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ABSTRACT: A considerable part of the skill in decadal forecasts often comes from the forcings, which are present in
both initialized and uninitialized model experiments. This makes the added value from initialization dif � cult to assess. We
investigate statistical tests to quantify if initialized forecasts provide skill over the uninitialized experiments. We consider
three correlation-based statistics previously used in the literature. The distributions of these statistics under the null hy-
pothesis that initialization has no added values are calculated by a surrogate data method. We present some simple exam-
ples and study the statistical power of the tests. We� nd that there can be large differences in both the values and power
for the different statistics. In general, the simple statistic de� ned as the difference between the skill of the initialized and
uninitialized experiments behaves best. However, for all statistics the risk of rejecting the true null hypothesis is too high
compared to the nominal value. We compare the three tests on initialized decadal predictions (hindcasts) of near-surface
temperature performed with a climate model and � nd evidence for a signi� cant effect of initializations for small lead times.
In contrast, we � nd only little evidence for a signi � cant effect of initializations for lead times longer than 3 years when the
experience from the simple experiments is included in the estimation.
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1. Introduction

There is an increasing interest in decadal climate predic-
tions. Successful predictions on daily and seasonal time scales
depend crucially on correct modeling of internal variability
and therefore require that the model system is initialized with
realistic conditions. In contrast, climate model scenarios de-
pend on external forcings such as the atmospheric greenhouse
gas concentrations and natural (e.g., from volcanic eruptions)
and anthropogenic aerosol loadings. Predictions on decadal
time scales may depend on both sources of predictability (see,
e.g., Kushnir et al. 2019; Merry � eld et al. 2020; Meehl et al.
2021; and references therein) and therefore require inclusion
of both initializations and external forcings. See DelSole and
Tippett (2018) for a more rigorous discussion of the different
kinds of predictability.

Both phase 5 and phase 6 of the Coupled Model Intercom-
parison Project (CMIP5 and CMIP6) contain initialized de-
cadal predictions for the periods since 1960 in addition to the
uninitialized historical experiments. Skill in decadal forecasts
is related to slowly evolving parts of the climate system and is
mainly found in the North Atlantic region and has been re-
ported for surface air temperature, precipitation, and for the
frequency of some extreme events. For details and references,
see the summaries in, for example,Kirtman et al. (2014),
Kushnir et al. (2019), Simpson et al. (2019), Meehl et al.

(2021), and Hermanson et al. (2022). Recently, it has been
reported that the predictable signal might be underestimated
in models and that the average of very large ensembles might
be needed to isolate this signal (Scaife and Smith 2018; Smith
et al. 2019, 2020).

For some atmospheric variables, such as temperature, there
is a strong in� uence from greenhouse gases in the last century.
Thus, both the initialized and uninitialized experiments con-
tain this forcing and show strong skill related to the general
warming. It is often found (see, e.g., Borchert et al. 2021b;
Bilbao et al. 2021) that correlations between observations and
the ensemble mean of the historical experiments are large and
signi� cant in many geographical regions. The same holds for
correlations between observations and the ensemble means of
the initialized experiments even for decadal lead times. An ex-
ample is discussed insection 4(Fig. 8).

To estimate the effect of the initialized experiments, it is
therefore important to either remove the forced response
from the initialized experiments or to more carefully directly
compare the initialized and noninitialized experiments. If the
only forcing was the greenhouse gases one could try to remove
this part from the prediction by expressing it as low-order
polynomial � t or by removing the part linearly congruent to
the amount of greenhouse gases. However, the value of this
approach is limited by other faster forcings such as volcanic
eruptions, the effect of which is harder to identify and remove
(Trenberth and Shea 2006; Borchert et al. 2021a).

Attempts to demonstrate signi� cant added skill from initi-
alizations for surface temperature on decadal time scales
have shown mixed success outside the North Atlantic polar
gyre region (Kirtman et al. 2014; Smith et al. 2010). See, for
example, the discussions in Doblas-Reyes et al. (2013),
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Borchert et al. (2021a), and Sospedra-Alfonso and Boer (2020).
However, recently Smith et al. (2019) have reported signi� cant
added skill from initializations in near-surface temperature, sur-
face pressure, and precipitation using a new statistical approach
to estimate the statistical signi� cance.

