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ABSTRACT

A recent study presented nearly two decades of airborne atmospheric river (AR) observations and con-
cluded that, on average, an individual AR transports ; 53 108 kg s2 1 of water vapor. The study here compares
those cases to ARs independently identiÞed in reanalyses based on a reÞned algorithm that can detect less
well-structured ARs, with the dual-purpose of validating reanalysis ARs against observations and evaluating
dropsonde representativeness relative to reanalyses. The Þrst comparison is based on 21 dropsonde-observed
ARs in the northeastern PaciÞc and those closely matched, but not required to be exactly collocated, in ERA-
Interim (MERRA-2), which indicates a mean error of 2 2% (2 8%) in AR width and 1 3% (2 1%) in total
integrated water vapor transport (TIVT) and supports the effectiveness of the AR detection algorithm ap-
plied to the reanalyses. The second comparison is between the 21 dropsonde ARs and; 6000 ARs detected in
ERA-Interim (MERRA-2) over the same domain, which indicates a mean difference of 5% (20%) in AR
width and 5% (14%) in TIVT and suggests the limited number of dropsonde observations is a highly (rea-
sonably) representative sampling of ARs in the northeastern PaciÞc. Sensitivities of the comparison to sea-
sonal and geographical variations in AR width/TIVT are also examined. The results provide a case where
dedicated observational efforts in speciÞc regions corroborate with global reanalyses in better characterizing
the geometry and strength of ARs regionally and globally. The results also illustrate that the reanalysis
depiction of ARs can help inform the selection of locations for future observational and modeling efforts.

1. Introduction

Characterized by enhanced water vapor transport in long
and narrow corridors in the lower troposphere, atmospheric
rivers (ARs) play important roles in the global water cycle
(Zhu and Newell 1998) and deliver precious freshwater to
many arid/semiarid regions (Guan et al. 2010; Dettinger
et al. 2011; Rutz and Steenburgh 2012), but they can also
represent a signiÞcant hazard around the globe due to the

associated extreme wind and precipitation (e.g.,Waliser and
Guan 2017). The phenomenology, characteristics, and pro-
cesses of ARs have been the focus of a rapidly increasing
volume of observing, modeling, theoretical, and application
studies in the past decade (Ralph et al. 2017a). The devel-
opment of AR science has led to the convergence of a
formal deÞnition of an AR recently included into the
American Meteorological SocietyÕs Glossary of Meteorol-
ogy (American Meteorological Society 2017).

Reßective of the overall deÞnition but often empha-
sizing different aspects of the phenomenon, a number ofCorresponding author: Bin Guan, bin.guan@jpl.nasa.gov

FEBRUARY 2018 G U A N E T A L . 321

DOI: 10.1175/JHM-D-17-0114.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&



techniques have been previously developed for objec-
tive identiÞcation of ARs. For example, the technique
based on the integrated water vapor (IWV) signature
of ARs was developed associated with the availability
of high-quality satellite retrievals of IWV over the
northeastern PaciÞc (Ralph et al. 2004; Neiman et al.
2008; Wick et al. 2013). The technique based on point
observations of IWV and surface wind was designed to
best take advantage of high-resolution in situ obser-
vations from a limited number of coastal stations
(Neiman et al. 2009; Ralph et al. 2013). More recent
techniques often make use of integrated water vapor
transport (IVT), a variable more directly related to
orographic precipitation ( Neiman et al. 2002; Neiman
et al. 2009) and useful for understanding the role of
ARs in the global water cycle (Zhu and Newell 1998).

