extratropical response, such as air–sea feedbacks in the extratropics or the specific shape of the tropical convective pattern, which complicates the situation. Idealized modeling studies that prescribe a basic-state wind and tropical heating would likely be required to separate and diagnose the effect of the jet bias from other variabilities.

g. Implications for future climate change

While the focus of this study is on analyzing model variability, it is interesting to examine how regional climate variability may change in the future due to global warming. As such, we now briefly compare the LENS2 historical period (1948–2020) with the simulation of the last three decades of the twenty-first century in LENS2 (2071–2100), based on the SSP3 RCP7.0 scenario.

Figure 14 displays the future change in the basic-state zonal wind, as well as the future change in the tropical divergence activity. Similar to previous multimodel studies, there is an extension of the subtropical jet in the Pacific in future simulations under LENS2 (Allen and Luptowitz 2017; Wang et al. 2022). This strengthening in the subtropics increases the meridional vorticity gradient and results in a strengthened southward shift of the waveguide (i.e., in the direction of the LENS2 model bias). Previous studies have shown that such future changes in the basic state may result in eastward shifted teleconnection patterns (Zhou et al. 2020; Wang et al. 2022). In addition, there may be similar effects as previously discussed for zonal wave trains and Rossby wave source. Besides the basic-state wind, there is an increase in divergent wind activity in the equatorial east Pacific, in line with previous studies that have found increased MJO precipitation activity in the east Pacific (e.g., Wang et al. 2022; Maloney et al. 2019) and a decrease in west Pacific divergent wind activity.

These changes are likely associated with the El Niño–like warming of the tropical east Pacific in future LENS2 (not pictured), and they may alter the frequencies of teleconnection patterns affecting SWUS precipitation. In fact, we find that when calculating cluster frequencies in future LENS2 simulations using the historical cluster patterns, there is a decrease in the arching cluster 1 (34.7% → 29.9%), an increase in the meridional cluster 2 (38.7% → 45.2%), and a slight decrease in zonal cluster 3 (26.6% → 24.9%). The decrease in cluster 1 and increase in cluster 2 are in agreement with the increase in east Pacific divergent flow activity and decrease in west Pacific divergent flow activity.
This is consistent with the mechanisms we describe in section 3f and also consistent with the previously found relationship between ENSO and cluster frequency (Fig. 7), suggesting that projected El Niño–like climate change reinforces the existing model biases in LENS2. This illustrates how model bias may affect future projections of SWUS precipitation, a region where climate projections are notoriously uncertain (e.g., Gershunov et al. 2019).

4. Summary and conclusions

In this study, we have analyzed monthly wintertime SWUS precipitation variability in reanalysis and in both a coupled (LENS2) and atmosphere-only model setup (GOGA). The objective of the study was threefold: 1) extract the dominant non-ENSO teleconnection patterns that influence SWUS precipitation during the cool season (NDJFM), 2) reveal the influence of the background state on the non-ENSO teleconnections, and 3) compare the frequency and fidelity of these teleconnection patterns in LENS2 and GOGA.

Composite analyses suggest that non-ENSO SWUS precipitation in GOGA is strongly associated with zonal wave trains, while in LENS2 meridional wave trains have a stronger influence. The meridional wave train is associated with precipitation in the tropical central and eastern Pacific that resembles a southward shift or weakening of the ITCZ. Meanwhile, the zonal wave train is potentially associated with Indian Ocean and west Pacific precipitation, similar to findings from Teng and Branstator (2017). A clustering algorithm that extracts non-ENSO patterns associated with wet SWUS winter months also supports and refines these results. The algorithm identifies three major clusters: an arching wave train pattern that resembles the PNA, a meridional “ENSO-like” wave train over the central North Pacific, and a zonal CGT-type wave train pattern. The zonal wave train pattern most often occurs in GOGA, while the meridional wave train pattern occurs most commonly in LENS2. The meridional wave train cluster displayed strong associations with tropical Pacific precipitation, in contrast to the PNA-type cluster, which displayed only weak tropical precipitation anomalies.

\[\text{NDJFM monthly P response: High minus Low rainA P}\]

\[\text{GOGA}\]

\[\text{LENS2}\]

\[\text{El Niño}\]

\[\text{Neutra/La Niña}\]

\[\text{FIG. 12. Difference between high vs low rainA rainfall months in (left) GOGA and (right) LENS2, as well as in (top) positive ENSO and (bottom) neutral/negative ENSO months. In each panel, western North America precipitation (shading) is plotted.}\]
in agreement with previous studies separating the influence of the PNA and ENSO-type teleconnections (Li et al. 2019; Lopez and Kirtman 2019).