In this paper, we compare different methods to estimate
the statistical signi� cance of the effect of initializations. An
important concept is the power of the test, which here is de-
� ned as the probability of correctly rejecting the null hypothe-
sis that initialized and noninitialized predictions have the
same skill. The methods are all based on the generation of
surrogate time series that preserve the temporal characteris-
tics (power spectrum and autocorrelations) of the original se-
ries. The methods differ by the statistic considered, that is, the
measure used to represent the difference in skill between ini-
tialized and noninitialized predictions. While the paper is cast
in the context of decadal predictions, we believe that the re-
sults will also be useful for other situations where different
forecast systems are compared, for example, for seasonal
predictions.

In section 2, we describe the method. Insection 2a, we de-
� ne the different statistics, and in section 2b, we discuss the
statistical test. In section 3, we look at data generated from
simple, idealized models. Insection 3a, we take a � rst look at
the behavior of the statistics, while we in section 3bstudy the
power of the tests. In section 4, we use} as an example of a
realistic situation} the statistical tests on historical and initial-
ized ensembles from a single climate model. The paper is
closed with the conclusions insection 5.

2. The method

In section 2a, we introduce the measures} the statistics} of
the added skill from initializations. These statistics are all
based on correlations. To estimate the statistical signi� cance,
we need to compare an observed statistic to the value it would
have had if there were no added skill. However, the measures
are stochastic variables and are not characterized by single
numbers but by distributions. The statistical signi� cance is
therefore estimated by comparing the observed statistic to its
distribution when there is no added skill: if the observed sta-
tistic falls in the extreme 5% of the distribution (two-sided
test) we reject the null hypothesis of no added skill. Note that
it is not guaranteed that the actual risk of rejecting a true null
hypothesis is equal to this nominal 5%. In section 2b, we dis-
cuss how to obtain these distributions.

a. How to measure the added skill: The statistics

We have three time series: the observationso; the historical,
uninitialized simulation h; and the initialized forecast f. We as-
sume that these time series have the same length (N). They
could, for example, represent monthly temperatures in a single
grid point or a circulation index such as the North Atlantic Os-
cillation. We want to estimate if a forecast f contributes with
skill that is not included in the historical experiment h.

To proceed we need a measure} a statistic} of the added
skill from initializations. Such statistics are stochastic variables,

and their distributions under the null hypothesis is discussed in
the next subsection.

A straightforward statistic that has often been considered
(e.g., very recently by Sgubin et al. 2021) is the difference in
correlations cor(f, o) 2 cor(h, o). See also the references in
Siegert et al. (2017). Recently, Smith et al. (2019) introduced
another statistic based on the residualso|h and f|h, obtained
by removing the in� uence of h from o and f. More precisely, the
residual o|h is calculated by removing from o the part of o that is
linearly congruent with h.1 The statistic is then cor(o|h, f|h), which
is also known as the partial correlation. This statistic was also
used by Solaraju-Murali et al. (2019), Smith et al. (2020), and
Borchert et al. (2021a). The residual statistic is related to the
method of Sospedra-Alfonso and Boer (2020)and will give simi-
lar values to that method for large N (Borchert et al. 2021a).
Wang et al. (2019) introduced a third statistic based on the
straightforward and assumptionless expansion:

cor(f, o) 5 cor(h, o)sh/s f 1 cor(f 2 h, o)s f2 h/s f , (1)

where s2
x denotes the variance ofx. Wang et al. (2019)consid-

ered the last term on the right-hand side as a measure for the
added contribution from initializations in seasonal forecasts.
In the rest of the paper we will call cor( f, o) 2 cor(h, o) for
the difference statistic, cor(o|h, f|h) for the residual statistic,
and cor(f 2 h, o)s f2 h/s f for the split statistic. This does not
exhaust the variations of statistics that can be used for testing
differences in skill (DelSole and Tippett 2014).

Above, f and h could be individual members or ensemble
means. Note that the skill of the ensemble mean often improves
with ensemble size. This means that if we consider ensemble
means we should include the same numbers of initialized and
uninitialized experiments. It also means that even if the initial-
ized forecastf is not better than the uninitialized h, it might still
be an advantage to include in the ensemble.

b. The test of statistical significance

Having chosen a statistic, we need to� nd its distribution
under the null hypothesis. Here, a suitable null hypothesis is
that initialized forecast f has the same skill as the uninitialized
experiment h. More precisely, we assume thatf and h are
exchangeable so that, for example,f has the same relation
to o ash.

