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ABSTRACT

A 14-yr simulation of a GCM forced by observed SST and sea ice is compared with observations as well as
a GCM simulation that used climatological surface conditions. The low frequency (periods > 2 months) behavior
in both simulations and observations is examined, and it is found that the anomalous boundary conditions were
the cause of much of the low-frequency variability in the simulations. Without the anomalous boundary condi-
tions, the low-frequency spectra was often flat, suggesting that the internal variability was producing a white
noise—like spectra. The anomalous boundary conditions were found to be very important in determining the
low-frequency behavior of the model. If the future values of the SST and sea ice were known, then the predict-
ability for certain variables could be quite high for low-frequency signals (periods > 8 months). Specific zones
showed predictability for low-frequency signals in excess of 70% explained variance. These zones were often
related to ENSO, as the Southern Oscillation is the strongest intradecadal phenomenon that is forced by the
anomalous boundary conditions. This study gives a lower bound on the variance explained by the anomalous

surface forcings.

1. Introduction

Predictability of the atmosphere is determined by
both the chaotic nature of the atmosphere and the
slowly varying boundary forcings such as SST, sea ice,
and solar insolation. The unstable nature of the atmo-
sphere would appear to limit forecasts to a couple of
weeks (e.g., Lorenz 1963, 1982) except that the at-
mosphere supports some low frequency (LF) phenom-
ena such as the quasi-biennial oscillation (QBO), and
the boundary conditions have long timescales. The
boundary conditions, for example, can be important in
forecasting ENSO-related effects, such as drought in
Australia or floods in South America. Such forecasts
can be quite skillful for leads greater than a month.

Determining the predictability inherent to the anom-
alous boundary conditions (ABC) can be approached
by two methods. One method is to consider the differ-
ence between the variance of the atmosphere, which
implicitly has ABC, and the hypothetical situation
without ABC. Presumably the variance of a system
with ABC is larger because the external forcing would
tend to increase the variance. The difference of the two
variances would be variance that was the result of the
ABC and would be ‘potentially predictable’” given the
(future) ABC. However, if the ABC modulated the in-
ternal variability, then some of this potentially predict-
able variance would be unpredictable. For example,
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consider a hypothetical situation where the climate is
forced by some process described by a sine wave. The
climate signal may look like y sin(?) + €[l + «
sin(t)]. Where 7y sin(?) is the forced response, ¢ is a
random variable, and €[1 + «a sin(¢)] is the internal
variability that is modulated by the external forcing.
The potentially predictable variance, as defined above,
would be 0.5y + 0.5a2¢2, where the overbar denotes
an average. However, the only predictable part of the
climate signal (given ABC) is vy sin(?). Therefore, the
potentially predictable variance can include an unpre-
dictable component.

The second approach to potential predictability is as
a forecasting problem. How much variance could be
explained by simply knowing the ABC. With this ap-
proach, the potentially predictable variance is the vari-
ance that could actually be predicted given the (future)
ABC. Of course, the estimates of this potential pre-
dictability can only be a lower bound as techniques
(models) are always imperfect.

Chervin (1986) used the first approach to estimate
the potential predictability. He used an extended GCM
simulation using climatological surface conditions to
estimate the variance of the atmosphere without ABC.
He then used an F test to find where the observed vari-
ance was significantly larger than variance from the
GCM simulation, indicating potential predictability. Of
course, this approach demands that the model faithfully
reproduce the variance of the atmosphere.

Madden and Shea (1978), Madden (1981), and
Shea and Madden (1990) also took the first approach.
They assumed that the variance consists of two com-
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ponents, the synoptic-scale internal variability and ex-
ternally forced variability. They estimated synoptic-
scale variability from short time series and extrapolated
the power spectrum to low frequencies by assuming a
white noise extension. This approach is simple; how-
ever, it assumes that the low-frequency power spectrum
would be white in the absence of ABC and that it can
be extrapolated from the power at higher frequencies.

