A Prototype Quantitative Precipitation Estimation Algorithm for Operational S-Band Polarimetric Radar Utilizing Specific Attenuation and Specific Differential Phase. Part I: Algorithm Description

YADONG WANG
Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

STEPHEN COCKS, LIN TANG, ALEXANDER RYZHKOV, AND PENGFEI ZHANG
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

JIAN ZHANG AND KENNETH HOWARD
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 8 April 2018, in final form 24 February 2019)

ABSTRACT

A prototype quantitative precipitation estimate (QPE) algorithm that utilizes specific attenuation A and specific differential phase K_{DP} was developed for inclusion into the Multi-Radar Multi-Sensor (MRMS) system and the Weather Surveillance Radar-1988 Doppler (WSR-88D) network. Special attention is given to the optimization of the factor α used for computation of a path-integrated attenuation from a total span of differential phase along the propagation path in rain. It is suggested to estimate α from a slope of the Z_{DR} dependence on Z in rain. The use of real-time adjusted α allows us to capture the variations of the drop size distributions, and therefore improve the QPE accuracy. It is demonstrated that the factor α is generally higher for tropical rain type compared to continental rain. Since the $R(Z)$ approach is only valid for pure rainfall, the $R(K_{DP})$ relation is suggested as a complement in areas of hail contamination. The paper contains a description of the basic version of the $R(A)$ and $R(K_{DP})$ algorithm and recommendations for its further optimization.

1. Introduction

The methods for quantitative precipitation estimation (QPE) utilizing different combinations of radar reflectivity Z, differential reflectivity Z_{DR}, and specific differential phase K_{DP} were developed during the last two decades (e.g., Ryzhkov and Zrnić 1995; Brandes et al. 2002; Bringi et al. 2011; Giangrande and Ryzhkov 2008; Wang et al. 2013). Among all of these approaches, the $R(Z)$ relations have been the most traditional methods used to estimate rainfall. However, the $R(Z)$ relations are very sensitive to the drop size distribution (DSD) variability and also affected by radar miscalibration and attenuation (e.g., Testud et al. 2000; Gourley et al. 2009). A 1-dB bias in Z could cause a ~15% bias in the estimated rainfall rate (Gourley et al. 2009). The use of combination of Z and Z_{DR} can mitigate some of the uncertainties related to the DSD variability and results in the reduction of the QPE errors compared to conventional $R(Z)$ relations (e.g., Seliga and Bringi 1976; Gorgucci et al. 1994). However, biases in both Z and Z_{DR} caused by miscalibration and attenuation can limit the $R(Z, Z_{DR})$ performance, particularly in heavy rain. Specific differential phase is immune to attenuation and radar miscalibration, and the $R(K_{DP})$ estimates are less sensitive to the DSD variations than the $R(Z)$ estimates, at least for moderate-to-heavy rain. However, the estimated K_{DP} is noisy in areas of weaker echoes, where...
$Z < 30\text{–}40 \text{dBZ}$. Generally, at S band, the $R(K_{DP})$ relation is used in a mixture of rain and hail and the $R(Z, Z_{DR})$ relation in pure rain (Giangrande and Ryzhkov 2008; Cifelli et al. 2011; Chen et al. 2017). The $R(K_{DP})$ relation is utilized in a wide range of rain intensities at C and X bands complemented by $R(Z)$ in light rain (e.g., Park et al. 2005; Figueras i Ventura et al. 2012; Vulpiani et al. 2012; Yoshikawa et al. 2012; Chen and Chandrasekar 2015; Wang et al. 2016; Cifelli et al. 2018).

A novel rainfall estimation algorithm based on the use of specific attenuation A was proposed by Ryzhkov et al. (2014). According to this algorithm, the A field derived using the ZPHI method (e.g., Bringi et al. 1990; Testud et al. 2000; Bringi et al. 2001) is suggested to be directly used for the rain rate estimation as