A recent study by Ralph et al. (2017b) introduced the
concept of total IVT (TIVT), which represents the total
along-AR horizontal water vapor ßux through a cross
section perpendicular to an AR (analogous to the
streamßow in a terrestrial river). The dataset used by
Ralph et al. (2017b) had been collected using four types
of research aircraft in a series of 37 research ßights over
nearly 20 years (Ralph et al. 2004, 2011, 2016; Neiman
et al. 2014), of which 30 ßights were conducted during
the CalWater program of Þeld studies. Ralph et al.
(2017b) concluded that on average an individual AR
transports horizontally roughly 5 3 108kg s2 1 of water
(as vapor), which is comparable to 27 times the dis-
charge of water (as liquid) by the Mississippi River into
the Gulf of Mexico. However, because the study had
ÔÔonlyÕÕ 21 cases, a question remained as to how repre-
sentative these cases are of ARs more globally.

The current study takes advantage of this un-
precedented set of airborne observations by conducting
an intercomparison of key AR characteristics calculated
from the dropsonde-observed ARs and ARs in reanalysis
products independently identiÞed and measured based
on different methodologies. For the dropsonde observa-
tions, the AR identiÞcation procedure is speciÞc to the
manner in which these observations were taken, that is,
along transects across the ARs that attempt to sample the
center part of ARs ( Ralph et al. 2017b). For reanalyses,
AR identiÞcation is based on applying a global AR de-
tection algorithm that considers the 2D geometry of ARs
(Guan and Waliser 2015, hereafterGW2015), providing a
more complete spatiotemporal sampling than dropsondes
but at the expense of some reliance on a model via data
assimilation. The need for validating reanalysis-based
AR characteristics against Þeld observations and for
understanding the representativeness of the available
Þeld observations motivates the current intercompari-
son study. Such two-way comparisons have not been

conducted in previous AR studies. The two AR charac-
teristics of interest here are AR width and TIVT across
the AR width. SpeciÞcally, the objectives of the current
study are 1) to validate theGW2015global AR detection
algorithm (with a few reÞnements to be detailed in sec-
tion 2a) against dropsonde observations in terms of the
above two AR characteristics; 2) to evaluate the repre-
sentativeness of the two AR measures calculated from
the limited number of dropsonde-observed ARs relative
to all ARs detected by the GW2015 algorithm in re-
analysis products; and 3) within this context, to exam-
ine seasonal and geographical variations in the two
AR measures, Þrst regionally, then globally.

2. Data and methodology

a. Reanalyses and AR detection

Global Þelds of speciÞc humidity and vector winds are
provided by two reanalysis products, namely, the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) interim reanalysis (ERA-Interim; Dee et al.
2011) and the National Aeronautics and Space Admin-
istration (NASA) Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2;
Gelaro et al. 2017). Comparison between the two prod-
ucts provides an estimate of the reanalysis uncertainty
where appropriate. ERA-Interim data at 1.5 8 3 1.58
horizontal resolution are obtained at 17 pressure levels,
and MERRA-2 data at 0.6258 3 0.58resolution are ob-
tained at 21 pressure levels, between 1000 and 300hPa.
Six-hourly Þelds during the period of 1979Ð2016 (for
ERA-Interim) or 1980Ð2016 (for MERRA-2) are used
for the calculation of IVT and AR detection. Both ERA-
Interim and the original version of MERRA compared
well with aircraft observations of six northeastern PaciÞc
ARs ( Ralph et al. 2012) and 15 years of satellite obser-
vations of AR landfalls along the U.S. West Coast
(Jackson et al. 2016) in terms of basic AR character-
istics. Zonal and meridional components of IVT are
calculated as

IVT x 5 2
1
g

ð�

uq dp and (1a)

IVT y 5 2
1
g

ð�

yq dp, (1b)

where g is gravitational acceleration,u is zonal wind,y is
meridional wind, q is speciÞc humidity,p is pressure, and
the integration is over all pressure levels between 1000
and 300 hPa.

