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ABSTRACT

Enhancements of multivariate postprocessing approaches are presented that generate statistically cali-
brated ensembles of high-resolution precipitation forecast Þelds with physically realistic spatial and temporal
structures based on precipitation forecasts from the Global Ensemble Forecast System (GEFS). Calibrated
marginal distributions are obtained with a heteroscedastic regression approach using censored, shifted
gamma distributions. To generate spatiotemporal forecast Þelds, a new variant of the recently proposed
minimum divergence Schaake shufße technique, which selects a set of historic dates in such a way that the
associated analysis Þelds have marginal distributions that resemble the calibrated forecast distributions, is
proposed. This variant performs univariate postprocessing at the forecast grid scale and disaggregates these
coarse-scale precipitation amounts to the analysis grid by deriving a multiplicative adjustment function and
using it to modify the historic analysis Þelds such that they match the calibrated coarse-scale precipitation
forecasts. In addition, an extension of the ensemble copula coupling (ECC) technique is proposed. A mapping
function is constructed that maps each raw ensemble forecast Þeld to a high-resolution forecast Þeld such that
the resulting downscaled ensemble has the prescribed marginal distributions. A case study over an area that
covers the Russian River watershed in California is presented, which shows that the forecast Þelds generated
by the two new techniques have a physically realistic spatial structure. Quantitative veriÞcation shows that
they also represent the distribution of subgrid-scale precipitation amounts better than the forecast Þelds
generated by the standard Schaake shufße or the ECC-Q reordering approaches.

1. Introduction

Ensemble precipitation forecasts are routinely gener-
ated at operational weather prediction centers worldwide
(Molteni et al. 1996; Toth and Kalnay 1993; Charron
et al. 2010) and provide valuable information about
the ßow-dependent forecast uncertainty. Unfortu-
nately, systematic biases often affect all ensemble
members, and not all sources of uncertainty are
represented by the ensemble; it therefore cannot

be considered a sample that represents the predictive
distribution of observed precipitation ( Park et al.
2008; Hamill et al. 2008; Bougeault et al. 2010). To
obtain reliable probabilistic guidance from ensem-
ble precipitation forecasts, a number of statistical
postprocessing techniques have been proposed, in-
cluding nonparametric methods such as the analog
method (Hamill and Whitaker 2006; Hamill et al. 2015)
or decision-tree methods (Herman and Schumacher
2018; Whan and Schmeits 2018), and parametric ap-
proaches such as extended logistic regression (Wilks
2009; Ben Bouallègue 2013), Bayesian Model Averaging
(Sloughter et al. 2007; Berrocal et al. 2008; Kleiber et al.
2011), nonhomogeneous regression methods (Scheuerer
2014; Scheuerer and Hamill 2015; Stauffer et al. 2017),
kernel dressing methods (Hamill and Scheuerer 2018),
and methods based on a Bayesian modeling paradigm
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(Herr and Krzysztofowicz 2005; Wu et al. 2011;
Robertson et al. 2013).