$$ R = \gamma A^\lambda, \quad (1) $$

where the coefficients γ and λ depend on the radar wavelength, temperature, and polarization. Applications of the $R(A)$ relations for C-band and X-band polarimetric radars were also investigated by Wang et al. (2014), Giangrande et al. (2014), Booodoo et al. (2015), and Diederich et al. (2015). Although the $R(A)$ relation is less sensitive to the DSD variations than the $R(Z)$, $R(Z, Z_{DR})$, and $R(K_{DP})$ relations, the impact of the DSD variability on the estimate of A can still be significant. Indeed, the ZPHI routine requires the knowledge of the path-integrated attenuation (PIA) that is estimated from the total span of differential phase Φ_{DP} along the propagation path in rain $\Delta\Phi_{DP}$ as

$$ \text{PIA} = \alpha \Delta \Phi_{DP}, \quad (2) $$

where the factor α is the net ratio of A and K_{DP} along the path. Because the factor α is a function of DSD, temperature, and radar wavelength, it requires optimization for a particular rain type. For initial implementation of the $R(A)$ algorithm, Ryzhkov et al. (2014) recommended using the value of α equal to 0.015 dB per degree at S band. This value is a good choice for continental heavy rain characterized by high Z_{DR}, but may not be optimal for tropical or light rain that is characterized by generally lower Z_{DR}. Hence, real-time estimation of α matching the dominant precipitation regime should improve the performance of the $R(A)$ algorithm.

In this paper, the description of an operational version of the $R(A)$ algorithm is provided with a primary focus on the optimization and real-time estimation of the parameter α. The A-based QPE method does not work in the presence of hail and has to be complemented with the $R(K_{DP})$ relation which is another issue discussed in the paper. The paper is organized as follows: section 2 contains a review of the $R(A)$ methodology and the key requirements for an automated prototype algorithm. The discussions on the optimization of α and estimation of rain rate in the presence of hail are also included in section 2. The description of the operational version of the algorithm is in section 3, and discussion and summary are given in sections 4 and 5.

2. The $R(A)$ methodology and the requirements for an automated prototype algorithm

a. Review of $R(A)$ methodology

In their study, Ryzhkov et al. (2014) calculated radial profiles of A using the measured reflectivity Z_a and total span of differential phase Φ_{DP} between ranges r_1 and r_2 (Testud et al. 2000):

$$ A(r) = \frac{[Z_a(r)]^b C(\beta, \text{PIA})}{I(r_1, r_2) + C(\beta, \text{PIA}) I(r, r_2)}. \quad (3) $$

$$ C(\beta, \text{PIA}) = \exp(0.23\beta \text{PIA}) - 1, \quad \text{and} \quad (4) $$

$$ \text{PIA}(r_1, r_2) = \alpha \left[\Phi_{DP}(r_2) - \Phi_{DP}(r_1) \right]. \quad (5) $$

where $I(r_1, r_2) = 0.46Z_a I_z^2 \left[Z_a(s) \right]^b \, ds$ and $I(r, r_2) = 0.46 \int_r^r Z_a^b \, ds$. The constant β is usually within the 0.6–0.9 range at microwave frequencies and can be set equal to 0.62 for S-band radar. In Eq. (3), the variable Z_a represents the measured radar reflectivity that is not corrected for miscalibration and attenuation. The radial profile of A is calculated between r_1 and r_2, where r_1 is the first gate that contains precipitation, and r_2 is either the last precipitation gate or the gate immediately below the bottom of a melting layer, whichever is smaller.

Since A is a function of the radar wavelength and raindrop temperature, the parameters of power-law $R(A)$ rainfall relations are also wavelength and temperature dependent (Ryzhkov et al. 2014), and the parameters of the $R(A)$ relation can change significantly even within a particular band (S, C, or X). For the Weather Surveillance Radar-1988 Doppler (WSR-88D) radars operating at S band the multiplier γ in the $R(A)$ relation increases by 35% as the radar wavelength λ changes from 10.0 to 11.0 cm (Ryzhkov et al. 2014). The scatterplots of R versus A at $\lambda = 10.0$ and 11.0 cm simulated using large disdrometer dataset at the temperature 20°C are shown in Fig. 1. The corresponding multipliers γ are 3056 and 4120, respectively, and both scatterplots exhibit very narrow spread.

At S band, the dependencies of the intercept on temperature and radar wavelength can be approximated by the formula (Ryzhkov et al. 2014)
\[R(A) = c_1(T)c_2(\lambda)A^{1.03}, \]
where
\[c_1(T) = (2.23 + 0.078T + 0.00085T^2)10^3, \]
and
\[c_2(\lambda) = 1 - 0.26(11.0 - \lambda). \]
In Eqs. (6)–(8), \(T \) is the temperature (°C) and \(\lambda \) is the radar wavelength (cm).