Under this null hypothesis the difference statistic cor(f, o) 2
cor(h, o) and the split statistic cor(f 2 h, o)s f2 h/s f will be dis-
tributed around zero also for � nite values of N, but this is not
the case for the residual statistic cor(o|h, f|h). The residuals are
in general not independent, which leads to a bias in cor(o|h,
f|h). The complication of the bias was remedied inSmith et al.
(2019) by estimating and subtracting it. Here, we will apply a
general Monte Carlo method valid for all the statistics. We
will return to the behavior of the statistics when studying sim-
ple examples insection 3.

1 The part of y linearly congruent with x is found by writing
y 5 ax 1 j , where j and x are independent. The linearly congruent
part is then ax and the residualy|x 5 j .
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We calculate the signi� cance by comparing the original
statistic} calculated, for example, from the climate model output
or from simple numerically generated test data} to the distribu-
tion of that statistic under the assumption that f is similar to h.
Thus, we need to build a distribution of the statistic under the
null hypothesis that f and h have the same properties. We can
then estimate if the original statistic falls far enough out in the
tails of this distribution that we will reject the null hypothesis.

The distribution is built by a Monte Carlo approach where
a large number (typically 500–2500) of surrogate versions off
are calculated. For the null hypothesis to be ful� lled, the sur-
rogatesf* should have the same population correlation too as
the original h. They should also have the same temporal struc-
ture ash, that is, the same serial correlations.

If we knew the generating process ofh, we could use this
process directly to produce the the values off* and from these
the distribution of the statistics under the null hypothesis. The
power calculated this way provides us with a benchmark for
the power. The generating process will be known when we
study the simple model in section 3 [middle expression in
Eq. (4)] but, of course, not in more realistic situations, as in
section 4.

In realistic situations, we only have one observed realiza-
tion of each of the time seriesh, f, and o. One way to calculate
surrogatesf* ful � lling the requirements above is to let

f* 5 o/� o� 1 ah1 /� h1 � , (2)

and then rescalef* so that � f* � 5 � h� . Here, � x� is the norm
of x, h1 is a phase-scrambled version ofh, and

a 5
���������������������
1/cor2(h, o) 2 1

�
: (3)

The phase-scrambling} randomizing the Fourier phases}
produces surrogates retaining the full autocorrelation spec-
trum of the original time series. For details about the phase-
scrambling method, seeTheiler et al. (1992) and Lancaster
et al. (2018). The phase-scrambling method does not preserve
the probability distribution of the time series but produces
Gaussian distributed data. As an alternative, we have used
the iterative amplitude-adjusted Fourier transform algorithm
(IAAFT; Schreiber and Schmitz 1996), which is an extended
version of the phase-scrambling method that does preserve the
probability distribution. We � nd that the phase scrambling and
IAAFT produce similar results both for the simple model in sec-
tion 3 and when applied to the climate model in section 4.

An alternative way to produce the surrogates is to expressh
as the sum of a term linearly congruent with o and a residual:
h 5 ao 1 j (cf. footnote 1). We can now make surrogatesf* by
bootstrapping} random sampling with replacement} the re-
sidual j and adding the bootstrap to ao. Serial correlations can
be included by using block bootstraps (or by phase scrambling
the residuals). We � nd that this method gives almost similar
results as the phase-scrambling method described in the previ-
ous paragraph. In the rest of the paper, we will report the re-
sults obtained with the phase-scrambling method. When we
study the simple model in section 3, we will also show results
when the signi� cance is obtained using the generating process.

This makes it possible to separate the effect of the statistics
from the effect of the phase scrambling.

Using the Monte Carlo method, we are directly accounting
for the problematic assumption of some analytical tests that
the skill estimates are independent, as discussed inDelSole
and Tippett (2014) and Siegert et al. (2017). For example,
cor(f, o) and cor(h, o) are dependent as they refer to the same
set of observationso, but this dependence is included in the sur-
rogates. We also avoid estimating the independent temporal de-
grees of freedom, which are often ill de� ned. However, the
Monte Carlo methods assume that the time series are stationary.
In section 3b(2), we will consider how to deal with trends.

We also use a simpler phase-scrambling method to estimate
if correlations themselves are signi� cantly different from zero,
as described inChristiansen (2001).

3. Comparing the tests on idealized data

Here, we compare the different tests using simple numeri-
cally generated data.

We will consider test data generated by

o 5 l os 1 s j o
j o, h 5 l hs 1 s j h

j h, and f 5 l fs1 s j f
j f :

(4)

Here, we take the potentially predictable signal s as a simple
� rst-order autoregressive series with lengthN and coef� cient 0.5.
We assume without lack of generality that s is normalized so
ss5 1. The termsj o, j h, andj f are independent, white Gaussian
noise. The noise terms have zero means and unit variances. So
s j o

, s j h
, and s j f

are measures of the noise variances, while
l o, l h, and l f are measures of the size of the signal. The null
hypothesis holds only2 when s j h

5 s j f
and l h 5 l f.