For a number of applications, the joint distribution of
precipitation amounts across different locations in space
and different forecast lead times is required. If, for ex-
ample, the ensemble of precipitation forecasts are used as
inputs to an ensemble hydrological forecast system, it is
crucial that the way precipitation amounts accumulate
over time and across different subbasins is represented
correctly. Another type of spatial and temporal aggrega-
tion where multivariate aspects of the forecast distribution
are important is the maximal precipitation amount over a
certain period of time and across several forecast grid
points within a certain district, a quantity that is relevant
to inform severe weather warnings. One of the prevalent
approaches to reconstructing the spaceÐtime variability in
forecasted precipitation Þelds is the ensemble copula
coupling (ECC) technique (Roulin and Vannitsem 2012;
Schefzik et al. 2013; Flowerdew 2014), where the spatio-
temporal relationships of the postprocessed precipita-
tion Þelds are inherited from the raw ensemble. Another
technique that is particularly common in the hydrology
literature is the Schaake shufße (Clark et al. 2004; Schaake
et al. 2007), where historic observations serve as a ÔÔde-
pendence templateÕÕ for spaceÐtime variability. Several
recent publications (Schefzik 2016; Scheuerer et al. 2017;
Bellier et al. 2017a) have addressed one of the short-
comings of the Schaake shufßeÑthe lack of ßow de-
pendence of the spaceÐtime relationshipsÑby suggesting
algorithms that choose historic dates such that the weather
situation at these dates is similar to the one anticipated by
the forecast. In most of the articles that study multivariate
probabilistic precipitation for ecasts, the spatial dimension
of the multivariate distribution is on the order of 10Ð100
(e.g., subcatchments of a river basin), and the articles
considering gridded forecasts often employ standard ver-
iÞcation metrics but do not discuss whether the post-
processed precipitation Þelds are physically realistic. A
noteworthy exception is a recent comparison study by
Wu et al. (2018), which includes example plots of the re-
spective precipitation Þelds. However, the example they
chose does not illustrate the inherent limitations of the
different, multivariate postprocessing techniques.

In this paper we compare Þve different multivariate
postprocessing techniquesÑthree variants of the Schaake
shufße and two variants of the ECC techniqueÑand as-
sess their ability to generate ensembles of high-resolution
precipitation forecast Þelds that are physically realistic
and provide an adequate representation of the spaceÐ
time variability at the analysis scale. In section 2we de-
scribe the forecast and observation data used in this study.
The statistical postprocessing methodology is explained
in section 3, where we describe the approach used to

generate reliable univariate forecast distributions for
precipitation accumulations, review the Schaake shuf-
ße and ECC technique, discuss their limitations with
regard to generating spatially and temporally coher-
ent precipitation forecast Þelds, and propose new im-
plementations that address some of these limitations.
A quantitative comparison of all four techniques is
performed in section 4. We Þnally discuss the limita-
tions that still exist for the two new methods and
point out avenues for further improvement. All ex-
periments and methodological development have been
performed using the statistical software R (R Core
Team 2017; program code is available athttps://github.
com/mscheuerer/PrecipitationFields).

2. Data used in this study

The postprocessing methodology discussed here is ap-
plied to forecasts of 6-h precipitation accumulations by
NOAAÕs Global Ensemble Forecast System (GEFS)
during the period from January 2002 to December 2013.
Forecast data were obtained from the second-generation
GEFS reforecast dataset (Hamill et al. 2013), which
consists of 11 ensemble member forecasts on a Gaussian
grid at ; 1/28grid spacing, initialized at 0000 UTC. These
forecasts are calibrated and veriÞed against climatology-
calibrated precipitation analyses (Hou et al. 2014), which
were obtained on a ; 2.5-km grid inside the contiguous
United States. We study an area in northwestern
California between approximately 124.08 and 122.08W
longitude and between 38.48and 39.88N latitude, covering
the Russian River watershed. Eleven grid points of the1/28
GEFS forecast grid overlapping this area are considered,
and the lower-left grid point is omitted since the associ-
ated grid cell is mainly over the ocean (seeFig. 1, Þrst
row). Likewise, we only retain the analysis grid points
associated with land surfaces, which amounts to a total of
3262 grid points at the 2.5-km resolution. We consider
four consecutive 6-h accumulation periods, correspond-
ing to forecast lead times 48Ð54 h, 54Ð60 h, 60Ð66h, and
66Ð72 h.Figure 1 depicts the forecast (Þrst row) and
analysis (third row) Þelds for the 24-h period that
began at 0000 UTC 19 January 2010 and will be
used as an example throughout the article. For the
quantitative veriÞcation of the results obtained with
the different postprocessing approaches, we cross-
validate the 12 years of forecast and observation
data, that is, we withhold one year at a time, Þt the
different models to the remaining 11 yearsÕ worth of
data, validate the postprocessed forecast with the
withheld year of independent data, and cycle through
all years so that at the end 12 yearsÕ worth of out-of-sample
veriÞcation cases are available. Since there is barely any

1652 J O U R N A L O F H Y D R O M E T E O R O L O G Y V OLUME 19

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&



precipitation over this region in summer, veriÞcation is
restricted to the months from October to May.