In this paper, we will use the second approach and
the second definition of potential predictability. We
will use National Meteorological Center’s (NMC)
global spectral model [ Medium-Range Forecast Model
(MRF)] to examine how anomalous boundary condi-
tions affect a GCM simulation. There have been pre-
vious studies to examine the effects of ABC on MRF
forecasts. As part of the DERF 90 project, a comparison
of MRF forecasts and simulations was made. The sim-
ulations used the same initial conditions as the forecasts
but used the observed SST and sea ice unlike the fore-
casts that damped the SST anomalies with time. Using
observed ABC did little to increase the daily skill
scores of the simulations (Van den Dool 1994). Mo
and Kalnay (1991) and Mo (1992) also examined the
effect of the anomalous SST on MRF forecasts. They
found that the ABC had a larger effect improving the
simulated/predicted monthly means in the tropical
regions than in the midlatitudes. Together, these studies
suggest that the ABC have a larger effect on the sea-
sonal means than on the daily timescales.

The potential predictability may be a strong function
of timescale. For example, one may not expect an SST
anomaly lasting 1 month to have the same effect as the
same anomaly lasting 1 yr. In this paper, we will try to
quantify the variance explained by the ABC and their
associated timescales. This will be done by finding the
variance common to both the observations and a single
GCM simulation forced by observed SST and sea ice.
The estimate of potential predictability must be viewed
as a lower bound because the estimate could be in-
creased by a better GCM or by using an ensemble of
simulations to reduce the internal variability of the es-
timate. :

In this paper, we examine the low-frequency (peri-
ods > 2 months) behavior and potential predictability
as shown by a 14-yr GCM simulation forced by ob-
served SST and sea ice. This simulation is an extension
of the Atmospheric Model Intercomparison Project
(AMIP) simulation (see Gates 1992) made by NMC
using the MRF. This extended AMIP simulation is
compared with observations and another MRF simu-
lation that used climatological boundary conditions.

2. Data sources

For our analysis, we used operational NMC analyses
and the output from two GCM simulations. We used
- monthly means in order to reduce the data require-
ments. While we had many different fields available,
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" we concentrated on the 200-mb zonal winds. The 200-

mb winds have the advantage of being relatively well
analyzed because of data from rawindsondes, aircraft,
and satellite cloud tracking.

a. AMIP run

We have examined two GCM simulations. The pri-
mary simulation is based on NMC’s AMIP run (Ebi-
suzaki and van den Dool 1993). Since we were inter-
ested in low frequencies, we extended the original
AMIP run by 4 yr. For convenience, we will refer to
this extended AMIP simulation simply as the AMIP
simulation. The AMIP model had T40 horizontal res-
olution and 18 sigma layers. The model was run from
1 January 1979 to 1 January 1989 using observed SST
and sea ice from the AMIP SST/sea ice dataset, and
from 1 January 1989 to 1 January 1993 using the SST
and sea ice from R. Reynolds of the Climate Analysis
Center (Reynolds and Marsico 1993). The AMIP
model was based on the 1992 operational MRF, the
model used by NMC to produce the global medium-
range forecasts. The AMIP model deviated from it by
a lower resolution (T40 versus T126), restoring global
dry air mass (unnecessary for operational forecasts),
water mass forcing (Qui et al. 1991; Geleyn et al.
1991), and a higher CO, concentration (345 versus
330 ppm). ,

b. NMCI0

To examine the importance of ABC in producing
low-frequency variability, we used the NMC10 simu-
lation as a control. NMC10 is a T40 MRF simulation
using climatological SST, sea ice, snow cover, and soil
wetness (van den Dool et al. 1991). The model used
in NMCI0 is a slightly older version of the MRF than
what is used in the AMIP run. The NMC10 model used
silhouette orography rather than mean orography, did
not restore global atmospheric mass, and did not have
water mass forcing.

¢. Atmospheric analyses

For comparison with the model-generated data, we
also used monthly means of the operational NMC anal-
yses from January 1979 to December 1992 (Dey and
Morone 1985), which were archived in the Climate
Diagnostics Data Base. We had available the zonal and
meridional winds, virtual temperature, and height on
standard pressure levels from 1000 to 100 mb. This set
of analyses is, unfortunately, inhomogeneous in time.
The more recent analyses are of higher quality than
older analyses due to the improvements in the NMC
analysis system and better use of satellite data. These
improvements have caused strong changes in data-poor
regions, in particular the Antarctic, and the lowest at-
mospheric levels. The latter was strongly influenced
because the early NMC analysis system ignored much

Unauthenticated | Downloaded 09/22/21 05:44 PM UTC



NOVEMBER 1995

EBISUZAKI

2751

AMIP 3.1 S0I

T T

|‘|||l||1||'|__:‘|l‘r—r[|||||!|

PR I N Y DA N SR N U SN B R

0
4 h
-2 i
jl l 1 1 1 l 1 1 i 14 1 1 IALI 1 IALI i l 2 1 1 AI;-
1980 1982 1984 1986 1988 1990 1992
year