Using the simplifying properties of high-dimensional spaces
(Christiansen 2021), we show in the appendix that for large N
we have for the three statistics:

cor(f, o) 2 cor(h, o)

5
1

��������������
1 1 s 2

j o
/l 2

o

�
1

��������������
1 1 s 2

j f
/l 2

f

� 2
1

��������������
1 1 s 2

j h
/l 2

h

�
�
���������

�
								

,

(5)

cor(f|h, o|h) 5
sgn(l f l o)g

�������������� �
g 1 s 2

j o
/l 2

o

� ��������������
g 1 s 2

j f
/l 2

f

� with g 5
1

1 1 l 2
h/s 2

j h

,

(6)

and

cor(f 2 h, o)s f2 h/s f 5
1

��������������
1 1 s 2

j o
/l 2

o

�
1 2 l h/l f��������������
1 1 s 2

j f
/l 2

f

� : (7)

2 As we are dealing with correlations, we could also define the null
hypothesis by identical signal-to-noise ratiosl h/s j h

5 l f /s j f
, but this

choice will not have any consequences for the rest of the paper.
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Here, sgn(x) denotes the sign of x. Note, that the nonzero
value of cor(o|h, f|h) under the null hypotheses is not an effect
of the � nite sample size. So, the value of cor(o|h, f|h) is not di-
rectly related to its signi� cance. We note that all three statis-
tics depend on l o and s j o

only through the signal-to-noise
ratio l o/s j o

. We also note that while the difference and the re-
sidual statistics only depend on the signal-to-noise ratios
l f /s j f

and l h/s j h
, this is not the case for the split statistic,

which depends explicitly on l f and l h and also has the pecu-
liarity that it does not depend on s j h

.

a. Simple examples

We � rst brie� y look at some simple examples to illustrate
the difference between the statistics.

In the � rst example, we let the contribution of the observa-
tions to f and h be identical, s j h

5 s j f
5 1 and l h 5 l f 5 1,

thus ful� lling the null hypothesis. We also chooses j o
5 0 and

N 5 100. The model then reduces toh 5 o 1 j h, and f 5 o 1 j f,
where o is a normalized � rst-order autoregression (AR1) series.
For the realization shown in Fig. 1, we have cor(h, o) 5 0.72 and
cor(f, o) 5 0.71, so the difference statistic is 0.01. The residual sta-
tistic is 0.55, and the split statistic is 0.01 (the statistics are shown

with cyan vertical lines in Fig. 1). Thus, while the differ-
ence and split statistics are close to zero, this is certainly
not the case for the residual statistic. A simple test based
on the residual statistic assuming thato|h and f|h are inde-
pendent will wrongly suggest that the null hypothesis can
be rejected.

The distributions of the statistics under the null hypothe-
sis are also shown inFig. 1. We see that the original values
of the statistics fall well inside these distributions, and we
can therefore not reject the null hypothesis in any of the
three tests.

We now look at another simple example (Fig. 2) where the
forecast is superior. We takeo as before, but now h 5 o 1 j h

and f 5 o 1 0.5j f. For this realization we have the difference
statistic 5 0.17, the residual statistic 5 0.81, and the split
statistic 5 2 0.03. Now the values for the difference and the
residual statistics fall clearly outside the distributions under
the null hypothesis as calculated with the surrogate method.
However, here the split statistic disagrees, and we will not re-
ject the null hypothesis according to this statistic.

Equations (5)–(7), which are valid for large ensemble sizes,
agree well with the value of the statistics from the realizations
as is shown with the red vertical lines inFigs. 1and 2.

FIG . 1. Cyan vertical lines indicate the values of the statistics for an example whereo is a normalized AR1 series with coef� cient 0.5,
h 5 o 1 j h, and f 5 o 1 j f, where j h and j f are normalized, Gaussian white noise. This example ful� lls the null hypothesis. (left) Differ-
ence statistic. (center) Residual statistic. (right) Split statistic. The histograms show the distributions of the statistics under the null hypoth-
esis that h and f are identically distributed as calculated with the surrogate method. The sample size isN 5 100. The red vertical lines
show the values of the statistics from Eqs.(5) to (7) valid for N " ‘ .