Ryzhkov et al. (2014) showed that specific attenuation \(A \) is approximately linearly dependent on \(\alpha = A/K_{DP} \). Therefore, rain rate in Eq. (1) is proportional to the product \(\gamma\alpha^4 \). Because the exponent \(\lambda \) is very close to 1, the wavelength/temperature dependencies of \(\gamma \) and \(\alpha \) almost perfectly cancel each other. In other words, since the intercept \(\gamma \) increases with \(\lambda \) and the factor \(\alpha \) decreases with \(\lambda \) in the same proportion, their product remains almost unchanged. A similar consideration is valid with respect to the temperature provided that the temperature dependence of \(\alpha \) is taken into account and the temperature does not vary much along the propagation path in rain. This means that, to the first approximation, it is possible to use a single universal \(R(A) \) relation in a given microwave frequency band and ignore the dependencies of the factors \(\gamma \) and \(\alpha \) on the radar wavelength and temperature (Ryzhkov et al. 2014; Wang et al. 2014; Diederich et al. 2015). A single \(R(A) \) relation was proposed for the operational network of the S-band WSR-88D radars in the United States (Ryzhkov et al. 2014):

\[R(A) = 4120A^{1.03}, \]
which is valid at \(T = 20^\circ \text{C} \) and \(\lambda = 11.0 \text{ cm} \). It should be noted that the temperature dependence of the intercept \(\gamma \) should be taken into account if the temperature varies significantly (>20°C) along the propagation path in rain.

The temperature impact on the performance of C-band \(R(A) \) was investigated by Wang et al. (2014), and it was found that 18°C temperature variation may cause less than 15% bias on the obtained rainfall rate. It was also found that indistinguishable bias is caused by the temperature variation of 5°C if a single \(R(A) \) relation is used at X band (Diederich et al. 2015).

The intercept \(\gamma \) and the exponent \(\lambda \) in the \(R(A) \) power-law relation (1) are practically unaffected by the DSD variability (at least at S band). However, the estimate of \(A \) is affected by factor \(\alpha \), and the optimization of \(\alpha \) poses the biggest challenge of the \(R(A) \) method. It has to be emphasized that this is also a problem for the polarimetric technique for attenuation correction, which prescribes estimation of the path integrated attenuation PIA using a total span of differential phase \(\Delta \Phi_{DP} \) along the propagation path (Bringi et al. 1990). The factor \(\alpha \) (i.e., the ratio \(A/K_{DP} \)) depends on differential reflectivity \(Z_{DR} \), and it monotonically decreases with increasing \(Z_{DR} \) at S band till reaching relatively stable value for \(Z_{DR} > 1–1.5 \text{dB} \) (Fig. 2). A default value of \(\alpha \) for continental rain commonly characterized by larger \(Z_{DR} \) is suggested as 0.015 dB per degree (Ryzhkov et al. 2014).

It was found that \(\alpha \) varied from 0.02 to 0.03 dB per degree over most areas of the Hurricane Irene and was within 0.008–0.015 dB per degree for a central Oklahoma flash flood on 14 June 2010 (Ryzhkov et al. 2014). Because rain rate estimated from the \(R(A) \) relation is roughly proportional to \(\alpha \), the algorithm inevitably tends to underestimate tropical rain or light rain in general which are characterized by low values of \(Z_{DR} \) if a default value of \(\alpha \) typical for continental rain is utilized. The problem can be addressed by an automatic adjustment of \(\alpha \) based on \(Z_{DR} \) or a slope of the \(Z_{DR} \) dependence on \(Z \) (a “\(Z_{DR} \) slope”) as shown below. The use of the \(Z_{DR} \) slope is not affected by potential...
and temperature of 20°C. Vertical yellow lines indicate the range of ZDR variability for conceptual cases of tropical and continental rain. Horizontal dashed blue lines depict net values of α (dB per degree) for both rain types.

miscalibration of ZDR and it better represents rain type in a large spatial/temporal domain than point measurements of ZDR.