Fic. 1. Southern Oscillation index for AMIP (solid line) and observed (dashed line). Shown are
the 5-month running mean of the difference in the normalized sea level pressure between Tahiti
and Darwin. Data from 1980 to 1992 were used to calculate the means and standard deviations.

of the surface data (White 1988). Over the years, the
vertical resolution, physical parameterizations, and use
of surface data have improved (White 1988; White and
Caplan 1991), which has resulted in improved surface
analyses. However, these improvements have often in-
troduced spurious changes in the surface analyses.

3. AMIP simulation

The AMIP simulation was not perfect. The AMIP
model, like all GCMs, has a climatology that differs
from the atmosphere’s. Many of the model biases re-
semble those found in earlier studies of the MRF such
as White and Caplan (1991). The biases include 1) the
easterly bias in the upper-level tropical winds, 2) mid-
latitude flow tends to be too zonal (T40 resolution), 3)
too weak convective activity over the tropical oceans,
4) lower tropical tropospheric cooling, and 5) too much
orographic rain. The MRF has its strong points; for
example, its Indian monsoon is well simulated consid-
ering the model’s limited resolution. We account for
the imperfections of the model by considering our es-
timate of the potential predictability to be a lower
bound (presumably a perfect model would do better).

The AMIP simulation, however, was able to repro-
duce some aspects of the Southern Oscillation (SO).
We computed a common Southern Oscillation index, a

5-month running mean of the differences in normalized
sea level pressure of Tahiti and Darwin where the pres-
sures were normalized by removing the monthly means
and by dividing by the standard deviations for the re-
spective month. The correlation was 0.77 between the
observed and simulated indices (Fig. 1). Another vari-
able that has been associated with ENSO is the angular
momentum (Rosen and Salstein 1983). The simulated
200-mb angular momentum is smaller than the ob-
served because of the easterly bias in the tropical
winds; however, the LF anomalies were accurately re-
produced (Fig. 2). While the AMIP run was able to
reproduce some features of the SO quite well, other
features were not well done. For example, the pressure
difference between the sea level pressure at Tahiti and
Darwin showed that the AMIP run had the correct
phase, but the response to El Nifio was much too weak
(not shown).

4. Potential predictability

One method to find the variance explained by the
ABC is to find the anomaly correlation (AC) between
the AMIP simulation and observations. Tables 1 and 2
show the AC for selected monthly mean quantities
from the 1979-88 subset of the AMIP run (nonex-
tended AMIP simulation ). To calculate the AC, the 10-
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FiG. 2. The 200-mb global average of U-cos(lat) (m s™') for AMIP (solid)
and observations (dashed) with the annual cycles removed.

yr climatology was removed from the observed
monthly means, and the 10-yr model climatology was
removed from the model monthly means. The major
aspects of the AC tables are 1) more skill in the Trop-
ics, 2) global means are better simulated than horizon-
tal fields, and 3) no usable skill in the midlatitudes for
the quantities and domains examined.

The ACs for the 200-mb zonal winds (Table 1), for
example, appear to be quite modest. However, the ACs
do not take into account that some timescales are more
predictable. To examine the potential predictability as
a function of timescale, we will calculate the spectral
power and coherence.

Consider two finite-length time series A(¢) and B(t)
that have been decomposed into Fourier modes:

A(t) = Re[Y, A(w;) exp(—iw;t)]

B(t) = Re[Y, B(w;) exp(—iw;t)]

J

TABLE 1. Anomaly correlation (AC) for monthly averaged U
(zonal wind) and Z (geopotential height) for various latitude bands
from the NMC AMIP simulation (1979-88).

The spectral power of A is |A(w)|?, and coherence
is |y(w)|* where

y(w) = E[A*(w)B(W)I[E(|A(w)]?]"?
X E[|B(w)|*17'72,

and E(x) is the expected value of x.

The coherence |y|? is similar to the square of the
correlation. More detailed explanations can be found
in textbooks on spectral analysis such as Otnes and
Enochson (1978). Note that some authors have
adopted a different terminology and refer to |y|? as the
‘‘square of the coherence.”’

As a practical matter, the data were preprocessed by
removing the annual cycle and a linear trend. Both are
common practices in spectral analysis. For the power-
spectra calculations, a Bartlett window was used to re-
duce spectral leakage.