FIG. 2. As in Fig. 1, but now h 5 o 1 j h, and f 5 o 1 0.5j f, where j h and j f are normalized white noise. This example does not ful� ll the
null hypothesis.
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From Eqs. (5)–(7), we see that under the null hypotheses
s 5 s j f

5 s j h
and l 5 l f 5 l h, the difference and the split

statistics are 0 while the residual statistic becomes
{(2 1 s 2/l 2)[1 1 (1 1 l 2/s 2)s 2

j o
/l 2

o]}
2 1/2

. This will depend
nonmonotonously on the signal-to-noise ratio l /s when s j o

is
different from zero. When estimating the skill of forecasts and
historical experiments we often consider ensemble means. As
the effective noise amplitude scales as 1/

���
K

�
, where K is the

ensemble size, this nontrivial behavior is also seen as function
of ensemble size.

As a simple example we extend the model in Eq.(4). Now
hi 5 s1 sj h and fi 5 s1 s j f , for i 5 1, …, K, where K is the
ensemble size, ando 5 s1 j o. In this example, the null hypothe-
sis holds. We consider the statistic cor(o|h, f |h), where the over-
line denotes the ensemble mean.Figure 3 shows the residual
statistic as function of ensemble size and the noise amplitudes.
The nonmonotonous structure means that we cannot use
the statistic to meaningfully estimate the effect of ensemble
size. Likewise, we cannot directly compare the statistics in dif-
ferent geographical regions, as these regions may have differ-
ent amounts of noise. These results are robust and hold for
other choices of the signals.

b. Power of the tests

The power of a test is its probability of correctly rejecting
the null hypothesis. The power depends both on the design
of the test and the length of the time series (Sienz et al. 2016;
Totaro et al. 2020)} or more precisely on the independent de-
grees of freedom. A power curve is the power shown as a
function of a parameter. The well-known structure of the
power curve and its relation to type I and II errors are shown
schematically in Fig. 4. A perfect test would have the power
close to one when the null hypothesis does not hold, that is,
almost always correctly rejecting the null hypothesis and thereby
minimizing the risk of type II errors. Likewise, the power curve
would have small values when the null hypothesis holds, that is,
having only a small risk of erroneously rejecting a true null hy-
pothesis and thereby minimizing the risk of type I errors.

1) THE SIMPLE IDEALIZED MODEL

We now � x s j h
, s j o

, l h, and l o, while we let l f (or s j f
) vary,

and for each l f (or s j f
) we consider many realizations (2500)

of o, h, and f. For each realization we calculate the statistical

FIG . 3. The residual statistic cor(o|h, f |h) as function of ensemble
size K and noise amplitude s. The model is hi 5 s 1 s j h and
fi 5 s1 s j f , i 5 1, …, K, and o 5 s 1 j o. Here, s is a normalized
AR1 series, andN 5 100. Note the nonlinear scales on the axes.

FIG . 4. Schematic view of a power curve. The powerp is shown as function of a parameter (full
black curve). The null hypothesis is ful� lled only when the parameter is zero. Away from zero, p is
the probability that the false null hypothesis is correctly rejected (indicated by green hatching). The
probability that the false null hypothesis is incorrectly not rejected (type II error) is 1 2 p (indicated
by red hatching). At zero} where the null hypothesis is ful� lled} the length of the green line,
1 2 p, indicates the probability to correctly not reject the true null hypothesis, while the length of
the red line p indicates the probability to incorrectly reject the true null hypothesis (type I error).
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signi� cance with the phase-scrambling method and note if the
null hypothesis is rejected (at the 95% level). From the 2500 real-
izations, we then calculate the power as the rate of rejections.

Power curves} giving the power as function of l f} are
shown in Fig. 5 for s j h

5 s j f
5 l h 5 1, s j o

5 0, and sample
sizesN 5 25, 100, and 1000. The power is shown with the full
curves for all three statistics: difference (black), residual
(blue), and split (orange). As expected, we� nd that for all sta-
tistics that the power increases whenl f moves away from 1.
We also see that the power increases withN and in the
limit of large N the power converges to 1 whenl f is different
from 1.

More interesting in our context, we � nd that the largest
power is found when using the split statistic. Also, the power
of the difference statistic is in general a bit larger than the
power of the residual statistic. These differences are largest
for small N (sample size) and decreases withN. In particular,
the difference and residual statistics show almost the same
power for N $ 100, while they still differ considerably from
the split statistic.