3. Statistical postprocessing methodologies

a. Univariate postprocessing

The Þrst step in the proposed statistical postprocessing
of ensemble precipitation forecasts consists of obtaining
reliable, univariate forecast distributions for each analysis
grid point and each lead time period. Here, we use a
variant of the approach by Scheuerer and Hamill (2015)
of Þtting a nonhomogeneous, nonlinear regression model
to training observations and statistics of the ensemble
forecasts, using censored, shifted Gamma distributions
(CSGDs). First, we Þt a climatological CSGD to the an-
alyzed precipitation amounts at each Þnescale grid point;
the resulting mean, standard deviation, and shift param-
eters mcl, s cl, and dcl are used later in the regression
equations that determine the predictive CSGD parame-
ters. The predictors used in these equations are statistics
that summarize information in the (lower resolution)
raw ensemble: the ensemble probability of precipitation
POPf , the ensemble meanf , and the ensemble mean
absolute difference MDf , which is a measure of ensemble
dispersion. These statistics are calculated over an aug-
mented ensemble that also comprises ensemble forecast at

all forecast grid points within a certain neighborhood of the
analysis grid point of interest. The size of this neighbor-
hood and the relative weight assigned to each forecast grid
point within the neighborhood is determined as described
in section 3.2 ofScheuerer et al. (2017), using a data-driven
weighting scheme that emphasizes forecast grid points with
better predictive skill for the analysis grid point under
consideration. Since the neighborhood may comprise
forecast grid points with different climatologies, the asso-
ciated forecasts need to be homogenized before calculating
weighted means and weighted mean absolute differences.
In this study, we do so by dividing each forecast by the
climatological forecast mean at the respective grid point,
thus replacing the ensemble forecasts by multiplicative
forecast anomalies. This is much simpler but proved to be
almost as effective in this application as the more complex
quantile mapping procedure suggested byScheuerer and
Hamill (2015). The ensemble statistics POPf , f , and MD f

calculated from these (dimensionless) anomalies are re-
lated to the mean mand standard deviations parameters
of the predictive CSGD via

m5
mcl

a1

log1p[expm1(a1)(a2 1 a3POPf 1 a4f )] ,

s 5 s cl
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FIG . 1. (top) GEFS ensemble mean for forecast lead times 48Ð54 h, 54Ð60 h, 60Ð66 h, and 66Ð72 h, initialized at 0000 UTC
17 Jan 2010, (middle) predictive mean Þelds of the corresponding postprocessed forecast distributions, and (bottom) verifying
analysis Þelds.
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where log1p(x) 5 log(1 1 x), and expm1(x) 5 exp(x) 2 1.
The shift parameter d is Þxed at its climatological
value dcl. The regression parameters are then chosen
such that the continuous ranked probability score
(CRPS) obtained by applying these regression equa-
tions to a training dataset is minimized. For details
about model Þtting and a motivation of these equations,
we refer to Scheuerer and Hamill (2015). A separate
set of model parameters is Þtted for each analysis
grid point and each month, using data from6 45 days
around the Þfteenth of the respective month in the 11
years set aside for training (seesection 2).