Since LENS2 and GOGA use the same atmospheric model (CAM6), these differences cannot be attributed to differences in atmospheric model physics or parameterizations. However, differences in their ocean representations do lead to differences in the atmospheric mean state. In GOGA, the background flow over the North Pacific is similar to the ERA5 reanalysis, with an EAJS waveguide that extends northward and eastward across the Pacific into the ENP. In contrast, LENS2 has a westerly bias in the eastern Pacific subtropical westerlies, which leads to a westward retraction of the midlatitude waveguide and extension of the subtropical waveguide associated with the southward shift of the meridional vorticity gradient. The LENS2 bias is similar to an El Niño forced response, which is associated with a westward-retracted (eastward-extended) east Pacific midlatitude waveguide during El Niño (La Niña).

The differences in background flow, and thus the waveguide, alter how remote forcing affects SWUS precipitation. For example, NEIO precipitation excites a zonally oriented wave train (wavenumber 5) in the EAJS in both ensembles, but the wave propagates differently in the east Pacific depending on the waveguide characteristics in GOGA versus LENS2. This is also true for differences between each ENSO phase, and it results in differing patterns on SWUS precipitation in response to the NEIO remote forcing. The influence of the waveguide is not as pronounced for larger-scale arching wave trains. For example, the arching wave train in response to tropical west Pacific precipitation is similar in GOGA and LENS2 and for each ENSO phase, resulting in similar rain responses in the SWUS.

In summary, variations in atmospheric basic state due to different SST variability, while using the same atmospheric model, may significantly affect teleconnections that regulate SWUS precipitation and their frequency, although there are other factors that also likely play an important role such as the variance of tropical convective activity and the modulation of Rossby wave source by the mean-state vorticity gradient. As shown by previous studies (e.g., Henderson et al. 2017), models must accurately model both tropical convective variability and the atmospheric mean state, or else forecast accuracy of remote

Fig. 13. (left) non-ENSO NDJFM standard deviation of monthly 200-hPa divergence (shading) and bias from ERA5 (contours). (center) As in the left column, but for the irrotational meridional wind. Contour intervals are 0.5 × 10^{-6} s^{-1} in the left columns and 0.15 m s^{-1} in the center column, with the zero contour omitted. (right) Normalized regression response to divergence in blue box (5°–15°N, 150°–130°W) for 200-hPa divergence (shading) and streamfunction (contours). Contour interval is 1 × 10^{-6} m^{2} s^{-1}, with the zero contour omitted.
Allen, R. J., and R. Luptowitz, 2017: El Niño-like teleconnection delity (Gar consistent model biases quickly emerge that may affect forecast S2S and seasonal prediction, where models are initialized from extratropical regions will likely be limited. Even in the field of S2S and seasonal prediction, where models are initialized from observational data and only run for a short period of time, persistent model biases quickly emerge that may affect forecast fidelity (Garlinkel et al. 2022), and understanding these biases in the S2S seasonal prediction models is critical to achieve higher skill in S2S prediction of SWUS precipitation.

Understanding these biases will likely require a combination of analysis of model output from operational forecast models, such as from the S2S and NMME (Kirtman et al. 2014) databases, and idealized modeling studies that can prescribe tropical heating and basic states (e.g., Watanabe and Kimoto 2000; Wang et al. 2020; Henderson et al. 2017). There is a continued need to refine our understanding of systematic biases in long-range prediction models to inform potential avenues for model improvement and higher prediction skill.

Acknowledgments. We gratefully acknowledge the support by the California Department of Water Resources (Contract 4600013127). We are also grateful to three reviewers whose comments improved the manuscript.

Data availability statement. ERA5 data were provided by the Copernicus Climate Change Service at https://cds.climate.copernicus.eu/ (C3S 2023). CPC precipitation data and NOAA ERSSSTv5 data were provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov. LENS2 and GOGA ensemble data were provided by NCAR from their website at https://www.cesm.ucar.edu/.

REFERENCES

DeFlorio, M. J., and Coauthors, 2019: Experimental subseasonal—seasonal prediction models to inform potential avenues for model improvement and higher prediction skill.