b. Estimating α using ZDR slope

1) METHOD

Because tropical rain is characterized by the abundance of small raindrops in high concentration (e.g., Chang et al. 2009, Thompson et al. 2015), the values of ZDR (and ZDR slope) in tropical rain are usually lower than in the continental rain at a given Z. This is demonstrated in Fig. 3 where the scatterplots of ZDR versus Z measured by the WSR-88D radar at Mobile, Alabama (KMOB), in different parts of a mesoscale convective system (MCS) on 29 April 2014 are shown. Prior to the analysis, all radar echoes caused by ground clutter, interference, and other nonprecipitation targets were removed by a physically based data quality control (QC) approach (Tang et al. 2014). In Figs. 3a–c, the collected pairs of ZDR versus Z have been classified as associated with either convective, stratiform, or tropical rain types based on the radar echo classification given by the Multi-Radar Multi-Sensor (MRMS) precipitation type algorithm (Zhang et al. 2016). All Z–ZDR pairs were segregated into the 2-dBZ-wide Z bins centered on even values ranging from 20 to 50 dBZ. For each Z bin, the median ZDR was calculated and a linear regression fitting was obtained for the median ZDR–Z pairs for the three rain types. The corresponding linear ZDR–Z dependencies are displayed in Fig. 3d. A ZDR (Z) slope for the ZDR–Z pairs associated with convective rain is steeper than the slopes for stratiform and tropical pairs. For Z at 40 dBZ, the median ZDR corresponding to the tropical, stratiform, and convective rain were 0.71, 0.93, and 1.52 dB, respectively. Therefore, a slope of the dependence of ZDR on Z can be used to determine a dominant rain type in the radar field of view (FOV).

The dependence of α on the ZDR slope was determined using simulations based on a large DSD dataset collected by a 2D video disdrometer over a 7-yr period in Oklahoma (Schuur et al. 2001, 2005). A total of 47 114 one-minute DSD data were collected from 20 April 1998 through 13 May 2005 (Schuur et al. 2005). In the simulation, the forward [f_a, b(π)] and backward [f_a, b(0)] scattering amplitudes from horizontal and vertical directions were first calculated using a T-matrix code (Mishchenko 2000), where “a” and “b” indicate the horizontal and vertical polarization, respectively. The aspect ratio of raindrop as a function of its equivalent volume diameter (Brandes et al. 2002), and the dielectric constant of water at 20°C are inputs into the T-matrix code. Values of A, KDR, Z, and ZDR were then calculated using the procedures described by Ryzhkov et al. (2011, 2013) assuming that the width of the canting angle distribution of raindrops is 10°. All 47 144 rain DSDs have been divided into 5 groups depending on the value of ZDR for a given Z (i.e., 0%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100% percentile categories). For each category of DSD, a net value of α was estimated as a ratio \(\sum A / \sum K_{DP} \) where summation is performed over all DSDs in a particular category. A slope of ZDR (K = dZDR/dZ) was calculated as a difference \(\langle Z_{DR}(50) \rangle - \langle Z_{DR}(20) \rangle \) divided by 30, where \(\langle Z_{DR}(20) \rangle \) and \(\langle Z_{DR}(50) \rangle \) are the median values of ZDR for Z bins centered at 20 and 50 dBZ for a given category. A nonlinear fit to the α(K) dependence is presented by a blue dashed line in Fig. 4 (black triangles). This nonlinear fit can be also approximated by a bilinear dependence as

\[
\alpha = 0.049 - 0.75K, \quad \text{if} \quad K < 0.045, \\
\alpha = 0.015, \quad \text{if} \quad K > 0.045. \tag{10}
\]

The bilinear equation is depicted by red dashed line in Fig. 4, where α approaches the value of 0.015 dB per degree for high ZDR slopes typical for continental rains.

Our analysis of the Z–ZDR data for a large variety of rain types shows that the factor α generally varies between 0.01 and 0.04 dB per degree. The advantage of
using the Z_{DR}/Z slope to estimate α is that calibration biases in either Z_{DR} or Z are mitigated as an absolute value for either variable is not required. This is important because the current WSR-88D network still experiences calibration challenges with both Z_{DR} and Z (Zittel et al. 2015). The parameter α can vary quite significantly between different rain events as well as within a particular rain event. The temporal variability of α for different precipitation types is discussed in the following section.