An IVT-based AR detection algorithm was in-
troduced in GW2015, which was designed for ÔÔtracking
ARs globally as elongated targetsÕÕ (tARget version 1).
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The algorithm considers a combination of geometry and
intensity thresholds in identifying the spatial distribution
of ARs at any given time. The initial set of ÔÔobjectsÕÕ (i.e.,
contiguous area of connected pixels) is extracted based
on the IVT magnitude threshold (the 85th percentile
with a Þxed lower limit of 100 kg m2 1s2 1) speciÞc to each
location and season. These objects are then Þltered based
on requirements on IVT direction (within 45 8of the AR
shape orientation and with an appreciable poleward
component), length (. 2000 km), and length/width ratio
(. 2), resulting in a deÞned set of ARs. Initial evaluation
of the algorithm indicated reasonable agreement with
Zhu and Newell (1998) in terms of AR fractional zonal
circumference and fractional total meridional IVT and
over ; 90% agreement in detected AR landfall dates
compared to other algorithms independently developed
in three previous studies that focused on ARs in three
regions with different climatologies.

A revised version of the algorithm, hereafter tARget
version 2, is used in the current study, which contains
reÞnements in three aspects. First, multiple, sequentially
higher IVT percentile thresholds (i.e., 85thÐ95th per-
centiles), as opposed to only the 85th percentile, are
used for AR detection. This is in view of the cases where
an IVT object determined by the 85th percentile does
not meet the AR requirements (e.g., too ÔÔfatÕÕ or oth-
erwise less well structured), but a core region with
higher IVT exists within the object that does meet the
AR requirements by itself. A similar concept was used in
Wick et al. (2013) in their AR detection algorithm based
on IWV, where a series of IWV thresholds between 20
and 40 mm was used for AR detection. In implementing
the multiple IVT thresholds, each map of IVT is Þrst
scanned with the 85th percentile threshold, and all the
grid cells where ARs are detected are zeroed out from the
map. The map is then rescanned with the 87.5th percentile
threshold, and any new ARs detected are zeroed out from
the current IVT map. The process is repeated Þve times
until the 95th percentile threshold is applied. The use of
multiple thresholds resulted in a 17% increase in the
number of detected AR objects based on assessment with
ERA-Interim. An example of a ÔÔnewÕÕ AR, that is, de-
tected here but not in GW2015, is shown in red inFig. 1a.

Second, the ARs detected from the steps described
above are further Þltered for circular-shaped objects that
are potentially tropical cyclones. The length/width ratio
requirement (. 2) implemented in the original version of
the algorithm already Þlters out most of these round
objects, but occasionally fails when an object is less reg-
ularly shaped. The new Þlter makes use of a robust
characterization of the roundness of the object based on
the ÔÔsolidityÕÕ property (. 0.8) combined with the ratio
between the lengths of the minor and the major axes of a

Þtted ellipse (. 0.8). This Þlter is applied to objects with
centroids equatorward of 308, where most tropical cy-
clones occur and where the distortion of an object shape
due to the ÔÔlatÐlonÕÕ map projection (commonly used by
global geophysical datasets) is minimal. The Þlter leads to
only a 0.2% reduction in the number of detected AR
objects based on assessment with ERA-Interim. Note this
roundness Þlter (and the length/width ratio requirement)
does not aim to Þlter out all ARs potentially related to
tropical cyclones, but only those well-shaped features that
are most likely tropical cyclones themselves.

The third reÞnement to the algorithm is the identiÞ-
cation of the AR transect that goes through the centroid
of the AR in the direction perpendicular to the mean
IVT averaged within the AR shape boundary ( Fig. 1b,
black). The AR transect width (hereafter, AR width for
simplicity) and TIVT across the transect are also in-
cluded in the output, with TIVT calculated as

TIVT 5
ð�

IVT transect dw, (2)

where IVT transect is the component of IVT normal to the
AR transect, and the integration is over all pixels that
form the AR transect. The enhanced output facilitates
comparisons with observations from dropsondes, which
are often released along transects that go through the
core section of ARs (Ralph et al. 2004, 2011; Neiman
et al. 2014). Although not examined here, transects
across other sectors of an AR (such as the landfall lo-
cation) are also worthy of investigation to help un-
derstand variations along the AR axis.