Unfortunately, a high power is here connected to a high risk of
falsely rejecting a true null hypothesis (type I error). For l f 5 1,
where the null hypothesis holds, the rejection rates for the resid-
ual and difference statistics are around 0.2 forN 5 25 and de-
creases toward the nominal value of 0.05 for largeN. The
situation is worse for the split statistic, which even for N 5 1000 is
still around 0.3.

Above we calculated the surrogate time series by the
phase-scrambling procedure based on given realizations ofh
and o. This corresponds to realistic situations. In the simple
tests we know the processh 5 l hs1 s j h

j h and can produce

surrogates directly from this process, as discussed insection 2b.
The power calculated this way is shown as dashed curves in
Fig. 5. Here, the probability for rejecting a true null hypothesis is
the nominal 5% for all N and for all statistics. For smallN the dif-
ference statistic still has a bit more power than the residual and
the split statistics. Compared to this optimal benchmark, the sur-
rogate method based on the phase-scrambling procedure has to
estimate the parameter a in Eq. (2) and in general underesti-
mates the power.

In Fig. 6, we show some other examples of the power. In
Fig. 6a, we vary s j f

and keep the other parameters constant.
While the difference and residual statistics behave very much as
when we varied l f (Fig. 5), the split statistic totally fails. This is
due to the missing sensitivity ofs j h

, as seen in Eq.(7), and holds
also for the benchmark. Figures 6band 6c show situations when
there is also noise in the observations, that is, whens j o

Þ 0.
Here, we see that the difference statistic behaves very sensibly,
while the residual statistic does not have the minimum in power
when the null hypothesis holds. As this is not seen for the opti-
mal benchmark, although the difference statistic still has a little
more power than the residual statistic, it must be related to a
combination of the phase-scrambling method and the statistics.

2) INCLUDING TRENDS

When applying the surrogate method to climate models} and
in particular to temperature } we have to consider the
trends. Trends are not treated well by the phase-scrambling
method (Schreiber and Schmitz 2000) and should not be in-
cluded in the stochastic part of the process. When calculat-
ing the surrogate f* , we therefore � rst detrend o and h and
use the detrended values in Eqs.(2) and (3). The trend from

FIG. 5. The power} the probability of rejecting the null hypothesis } of the statistical tests as function of l f for dif-
ferent values of the sample sizeN: 25, 100, and 1000. Here,h 5 o 1 j h and f 5 l fo 1 j f, whereo is a normalized AR1
process, andj h and j f are normalized white noise. This corresponds to Eq. (4) with s j h

5 s j f
5 l h 5 1 and

s j o
5 0. Black, blue, and orange full curves are the power for the difference statistic cor(f, o) 2 cor(h, o), the residual

statistic cor(o|h, f|h), and the split statistic cor(f 2 h, o)s f2 h/sh, respectively. Dashed lines are power calculated with the
optimal benchmark method.
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h is then added to f* . We � nd that the method in general
gives good results when applied to the idealized models.
The trend is estimated as a third-order polynomial, but the
results are robust to changes in the order. We also note that
the results in section 4are robust to the changes in the order
of the polynomial detrending.

The left panels in Figs. 7aand 7c show examples where the
time series are generated as inFig. 5b but now s includes a
nonlinear trend. Likewise, the right panels in Figs. 7band 7d

are generated as inFig. 6b but now with the trend. The trend
has the form of a fourth-order polynomial. Not taking special
care of the trends in the phase-scrambling gives rather wide
power curves (Figs. 7a,b) compared to the situation without
trend (Figs. 5aand 6b). Using the detrending procedure de-
scribed in the previous paragraph improves the results and
gives power curves (Figs. 7c,d) closely resembling those of
Figs. 5b and 6b. We have con� rmed that similar results are
obtained with other powers of the true trend.

FIG . 7. Including trend in sof the form 6t4, with t 5 (0, 1, … N 2 1)/N. Power as function of l f. N 5 100 in all panels.
(left) Parameters are as inFig. 5b, including s j o

5 0. (right) As in Fig. 6b, including s j o
5 0:5. (top) No detrending in

signi� cance estimation. (bottom) The third-order polynomial is removed. Legend as in Figs. 5and 6.

FIG . 6. (a) Power as function of s j f
with h 5 o 1 j h and f 5 o 1 s j f

j f . Here, o is a normalized AR1 process.
(b) Power as function of l f with f 5 l fs 1 j f. (c) Power as function of s j f

with f 5 s1 s j f
j f . In (b) and (c), h 5 s 1 j h,

o 5 s 1 0.5j o, and s is a normalized AR1 process. The termsj h, j f, and j o are normalized white noise. N 5 100
in all panels.
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