2) TEMPORAL VARIABILITY OF α

(i) Deep convective continental storm

Figure 5 illustrates the temporal variability of α for a severe convective storm event that impacted eastern Nebraska and western Iowa for the period from 2014 to 0729 UTC 3–4 June 2014. Storm Prediction Center severe weather reports indicated hail and peak winds $>35\text{ m s}^{-1}$ associated with this event. Overall, there were 194 severe hail (diameters $\geq 25.4\text{ mm}$) and 76 high wind (speeds $\geq 25\text{ m s}^{-1}$) reports and media reports indicated the storm caused substantial damage across the region. Figure 5 also showed example PPI images of Z and Z_{DR} obtained from the Omaha, Nebraska, WSR-88D radar (KOAX) that showed the general precipitation structure at different times during the event. Within the convective cores, Z_{DR} was significantly higher than along their peripheries or in stratiform rain and reached values 4–6 dB. This is a manifestation of very large raindrops originated from melting hail.

Examination of both Z and Z_{DR} throughout the event indicated the estimated α for the radar FOV was strongly impacted by the presence of very strong convection characterized by high Z_{DR}, therefore the temporal variability of α was fairly small and its value belongs to the “horizontal plateau” of the $\alpha(Z_{DR})$ dependence in Fig. 2, and generally ranged from 0.016 to 0.019 dB per degree although for short periods of time it was $>0.020\text{ dB per degree}$. There were two brief periods when significant α variability occurred, between 0227 and 0345 UTC, with values larger than $0.020\text{ dB per degree}$.
percentile groups of for the 0%–20%, 20%–40%, 40%–60%, 60%–80%, 80%–100% percentile groups of Z_{DR} for Oklahoma. Black triangles represent each simulated variable value as simulated from over 47,000 DSDs collected by a disdrometer in a disdrometer. The median Z_{DR} also increased from 0.88 dB at the α peak (0327 UTC) to 1.13 dB after the peak had subsided (0347 UTC).

(ii) Tropical cyclone (Hurricane Matthew)

Much higher values of α are estimated during typical tropical rain event. Figure 6 shows temporal variability of α during Hurricane Matthew for the period from 1131 to 1200 UTC 7–8 October 2016. During this period, the hurricane was steadily weakening as it approached the Georgia and South Carolina coasts. Radar and microwave satellite imagery indicated vertical wind shear and dry air entrainment had impacted the hurricane structure so that much of the southeast hemicircle was void of deep convection. The northwest part was characterized by a broad shield of stratiform rain with some convective rainbands embedded within. Through 0200 UTC, much of the Charleston, South Carolina, WSR-88D radar (KCLX) FOV below the melting layer was dominated by stratiform rain; α values during this period was generally larger than 0.030 dB per degree. However, after this time more intense convective rainband activity and the approaching eyewall had moved into the FOV present. While α reached a peak 0.038 dB per degree at 0304 UTC, it generally decreased afterward down the value of 0.020 dB per degree by 1048 UTC.

The contrast between Z and Z_{DR} imagery for Hurricane Matthew (Fig. 6) and the continental severe convective storm (Fig. 5) is quite striking. Lower Z_{DR} was widespread in the former whereas Z and Z_{DR} values were significantly higher in convective cores in the latter. While Z_{DR} within the convective regions of the tropical cyclone (such as the eyewall) was relatively larger than in the stratiform rain areas, it was still significantly lower than in the intense convective cores for the continental convective storm. Overall, the net radar FOV α during Hurricane Matthew exhibited significantly higher values than in the severe convective continental storm due to the dominance of smaller drops in the former (as suggested by the Z_{DR} data).

Figures 7c and 7d display the Z_{DR} versus Z scatterplots for 0307 and 0444 UTC, the period of time when α showed a general decreasing trend. While the median Z_{DR} remained the same for both times, the best fit line for the median Z_{DR} for Z bins between 20 and 50 dBZ indicates a shallower slope K [Eq. (10)] which resulted in a higher α for 0307 UTC. A comparison of Figs. 7a and 7b to Figs. 7c and 7d reveals strong difference between continental and tropical rain regimes.

c. The impact of hail on the retrieval of A

The ZPHI Eqs. (3)–(5) for estimation of A are valid in rain only. Therefore, the $R(A)$ estimates should be replaced by alternative rainfall relations if rain is mixed with hail or melting hydrometeors. Contamination from hail and melting layer may result in overestimation of rainfall rate.