In Fig. 3, we plot the power of the 200-mb angular
momentum from observations, the AMIP run, and the

TABLE 2. Anomaly correlation (AC) for various monthly averaged
global quantities from the NMC AMIP simulation (1979-88).

AC 80°-20°N 20°N~-20°S 20°-80°S AC for global mean
U 200 mb 0.04 0.18 0.12 200 mb ang. momentum 0.64
U 850 mb -0.02 0.16 0.08 850 mb ang. momentum -0.04
Z 200 mb 0.04 0.41 0.08 200 mb geopotential height 0.50
Z 500 mb 0.00 0.26 0.09 500 mb geopotential height 0.31
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FiG. 3. Power spectra of the 200-mb global average of U-cos(lat) for the AMIP simulation
(1980-92, solid line), observations (198092, dashed line), and NMC10 (10-yr, dotted line). Like
the following figures, the annual cycle has been removed. The upper abscissa scale is the frequency
in mo~', and the lower scale is the period in months.

NMC10 run (no ABC). In this and all following figures
of spectra and coherences, the upper abscissa scale is
the frequency in mo ', and the lower scale is the period
in months. We see that without ABC, the power spec-
trum is extremely deficient in low-frequency variabil-
ity. This deficiency is not limited to ENSO frequencies,
but also extends to periods as short as 7 months. An-
other feature is that the NMC10 power spectrum resem-
bles white noise, that is, equal power at all resolved
frequencies (period > 2 months). The AMIP model
and observations show, on the other hand, a strong
ENSO peak.

The results shown in Fig. 3 are consistent with the
ideas of Madden and Shea (1978), Madden (1981),
and Shea and Madden (1990). They assumed that in
the absence of ABC, the variance would be forced by
the synoptic-scale variability and look white at the low
frequencies, much like NMC10’s spectrum. (More pre-
cisely, the spectrum appears to be the low-frequency
limit of a red spectrum.) If we take the previous authors
approach, the variance that is the result of the ABC
would either be the difference between the observed
and white noise variance or the difference between the
observed and NMC10’s variance. As seen in Fig. 3, the
fraction of variance due to the ABC is quite large at
ENSO frequencies and very small at high frequencies
(periods shorter than 6 months).

Estimating the variance due to ABC by comparing
the white noise spectrum to the observed spectrum is

valid if the spectrum is white in the absence of ABC.
Figure 3 appears to support such an assumption; how-
ever, there is a QBO peak (around 24 months) in the
observed power spectrum. Since the QBO is thought to
be independent of the ABC (Lindzen and Holton
1968), the white noise assumption is immediately sus-
pect, at least for the 200-mb angular momentum. The
inability of the AMIP and NMC10 models to simulate
a QBO is a failing of perhaps all current GCMs.

Our approach to quantify the potential predictability
is by the coherence. The coherence between the ob-
served and simulated angular momentum is quite high
for low frequencies (Fig. 4). At 250 mb, the coherence
is significant for periods greater than 14 months, reach-
ing values of greater than 0.8 for periods greater than
40 months (i.e., greater than 80% explained variance).
The coherence is also significant as low as 800 mb even
though the model had less variance in its power spec-
trum than. did observations (not shown). The last no-
table feature is the poor coherence at 100 mb. The low
coherence may have been caused by model deficiencies
(being too close to the model top or by poor vertical
resolution).

Most of the low-frequency coherences are statisti-
cally significant as we can reject the null hypothesis at
any prespecified frequency at the 99% confidence,
whenever the coherence is 0.26 or greater, and assum-
ing that the data is normally distributed. If we chose
the frequency a posteriori, a higher coherence is nec-
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FiG. 4. Coherence between globally averaged U-cos(lat) from observations and the AMIP sim-

ulation (1980-92). The upper abscissa scale is the frequency in mo

period in months.

essary for statistical significance. Since the Fourier
transform determined the power for 128 different fre-
quencies, and the coherence was calculated in bands of
13 different frequencies, the number of degrees of free-
dom is approximately 10 (128/13). To reject the null
hypothesis at the 0.01 level for 10 independent sam-
ples, the individual samples should be significant at the
0.001 level. This suggests that the coherence should be
above 0.37 for a 99% test. Unfortunately, extreme
events in the data (e.g., the 1983 ENSO event) could
dominate the statistics, which would make 0.37 an un-
derestimate.