b. Dropsonde observations

Dropsonde observations along 21 AR transects were
reported in Ralph et al. (2017b). The observations were
among those made during various campaigns in 1998Ð
2016 that focused on ARs in the northeastern PaciÞc of
importance to weather and hydrology in the western
United States. Each AR was transected by at least nine
dropsondes. The upper limit of the vertical proÞles
varies between dropsondes, which may affect the com-
parison of the calculated IVT values. However, the im-
pact is expected to be small as the layer between the
surface and 500 hPa, where the vast majority of water
vapor is contained, is consistently sampled in all cases
with no vertical gaps exceeding 50 hPa. To calculate the
width and TIVT across the transects, the AR boundary
is determined by the following conditions, which differ
from those used in the tARget algorithm as described
earlier: IVT magnitude greater than 250 kg m2 1s2 1 at a
minimum of three interior dropsonde locations and IVT
magnitude less than 250 kg m2 1s2 1 at both ends of the
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transect. Some of the 21 cases do not strictly meet all of
these criteria (usually because the transect did not go far
enough equatorward to intersect the southern edge of
the AR), but were nonetheless included in Ralph et al.
(2017b) for the beneÞt of having more samples for the
analysis, as are in the current study.

3. Results

a. Global AR frequency and precipitation

A detailed description of the global climatology of
ARs, including frequency, geometry, intensity, sea-
sonality, and climate modulations, was provided in

GW2015. The discussion here focuses on the difference/
similarity between the two versions of the tARget algorithm
with respect to two quantities, namely, AR frequency and
precipitation, which are among the most fundamental
characteristics of ARs of relevance to their roles in the
global water cycle. Daily precipitation from the 1 8 3 18
resolution Global Precipitation Climatology Project
(GPCP) version 1.2 (Huffman et al. 2001), regridded to the
ERA-Interim resolution, is used for this part of the analysis.

Shown in Fig. 2a is the global distribution of AR fre-
quency during 1979Ð2016 based on ERA-Interim and
tARget version 2. AR frequency is calculated at each
grid cell as the percentage of time steps during which the

FIG . 1. (a) Example output from the AR detection algorithm, showing ARs detected at an
arbitrary 6-h time step of the ERA-Interim reanalysis. Each color indicates a unique AR. The
algorithm, tARget version 2, is a reÞnement of the original version introduced in GW2015; see
text for details. The AR in red is ÔÔnewÕÕ compared to those shown in Fig. 2 ofGW2015as a result
of using multiple, sequentially higher IVT thresholds (i.e., 85thÐ95th percentiles) for AR de-
tection. The two black boxes mark the domains used in subsequent analysis. (b) A speciÞc AR
from (a), showing the location of the AR transect (black), the width, and TIVT across the transect
(numbers in the upper left of the panel), along with other key output from the algorithm (see
legend). Also shown are IVT vectors (kg m2 1 s2 1; gray arrows; not shown if the magnitude is
smaller than 100 kg m2 1 s2 1) and magnitudes (color shading) associated with the AR. The AR
transect is deÞned as the great-circle arc that goes through the centroid of the AR in the direction
perpendicular to the mean IVT averaged within the AR shape boundary (green).
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grid cell is within any detected AR shape boundary.
The overall pattern is characterized by enhanced AR
frequencies in midlatitude ocean basins relative to in-
land and lower/higher-lati tude regions, with multiple
action centers located in the extratropical North PaciÞc/
Atlantic, southeastern PaciÞc, South Atlantic, and
southern Indian Ocean. The broad pattern is similar to
Fig. 2b produced from tARget version 1, although AR
frequency is notably increased based on the newer
detection, especially aroundthe various action centers.
The increase in AR frequency is a result of using
multiple IVT thresholds for AR detection, which
overwhelms the tiny reduction in the number of ARs
detected due to the Þlter for potential tropical cyclones,
as also mentioned insection 2.