Figures 8–10 illustrate this type of behavior in case of hail-bearing storm. The reflectivity field at the lowest antenna tilt of 0.5° measured by the KMOB WSR-88D radar at 0008 UTC 4 June 2014 is displayed in Fig. 8. At that time, a few areas with Z exceeding 55 dBZ likely contained melting hail. Radial profiles of radar variables at azimuthal direction 255.3° depicted by black line in Fig. 8 are shown in Figs. 9 and 10. The region where hail was likely present was between the two black stars ($r_2 = 33$ km, and $r_3 = 48$ km). The ranges $r_1 = 13$ km and $r_4 = 85$ km are the first and last gates comprising the radial interval where $\Delta \Phi_D$ and PIA are estimated, and the last gate (r_4) is below the melting layer at elevation 0.5°. Radial profiles of Z, Z_{DR}, ϕ_D, and r_{HV} along this azimuth line are shown in Fig. 9. Between r_2 and r_3, Z_{DR} exhibits significant fluctuations ranging from 1.2 to 4.0 dB. The ϕ_D also increased from 68.4° to 129° within 15 km, but only increased 13.0° between r_1 and r_2 (a 21-km distance) and 38.1° between r_3 and r_4 (a 37-km distance). The steep increase in the ϕ_D field

![Fig. 4. The relation between factor α (dB deg$^{-1}$) and Z_{DR} slope as simulated from over 47,000 DSDs collected by a disdrometer in Oklahoma. Black triangles represent each simulated variable value for the 0%–20%, 20%–40%, 40%–60%, 60%–80%, 80%–100% percentile groups of Z_{DR}. The red and blue dashed lines represent the bilinear and nonlinear fits, respectively.](image-url)
between \(r_2 \) and \(r_3 \) was primarily due to the presence of rain mixed with melting hail which commonly characterized by high \(K_{DP} \) (Ryzhkov et al. 2013). The values of \(\rho_{HV} \) as low as 0.92 combined with \(Z > 55 \text{ dBZ} \) and \(Z_{DR} < 1.5 \text{ dB} \) are other indications of hail within the \((r_2, r_3)\) range interval.

The radial profile of specific attenuation \(A_1 \) estimated without segmentation between rain and hail is shown as dotted black line in Fig. 10a. If this radial profile of \(A \) (marked as \(A_1 \)) is converted to rain rate according to Eq. (9), this would produce unrealistically high values of \(R \) up to 300 mm h\(^{-1}\) in the range interval between \(r_2 \) and \(r_3 \). Moreover, due to an integral nature of the ZPHI estimate, the values of \(A_1 \) outside of hail segment are also biased (dotted line in Fig. 10b). This dictates the need for the segmentation of ray and utilization of the ZPHI formulas separately in rain segments only. The corresponding estimates of \(A \) are depicted as solid curves and marked as \(A_2 \) in Fig. 10a. The \(A_2 \) estimates are more realistic and are converted to more reasonable rain rates (Fig. 10b).

In the hail segment \((r_2, r_3)\), the use of the \(K_{DP} \)-based rainfall estimator is the best option (Balakrishnan and Zrnić 1990; Ryzhkov et al. 2013). Balakrishnan and Zrnić (1990) motivated this choice by the fact that \(K_{DP} \) is not affected by the presence of randomly oriented dry hailstones in the mixture with raindrops. In fact, hail mixed with rain is always wet and partially melted. Melting hail can contribute to \(K_{DP} \) but the contribution of very large raindrops originated from melting hail is still dominant (Ryzhkov et al. 2013). Because raindrop size distribution in the presence of hail or at the periphery hail cores is skewed toward larger drops characterized by very high \(Z_{DR} \), a generic \(R(K_{DP}) \) relation for pure rain may not be optimal. A new \(R(K_{DP}) \) relation using simulations in the areas classified as rain/hail mixture was derived as

\[
R = 27.0K_{DP}^{0.77}.
\] (11)

This power-law \(R(K_{DP}) \) has significantly smaller intercept (27.0) than the generic \(R(K_{DP}) \) relation \(R = 44.0K_{DP}^{0.82} \) (Giangrande and Ryzhkov 2008). Since the WSR-88D radars occasionally measure \(K_{DP} \) values as high as 7–8 \text{ km h}^{-1} in strong hail cells, utilization of the
generic relation causes gross overestimation of rain rates there.