a. Subtropical Pacific winds

The atmosphere has many low-frequency phenom-
ena as can be seen in the power spectra of Pacific winds
(Fig. 5). The spectral peak with a period of 60 months
is due to ENSQ. The peak tropospheric response occurs
around 700 mb. The maximum in Fig. 5 (30 months
period at 100 mb) is due to the QBO. While the strong-
est QBO response is in the stratosphere, we see evi-
dence of the QBO as low as 300 mb. Some features in
Fig. 5 are artifacts of the analysis scheme. For example,
the spectra is not red because the record is too short to
resolve the very low frequencies and because the data
was initially detrended, which removes some of the LF
power. In addition, the annual cycle was removed from
the data. The plots of the spectral power do not show
zero power at 12 months because the power estimates
were smoothed in order to reduce the noise. ’

-1, and the lower scale is the

The LF power spectra from the AMIP run (Fig. 6)
differs from that of the observed winds. First, the AMIP
run has no indication of a QBO, a common problem of
GCMs. In addition, the simulated ENSO response was
weaker in the lower troposphere, peaked at 500 mb
rather than at 700 mb, and appears to have a higher
frequency. The difference in frequency is not statisti-
cally significant because the spectral power estimates
have a standard deviation of 20% of the true value,
which can shift the frequency of peak power. Some
differences in the vertical structure may be due to the
vertical distribution of convective heating being poorly
simulated as suggested by the changes in this heating,
typically found during the first few days of MRF in-
tegrations (G. White 1993, personal communication).

‘Dramatic differences between observations and sim-
ulation can be found' in the upper troposphere and
stratosphere. Above 300 mb, the simulated ENSO re-
sponse increases in strength with height. The observed
spectra, on the other hand, decreases with height above
700 mb. The enhanced upper-level ENSO signal in the
simulation may be the result of the easterly bias in the
model’s tropical winds. Upward propagating tropical
waves would normally be trapped by the upper-level
westerlies. However, these waves may not be trapped
in the model because of its lack of upper-level west-
erlies or because of the limited vertical resolution in the
stratosphere.

The coherence between observed and simulated
tropical Pacific winds is above 0.5 (50% explained
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FiG. 5. Power spectra of domain-averaged zonal winds (Pacific). The domain is 30°S—30°N, 120°E~
90°W for the period 1980-92. The power spectra were calculated using standard pressure level data.
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The upper abscissa scale is the frequency in mo~', and the lower scale is the period in months.

variance) for most of the troposphere for periods
greater than 2 yr (Fig. 7). The LF coherence drops
above 200 mb. This is probably caused by the AMIP

model not being able to predict the QBO and having a
very strong stratospheric response at ENSO frequen-
cies. The coherence also shows a region of minor co-
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FiG. 6. As in Fig. 5 except the winds from the AMIP run were used.
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FiG. 7. Coherence between domain-averaged zonal winds (Pacific, 30°S—30°N, 120°E-90°W)
from the AMIP simulation and observations (1980-92). The upper abscissa scale is the frequency
in mo™', and the lower scale is the period in months.
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FiG. 8. Power spectra for the 200-mb zonal-mean zonal winds from the AMIP simulation (1980
92). The winds were averaged in 10° latitudinal bands. One standard deviation is 20% of the true
value of the spectral power. The upper abscissa scale is the frequency in mo™', and the lower scale
is the period in months.
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herence in the midtroposphere at a period of 13 months.
Except for this and other few minor regions, the co-
herence is not significantly different from zero for pe-
riods shorter than 20 months.

b. Zonally averaged U200

The meridional structure of the LF variability illus-
trates different mechanisms at work. The AMIP run
shows four regions of high variability in the 200-mb
zonally averaged winds (Fig. 8). ENSO variability ap-
pears as peaks at 25°N and 15°S with a minima near
the equator. There are regions of enhanced variability
around 75°N, and a broad band of variability from 40°
to 70°S for periods greater than 8 months.

The spectra for the observed winds (Fig. 9) shows
many similarities to the AMIP spectra. The observed
ENSO modulation of the subtropics was moderately
stronger in the Northern Hemisphere and was farther
south in the Southern Hemisphere. Nevertheless, the
subtropics have the same basic structure.

The observed winds showed a very strong LF max-
ima in the 70°-85°S band (Fig. 9). Neither the AMIP
nor NMC10 runs (Fig. 10) suggested a maxima over
the Antarctic. Examination of the observed time series
showed abrupt changes in the ‘‘climatology,”” which
suggests that most of the LF power was from changes
in the analysis procedure.