The net increase in AR frequency between the two
versions of the detection is shown inFig. 2c (the values

are straight differences betweenFigs. 2a and 2b, not
relative differences). In many regions outside the
tropics, the increase is around 0.6%Ð0.9%, or 2Ð3 more
AR days per year. Larger increases are seen in some
tropical/subtropical regions, including southern North
America into the Caribbean, central South America,
northwest Africa, South/Southeast Asia, and Australia
into French Polynesia. Most of these larger increases are
located over land, suggesting an IVT threshold higher
than the 85th percentile can be particularly effective for
detecting ARs over land. No place shows a net decrease
in AR frequency between the two versions.

Mean AR precipitation intensity averaged over each
of the three groups of ARs in Figs. 2aÐcis shown in
Figs. 2dÐf. At each grid cell, mean AR precipitation is
independently calculated based on averaging over the
time steps during which the grid cell is within the

FIG . 2. (a)Ð(c) The percentage of AR time steps out of all time steps in ERA-Interim based on three groups:
(a) all ARs detected using tARget version 2, (b) only those ARs detected using tARget version 1, and (c) only those
ARs newly detected by tARget version 2. The percentage values in (b) and (c) add up to the percentage values in
(a). Note the different scale in (c). (d)Ð(f) Mean AR precipitation intensity (mm day 2 1) averaged over the three
groups of ARs shown in (a)Ð(c). White shading indicates regions with no detected ARs during the analysis period.
Precipitation data are from GPCP version 1.2.
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detected AR shape boundary. Note that, unlike in the
left column, the lower two panels in the right column are
not additive as they represent intensities instead of
summations. Largely similar to AR frequency, AR
precipitation is enhanced in the extratropical ocean
basins (Fig. 2d). In addition, large values are seen in the
intertropical convergence zone, Indo-PaciÞc warm pool,
and tropical North Atlantic, where ARs occur much less
frequently compared to extratropical ocean basins
(Fig. 2a). The structure of ARs in the tropical regions is
only starting to be understood (GW2015; Yang et al.
2018), and AR precipitation in these regions could po-
tentially include contributions from phenomena that
have been differently named in the literature. For ex-
ample, the three ßood-producing ÔÔtropical plumeÕÕ
events in coastal northwest Africa analyzed inKnippertz
and Martin (2005) are all detected as ARs in the current
study, as they are in the regional AR archive in-
dependently developed by Brands et al. (2017; http://
www.meteo.unican.es/es/atmospheric-rivers). Compari-
son betweenFigs. 2e and 2fsuggests that the ÔÔnewÕÕ ARs
that were not detected by the original algorithm are as
precipitating as the ÔÔoldÕÕ ARs. The analysis inFig. 2
suggests that the use of multiple IVT percentile thresh-
olds, given the other requirements on geometry, is an
effective way to detect additional ARs that have pre-
cipitation characteristics similar to other ARs but that
can go undetected due to not meeting the geometry
requirements when a single IVT percentile threshold
is used.

b. AR transects in northeastern PaciÞc

The 21 dropsonde-observed AR transects (individually
shown in Ralph et al. 2017b) correspond to 20 ERA-
Interim reanalysis ARs based on searching the 6-h step of
ERA-Interim that has an AR in the vicinity of the
dropsonde transect and closest in time to the midpoint
of the transect (Fig. 3). Two of the dropsonde transects
(18 and 19) were close enough in time to correspond to
the same reanalysis time step. In two cases, the ob-
served AR is only detected by the revised algorithm
(panels outlined in green), exemplifying the effective-
ness of utilizing multiple IVT thresholds for AR de-
tection. Various types of ARs are sampled, including
landfalling versus offshore ARs, those centered in the
subtropics versus midlatitudes, and long-and-narrow
versus less-well-elongated ARs. Nineteen out of the
21 dropsonde transects have a matching reanalysis
AR within 6 3 h (i.e., within the temporal resolution
of ERA-Interim). Two dropsonde transects have a
matching reanalysis AR 12.6 and 9.7 h earlier, re-
spectively. In 10 cases, the dropsonde and reanalysis
transects are relatively close to each other in terms of

location. The location differences in other cases are
partly attributable to the different data sources and
methods used for AR detection, and the timing dif-
ference between dropsonde and reanalysis, during
which an AR can propagate in space and/or change in
structure.