3. Prototype S-band R(A) algorithm

Using the findings discussed earlier, a prototype S-band QPE algorithm utilizing specific attenuation A was developed. A flowchart of the key inputs and logic used for the algorithm is shown in Fig. 11, and both the inputs (Z, Z_{DR}, \phi_{DP}, and \rho_{HV}) and outputs (R) are in polar coordinates with an azimuthal resolution of 0.5°, radial resolution of 250 m, and temporal resolution of approximately 5 min. The Rapid Refresh (RAP) model sounding data (Benjamin et al. 2004), which provides heights of the 0°C, 10°C, and 20°C isotherms, is used for quality control and melting layer detection. As discussed earlier, all radar data are first processed using a dual-polarization quality control algorithm (Tang et al. 2014). The range gates associated with ground clutter, anomalous propagation (AP), and nonprecipitation scatterers are identified and removed from all radar fields (Z, Z_{DR}, \phi_{DP}, and \rho_{HV}). The \phi_{DP} data are further processed via unfolding, “good data” masking, smoothing, and filling in bad data pixels (Bringi et al. 2005). The obtained smoothed \phi_{DP} data are used for K_{DP} estimation via the use of linear fitting and smoothing over 25 (9) range gates when Z was less (greater) than 40 dBZ (Ryzhkov and Zrnić 1996; Bringi et al. 2005).

The factor \alpha was estimated in real time using the approach discussed in section 2b with the Z–Z_{DR} data from each 0.5° tilt. The Z–Z_{DR} pairs used in the \alpha estimation were selected by the following criteria: 1) pairs selected only from the region below the melting layer excluding hail areas, 2) \rho_{HV} > 0.98, 3) Z_{DR} values ranged from −4 dB to 4 dB, and 4) Z ranged from 20 to 50 dBZ. A minimum total Z–Z_{DR} pair number (30,000) is chosen to ensure a robust estimate of \alpha. If this threshold is not met, then the default \alpha = 0.015 dB per degree is used to estimate A. For \alpha estimation, Z–Z_{DR} pairs were separated into sixteen 2-dB bins centered on Z values between 20 and 50 dBZ. The median Z_{DR} values for each bin are calculated, and a slope of linear fit of the Z_{DR}–Z dependence serves as an estimate of the Z_{DR} slope K that is used to compute \alpha from Eq. (10). It should be noted that a single parameter \alpha is determined for a whole radar coverage area but the value of \alpha is updated on a scan-to-scan basis. When the precipitation type is a mixture of convective, stratiform and tropical types, a single \alpha may not be sufficient to capture the DSD features, and multiple \alpha can provide better results.

FIG. 6. As in Fig. 5, but for Hurricane Matthew observed on 7–8 Oct 2016 with the KCLX WSR-88D radar. Range circles are drawn at 50 and 150 km from the radar.
The update occurs when a sufficient number of the Z–Z_{DR} pairs (30,000 in the current version) is accumulated since the last update. Therefore, the value of a may stay the same for a sequence of radar volume scans in the absence of extended radar echo in FOV.

Since the $R(A)$ estimate is valid in pure rain only, the range gates associated with hail, melting layer (ML), and layer above ML have to be identified. In the A field estimation [Eqs. (3)–(5)], the beginning range gate r_1 is the first gate along the radial where $\rho_{HV} > 0.98$ and $Z > 5 \text{ dBZ}$. The ending range gate r_2 is identified either as the last gate in the same radial where $\rho_{HV} > 0.98$ and $Z > 5 \text{ dBZ}$ or the last gate where the radar beam is still below the bottom of the melting layer. The height of melting layer is determined from the Rapid Refresh (RAP) model sounding data as $H_m = (H_0 + H_{10})/2$, where H_0 and H_{10} are the heights of the 0°C and 10°C isotherms at the radar site (e.g., Benjamin et al. 2004). The ρ_{HV} data are examined in the proximity of the reference height H_m and a final decision on the choice of the gate r_2 is made using the ρ_{HV} threshold 0.98.