The spectra for NMC10 (Fig. 10) is much weaker
than the AMIP spectra and showed a distribution with
less frequency dependence. For the most part, the spec-
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tral peaks are not statistically significant (white noise
hypothesis) except for the peak at 25°N and between
50 and 20 months. This peak suggests that the NMC10
simulation had some internal modes with long time-
scales.

During the end of 1982 and the beginning of 1983,
the AMIP simulation went through an extreme event
as illustrated by a four standard deviation anomaly in
the 50°-60°S zonal winds (Fig. 11). Obviously this
will affect the statistics. A short triangular spike will
add, except for the highest frequencies, white noise to
the power spectra which is not critical to our analysis.
However, the coherence can be affected in more subtle
ways. To evaluate the impact of the 1983 event, we
have calculated the coherence using both the 1980-92
(Fig. 12) and 1984-92 data (Fig. 13).

The most apparent difference between the figures is
that the figure with the longer data record (Fig. 12)
appears to be more irregular or noisier. An extreme
event will often dominate the statistics, and the 1983
event may dominate the coherence from the longer rec-
ord. The shorter record, on the other hand, does not
include the 1983 event and may be smoother because
it is the average of nine more similar years. Because of
the differences in the two figures, we will mainly dis-
cuss the common features. Other features may appear
to be statistically significant; however, we expect the
1983 event to make the statistical tests too liberal.

In Figs. 12 and 13, there are two common bands
of high coherence. The 10°-35°N band shows high
coherence even for periods as short as 8 months.

CDDB Power(U200)

latitude

FiG. 9. As in Fig. 8 except observed winds were used.
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FiG. 10. As in Fig. 8 except NMC10 winds were used.

This band is a region of large LF variability (Fig. northern belt. In addition, the potential predictabil-
9) and redness in its spectra. The southern subtrop- ity was only found for periods longer 24 months
ical belt (10°-30°S) has lower coherences than the (Fig. 12). Both these latitude bands show strong
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FiG. 11. Five-month running mean of the 200-mb zonal winds averaged in the 50°—60°S latitude belt
(m s~") for the AMIP simulation (solid line) and observations (dashed line) with the annual cycle removed.
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FIG. 12. Coherence of the 200-mb zonal winds from the AMIP simulation and observations for the
years 1980-92. The winds were averaged in 10° latitudinal bands before the coherences were calculated.
The upper abscissa scale is the frequency in mo™', and the lower scale is the period in months.

ENSO influences as indicated by the large power at Fig. 12 did not show any significant coherence, the time
ENSO frequencies. series (Fig. 11) shows that winds are correlated except

A narrow band of moderate coherence was found in  for the large deviation, perhaps associated with the
the southern midlatitudes (50°-60°S) in Fig. 13. While 1983 ENSO event. During this event, the AMIP model

coh(U200) 1984-1992

—

=

0.00 0.05 0.10 0.15 0.20 0.25
50 24 12 8 6 4

latitude
[=)

FiG. 13. As in Fig. 12 except only data from 1984 to 1992 were used.

Unauthenticated | Downloaded 09/22/21 05:44 PM UTC



2760

simulated an extreme event, whereas the observed
winds suggested a much weaker event. The time series
suggests that this latitude band may have a moderate
amount of potential predictability. Besides having the
hint of potential predictability, the AMIP simulation
showed a strong LF maxima in the biennial to ENSO
" frequency band. The power was up to 25 times larger
than in the NMC10 simulation. The observed LF spec-
trum was also much stronger than the NMC10 spec-
trum and the white noise level. Thus, the data is very
suggestive that this latitude band is strongly affected
by the ABC and may have moderate potential predict-
ability in the biennial to ENSO frequency band.

5. Discussion

This investigation of the potential predictability can
also be viewed as a diagnostic study on the effects of
the boundary conditions in influencing the weather and
climate, or as an analysis of the skill of an imperfect
atmospheric model coupled with a perfect ocean
model. Since a better model or an ensemble of simu-
lations is expected to explain more of the variance, this
study should be viewed as being a lower limit.