Comparison of AR widths based on dropsonde ob-
servations versus ERA-Interim reanalysis is shown in
the scatterplot in Fig. 4a. Each circle represents one pair
of dropsonde and reanalysis transects as shown inFig. 3.
Overall, the two sets of AR widths are well correlated,
with a correlation coefÞcient of 0.60 (p 5 0.004). The
circles are reasonably distributed on both sides of the 1:1
line (black), indicating no systematic biases in the
reanalysis-based results relative to dropsonde observa-
tions. The blue and red error bars indicate one standard
deviation below/above the mean (where the two error
bars cross). The reanalysis- and dropsonde-based results
have very close mean values (see also the two dashed
lines in Fig. 4c), although the former has a slightly larger
standard deviation. A similar comparison for TIVT is
shown in Fig. 4b. The agreement there is even better
than in the case of AR width, with a stronger correlation
coefÞcient of 0.80 (p , 0.001) and very close mean
values and standard deviations. The better agreement in
the case of TIVT is likely because the integrated value is
dominated by stronger IVT values toward the center of
the AR and therefore is not sensitive to small errors in
the width of the identiÞed AR transect. The three cases
with the best spaceÐtime coincidence between drop-
sonde and reanalysis AR transects (green circles in
Figs. 4a,b; numbers 5, 8, and 12 inFig. 3) are among the
cases, but not the only cases, with the best agreement in
AR width and TIVT (i.e., circles located close to the 1:1
line), suggesting the comparison between the two sets of
ARs is affected by, but not solely dependent on, the
spaceÐtime coincidence. This is because the dropsonde
observation and the reanalysis both independently aim
to transect the core part of the AR based on what they
respectively Þnd to be where the core part is. In this sense,
the manner of the comparison here is somewhat analo-
gous to object-based forecast veriÞcation (Gilleland et al.
2009), where the lack of spaceÐtime coincidence between
the forecast and target objects is not unduly penalized
as long as the overall structure (e.g., shape, size) of the
target system is reasonably captured. As such, the
error statistics reported in this study should not be
interpreted as reanalysis errors in the traditional
sense, but more appropriately as errors in the AR
ÔÔobjectsÕÕ tied to both the raw reanalysis data and the
associated AR detection algorithm. Figures 4a and 4b
indicate the AR detection algorithm, speciÞcally the
identiÞcation of AR transects, validates remarkably
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FIG . 3. The 20 ERA-Interim reanalysis ARs corresponding to the 21 dropsonde-observed AR transects. The numbering of the transect
indicated in the top left of each panel is as inRalph et al. (2017b). Shown in each case is the 6-h step (also indicated in the top left of each
panel) of the reanalysis AR (IVT magnitude in shading; kg m 2 1 s2 1; transect in red) closest in time to the midpoint of the dropsonde
transect (blue). Two of the 21 dropsonde transects (18 and 19) correspond to the same 6-h step of the reanalysis AR (third panel in the last
column). Also indicated in each panel is the time difference (h) between the closest 6-h step of the reanalysis and the midpoint of the
dropsonde transect (as a representation of the observation time), with positive/negative signs representing whether the reanalysis lags/
leads the observation. Panels outlined in green show ÔÔnewÕÕ ARs detected by tARget version 2 compared to the original version.
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well against dropsonde observations, with a relative er-
ror of only 2 2% (1 3%) for mean width (TIVT).