We note that for what follows, any other univariate
postprocessing method that yields full predictive dis-
tributions could have been used. The results in
Scheuerer and Hamill (2015)and Zhang et al. (2017),
however, suggest that the CSGD approach compares
favorably with other established postprocessing methods
and is therefore a good choice. In the following sub-
sections, we just assume that for each analysis grid point
and each of the four 6-h-lead-time periods a calibrated,
predictive distribution has been obtained by some uni-
variate postprocessing method capable of correcting
conditional biases (e.g., too many light and too few
heavy precipitation events) of the raw ensemble fore-
casts and ensuring adequate representation of the
prediction uncertainty. By calibrating the raw en-
semble forecasts against the high-resolution analyzed
data, the univariate postprocessing also adds spatial
detail as can be seen by comparing the Þrst two rows of
Fig. 1.

b. Schaake shufße

As a Þrst reference approach to reconstructing the
spaceÐtime variability of precipitation forecast Þelds we
consider the Schaake shufße (Clark et al. 2004; Schaake
et al. 2007), which is widely used in the hydrology lit-
erature. At each grid point, this technique is applied to a
sample of sizeK of the respective predictive distribu-
tion. To allow a direct comparison with the ECC-Q
(where the ÔÔQÕÕ stands for ÔÔquantilesÕÕ) technique dis-
cussed below, which requires thatK is equal to the
number of raw ensemble members, we chooseK 5 11.
We sample the predictive distribution systematically
by taking a particular set of quantiles. This ensures
that a sample of that small size represents the cali-
brated forecast distribution sufÞciently well and has
been demonstrated to improve forecast quality com-
pared to a random sample (Schefzik et al. 2013; Wilks
2015). SpeciÞcally, we use equidistant quantiles with
levels t k 5 (k 2 0:5)/K , k 5 1, . . . , K , a choice that is
optimal with respect to the continuous ranked proba-
bility score (Bröcker 2012).

The Schaake shufße is based on the idea that spatial
and temporal variations in the rank-order statistics of
historic analysis Þelds can be used to determine the
spaceÐtime structure of the calibrated forecast ensemble
that we aim to construct. The original approach de-
scribed by Clark et al. (2004) uses the historic Þelds at
randomly selected dates within 7 days before and after
the forecast date. In the cross-validation setting used in
section 4, dates can be pulled from all years between
2002 and 2013 except for the year of the forecast, and
since we needK 5 11 dates, we simply use the forecast
date in those 11 years (i.e., no random selection from a
larger time window). We refer to this purely date-
dependent selection of historic Þelds as the standard
Schaake shufße (StSS) implementation. For each anal-
ysis grid point and each time period, the ÔÔshufßingÕÕ
procedure now analyzes the rank order of the values
of this ensemble of historic analysis Þelds and reorders
the predictive sample in the exact same way. The re-
sulting StSS ensemble then represents the marginal
distributions obtained through univariate postprocess-
ing and has the same rank correlations as the en-
semble of historic analyses.

A major limitation of the standard implementation of
the Schaake shufße is that the historic ensemble that is
used to generate rank orderings is unrelated to the an-
ticipated weather situation. Therefore, rank correlation
structures from a historic ensemble with light or mod-
erate precipitation may be imposed on predictive sam-
ples that represent a situation with much heavier
forecast precipitation. Even worse, for each analysis grid
point and each forecast lead time the sample that rep-
resents the marginal distribution of a historic ensemble
selected ad hoc usually contains a numbern0 . 0 of
values with zero precipitation; these values provide no
useful reordering information. If most or all values of
the predictive sample are positive, the usual practice is
then to order the smallest n0 values at random, in-
dependently grid point by grid point, and independently
for each lead time. The detrimental effects of this
practice have been thoroughly discussed byBellier et al.
(2017a). They can also be seen inFig. 2, which depicts
the wettest member of the StSS ensemble for the 24-h
period beginning at 0000 UTC 19 January 2010, and the
corresponding historic analysis Þelds to which the values
of the predictive samples were matched. Even though
this is overall the wettest member, there are some areas
in the historic Þeld with zero precipitation. At grid
points in those dry areas the smaller values of the pre-
dictive sample were ordered at random, independently
at each Þnescale grid point. This produced unrealistic,
noisy-looking patches in the StSS Þeld. These patches
are even larger and more frequent for the drier StSS
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