The NMC10 simulation had low-frequency variabil-
ity that was approximately white. We hypothesized that
the white noise—like spectra was due to synoptic-scale
internal variability. If this variability has a timescale on
the order of 1 week, then it would appear like white
noise to our spectral analysis. If we accept that the
white spectra was caused by synoptic-scale internal
variability, and this variability is unpredictable at long
forecast leads, then the white noise part of the spectrum
is unpredictable at long leads.

Fortunately for long-range predictability, ABC can
be a strong factor, especially in the LF (Fig. 3). Instead
of calculating the potential predictability from the dif-
ference of the AMIP and NMC10 simulations (or na-
ture and the NMC10 simulations ), we approached the
potential predictability as a forecasting problem. We
estimated the amount of variance that could be ex-
plained (using a modern GCM) given the knowledge
of the ABC. This approach avoids the problem of es-
timating the variance expected in the absence of ABC
and the possibility that some of the ABC-related vari-
ance may be unpredictable.

Instead of calculating the potential predictability
from the spectra, we used the coherence of the AMIP
run and observations to estimate the potential predict-
ability. This estimate is specific to a model. However,
the estimate is not dependent on any assumptions about
the white noise component of the spectra and can be
considered a lower bound on the potential predictabil-
ity. The coherence was found to be a strong function
of pressure and latitude. The potential predictability
was strongly dictated by the skill in simulating the
ENSO effects. This is reasonable as ENSO is connected
with the ABC, and ENSO is strongest intradecadal sig-
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nal in the Tropics. Another important factor in the po-
tential predictability is the magnitude of the ENSO re-
sponse relative to the internal variability. A perfect
ENSO response would be of little predictive value if
the internal variability were 100 times larger. Both a
good simulation and a strong response to ENSO are
necessary conditions for a strong coherence.

The zonal winds had two bands of high potential
predictability (Fig. 13). The 15°-25°N band was a re-
gion of both strong LF power and significant coher-
ence. At ENSO frequencies, the coherence was ap-
proximately 0.75 and remained over 0.4 for periods
longer than 8 months. The corresponding Southern
Hemisphere band also had high potential predictability.
However, the potential predictability was weaker and
did not extend to as high frequencies. Besides the two
subtropical bands, the 50°-60°S band had suggestions
of a moderate potential predictability. Unlike the sub-
tropical bands, this band is not directly affected by the
tropical Pacific SST. Perhaps the modulation of the
Hadley cell associated with ENSO affected the position
and strength of the Southern Hemisphere jet.

Generally, the effects of the ABC were found to be
only significant in the very low frequencies (periods
longer than 8 months). In addition, the coherences
were only significant for certain latitudes and pressure
levels. Only the lower frequencies being potentially

predictable may be the result of 1) the ABC having

more power in the lower frequencies, 2) the lower-
frequency ABC being more global in scope, or 3) the
adjustment time of the system may be sufficiently long
so that a slowly changing forcing is more effective than
a higher-frequency forcing of the same amplitude. This
bias toward the interseasonal timescale does not imply
that there is no monthly variability in the potential pre-
dictability. An anomaly may have a timescale of a few
years; however, an interaction with the annual cycle
may produce higher harmonics. For example, a tropical
heating in the Pacific may have a timescale of years;
however, this heating could modulate the Pacific—
North America pattern (Wallace and Gutzler 1981),
which is a seasonal feature. This could result in a re-
sponse with seasonal or even monthly timescales. Nev-
ertheless, we only found that ABC with an intersea-
sonal timescale had any potentially predictive value
(for the variables that we examined).

We found that the coherence was a function of pres-
sure with the strongest coherences in the 200—300-mb
levels. Above 100 mb and in the planetary boundary
layer, the coherences were very low. Both poor anal-
yses and model deficiencies are to blame. The model
also had a weak ENSO response in the lower tropo-
sphere. This suggests that model deficiencies may have
been responsible for the low coherences at 700 mb.

In summary, we have compared the LF variability of
the observed monthly means, and those of two GCM
simulations. By comparing a GCM simulation that used
observed SST and sea ice with a simulation that used
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climatological surface conditions, we found that with-
out ABC, the spectra of the monthly means were usu-
ally flat. With ABC, we found large low-frequency
peaks superimposed on a white noise spectra. Thus, it
appears that ABC are crucially important in forcing the
LF variability. In addition, we calculated the coherence
between the observations and the GCM run forced by
observed SST and sea ice. The effects of the ABC were
only apparent in the interseasonal timescales and only
for specific latitude bands. The structure in the LF co-
herence appears related in part to ENSO and to model
deficiencies.
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