The results above are put into context by further
comparing statistics based on the 21 AR transects versus
all ARs in ERA-Interim that were detected in the
northeastern PaciÞc (AR centroids within 238Ð46.48N,
163.48Ð124.68W) from 15 January to 25 March of
1979Ð2016. The domain and the combination of days are
selected to be just enough to encompass the location and

time of the 21 AR transects analyzed earlier to facilitate
comparisons. A total of 5636 reanalysis ARs are se-
lected, based on which the probability distributions of
AR widths and TIVT are obtained. Both AR width and
TIVT are characteristic of a lognormal distribution
with a longer right tail ( Figs. 4c,d, gray). The mean
values based on the entire population (red solid) com-
pare well with the mean values based on only the subset
of reanalysis ARs that correspond to 21 dropsonde ARs

FIG . 4. (a) Scatterplot showing AR widths (km) based on dropsonde observations vs ERA-Interim reanalysis; see
Fig. 3 for the time and location of each transect. The three cases with the best spaceÐtime coincidence between
dropsonde and reanalysis AR transects (5, 8, and 12 inFig. 3) are shown in green. The 1:1 line is in black. The
correlation coefÞcient between the two sets of AR widths is shown, along with thep value. Blue and red error bars
indicate one standard deviation below/above the mean (where the two error bars cross). (b) As in (a), but for TIVT
(108 kg s2 1) across AR transects. (c) Histogram of AR widths based on all ARs detected in ERA-Interim over the
northeastern PaciÞc (AR centroids within 238Ð46.48N, 163.48Ð124.68W) from 15 Jan to 25 Mar of 1979Ð2016 (gray
bars). Also shown are the mean AR width (km) based on all reanalysis ARs that contributed to the histogram (red
solid), the subset of the reanalysis ARs that corresponds to the 21 dropsonde transects (red dashed), and the
observed value based on the 21 dropsonde transects as reported inRalph et al. (2017b) (blue dashed line for the
mean and blue circles for individual transects). The mean AR width value is also indicated in the Þgure legend for
each sample. Red shading indicates the 95% conÞdence interval of the mean reanalysis AR width for a random
21-member sample drawn from the pool of reanalysis ARs based on 10 000 iterations. The error bar centered on the
blue dashed line indicates the 95% conÞdence interval of the difference between the blue and red dashed lines
based on a two-tailed, pairedt-test. (d) As in (c), but for TIVT (10 8 kg s2 1) across AR transects.
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(red dashed). The red shading shows the sampling var-
iations in mean AR width and TIVT based on randomly
selecting 21 ARs from the pool of all reanalysis ARs
within the domain and time period, repeating for 10 000
times, and Þnding the 2.5nd and 97.5th percentiles based
on the empirical distributions obtained for mean AR
width and TIVT. The result that the red dashed lines
are close to the red solid line and well within the red
shading for both AR width and TIVT supports that the
21-member subset is a highly representative sampling of
the entire population of ARs within the given domain
and time period.

For AR width, the dropsonde-based mean value
(Fig. 4c, blue dashed) is only slightly larger than the
reanalysis counterpart (red dashed), as already seen in
Fig. 4a. The error bar centered on the blue dashed line
indicates the 95% conÞdence interval of the difference
between the blue and red dashed lines for doing a two-
tailed, paired t test. A paired t test is used since the two
samples intend to characterize the same set of ARs. That
the red dashed line is located well within the error bar
suggests the difference between the two dashed lines is
highly insigniÞcant statistically. Moreover, the dropsonde-
based mean value (blue dashed) well reßects the mean
value based on a total of 5636 reanalysis AR transects
(red solid), with a relative difference of 5%. Similar
results can be seen for TIVT, also with a 5% relative
difference. A reasonable range of AR width and TIVT
values were sampled by individual dropsonde transects
(blue circles) compared to the reanalysis-based full
distributions (gray bars). SpeciÞcally, the minimum and
maximum dropsonde-sampled AR widths (TIVT) are
within the bottom 7% and top 11% (bottom 3% and top
6%) of the full distribution. Figures 4c and 4dsuggest
that the 21 dropsonde AR transects, although a rela-
tively small sample, were able to characterize the mean
width and TIVT very well compared to the much more
spatiotemporally complete sampling by the ERA-
Interim reanalysis.

Similar comparisons are done between dropsondes
and MERRA-2. As in the case of ERA-Interim, the 21
dropsonde ARs are matched to 20 MERRA-2 ARs due
to two temporally close dropsonde ARs matched to one
reanalysis time step (Fig. 5). Nineteen of the MERRA-2
ARs are identiÞed at the same 6-hourly time steps as the
ERA-Interim ARs examined earlier. In the only one
exception (number 4), the MERRA-2 AR is identiÞed
later than the corresponding ERA-Interim AR by 6 h.
Eighteen out of the 21 dropsonde transects have a
matching MERRA-2 AR within 6 3 h (i.e., within the
temporal resolution of MERRA-2). The general good
agreement with dropsondes discussed earlier for ERA-
Interim is also seen for MERRA-2 ( Figs. 6a,b), with a

correlation of 0.61 (p 5 0.003) for AR width, 0.85 for
TIVT ( p , 0.001), and a relative error of2 8% for mean
width and 2 1% for mean TIVT.

The somewhat large (but statistically insigniÞcant at
the 95% level as indicated by the location of the red
dashed line relative to the blue error bar in Fig. 6c)
negative bias in MERRA-2 AR width relative to drop-
sondes (Fig. 6a) is consistent with the overall smaller AR
width in the full distribution compared to ERA-Interim
(comparing Fig. 6c to Fig. 4c, red solid). In general,
MERRA-2 has a larger fraction of ARs with smaller
width, and a smaller fraction of ARs with larger width
(comparing Fig. 6c to Fig. 4c, gray). SpeciÞcally,
MERRA-2 contains a considerable fraction of ARs with
width smaller than 300 km, whereas such extremely
narrow ARs are much rarer in ERA-Interim. This dif-
ference in the distributions may be contributed by the
same observed ARs being detected in both products
except with smaller widths in MERRA-2, but also by
some of the narrow ARs that are only detected in
MERRA-2. The overall smaller AR width in MERRA-2
relative to ERA-Interim has been found in Guan and
Waliser (2017)on a global basis, where it was suggested
to be associated with the native resolution of the dy-
namical models based on a systematic examination of 24
global weather/climate models and three reanalysis
productsÑall with data archived on a common grid. In
this regard, smaller AR width in MERRA-2 is consistent
with its native resolution (0.6258 3 0.58) being slightly
Þner than that of ERA-Interim (T255, ; 79 km). Unlike
AR width, TIVT in MERRA-2 shows little bias relative
to dropsondes (Fig. 6b), conceivably because of the
same reason as discussed earlier, that TIVT is domi-
nated by stronger IVT values toward the center of the
AR and therefore is not sensitive to reasonable errors in
the width of the identiÞed AR transect.

The representativeness of the 21 dropsonde ARs
relative to the total of 6077 MERRA-2 ARs from
15 January to 25 March of 1980Ð2016 is then assessed.
Although the relative differences (20% for AR width
and 14% for TIVT) are notably larger than in the case
where ERA-Interim is used as the reference, the sig-
niÞcance tests (that the blue dashed line is located
within the red shading in Figs. 6c,d) still support the 21
dropsonde transects to be consistent with a reason-
ableÑalbeit not highly representativeÑsample from
the entire population of MERRA-2 ARs.

c. Sensitivity to analysis domain and period

As mentioned earlier, the domain used for calculating
the reanalysis-based AR statistics was intended to be
representative of the location of the 21 dropsonde AR
transects in the northeastern PaciÞc. SpeciÞcally, the
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