In the current version of the algorithm, a simplified version of ray segmentation is used to identify the gates attributed to nonmeteorological echo or hail. In the areas identified as contaminated by hail ($Z > 50 \text{ dBZ}$), rain rate is computed from the $R(K_{DP})$ relation in Eq. (11). This fragmentation method provided QPE results that agreed well with gauge observations for the hail case in the current study. Large-scale validation of this prototype S-band $R(A)$ algorithm is described in the companion paper by Cocks et al. (2019, hereafter Part II).

4. Discussion

Although the basic version of the $R(A) + R(K_{DP})$ algorithm described in the previous section has already
outperformed other existing QPE algorithms as the validation study of Part II demonstrates, there is still ample room for improvement and its further optimization. Herein, we discuss possible modification strategy.

One of the potential limitations of the basic prototype $R(A)$ algorithm is the use of a single “net” value of $\alpha (a_0)$ in a whole radar sweep. Because a_0 decreases with Z_{DR} at S band (see Fig. 2), the use of the net value a_0 could cause overestimation of heavier rain with high Z_{DR} and underestimation of lighter (or tropical) rain that is characterized by lower values of Z_{DR}. This is conceptually illustrated in Fig. 2. If the areas of “continental” and “tropical” rain are observed in the same radar coverage area, the corresponding ranges of Z_{DR} are quite different and marked with two pairs of vertical yellow lines in Fig. 2. In this conceptual plot, the average value of α in the continental rain region is about 0.014 dB per degree (indicated by blue dashed line) whereas the average α in the tropical rain region is about 0.026 dB per degree. The net value of a_0 averaged over the whole FOV is somewhere between these two values. Hence, indiscriminate utilization of $\alpha = a_0$ would inevitably produce underestimation of tropical rain and overestimation of continental rain. An example of such overestimation/underestimation is reported in the study in Part II. The need for segmentation of FOV into the areas with different rain types (and different values of α) is particularly important for landfalling hurricanes or typhoons which are characterized by strong spatial diversity of rain regimes. For example, strong microphysical differences between inner and outer rainbands of a tropical cyclone are often reported (e.g., Wu et al. 2018). Continued investigation of such cases is ongoing and further refinements and enhancements of the basic prototype $R(A)$ methodology are forthcoming.

Another potential limitation stems from characterizing essentially nonlinear dependence of Z_{DR} on Z in rain by a single slope K. This slope apparently depends on the range of Z in the Z–Z_{DR} scatterplot. The $\alpha(K)$ relation itself also depends on the choice of Z range. A more advanced version of the algorithm (not discussed herein and not evaluated in the study of Part II) takes this into account.

The current $R(A)$ scheme assumes a nominal 20°C environment, which had not shown significant issues for radar data in the CONUS domain with the beam top below the melting layer. Nevertheless, the sensitivity of the scheme to temperature variations should be evaluated, especially for situations with long propagation
paths in rain and large variability of temperature (above 20°C) along the path.

Finally, the current segmentation between $R(A)$ and $R(K_{DP})$ applications is based on a single reflectivity threshold and is rather simplistic. A more sophisticated segmentation procedure to account for anomalously high attenuation in wet hail may provide improved rain rate estimation and will be evaluated.

The basic version of the prototype $R(A)$ algorithm presented in this study will be further upgraded by taking into account several potential limitations inherent to the current methodology. However, despite all these potential limitations, the prototype version of the $R(A)$ algorithm described in this paper has already outperformed other QPE radar methodologies (Part II).

5. Conclusions

A prototype, automated QPE algorithm utilizing specific attenuation and specific differential phase $[R(A) + R(K_{DP})]$ to estimate rainfall below the melting layer was developed for use with operational polarimetric S-band radars. The algorithm uses automated procedures to avoid contamination from frozen precipitation and to optimize the net value of $\alpha = A/K_{DP}$ which is crucial for conversion of differential phase into path-integrated attenuation. Although the $R(A)$ relation at S band is almost insensitive to the variability of drop size distributions, the estimate of A is quite sensitive to the choice of α which depends on rain type. A methodology for determination of α from a slope of Z_{DR} dependence on Z in rain is suggested in this work. According to this approach, the radar variables first go through a physically based quality control step, and those gates associated with nonprecipitation echoes are eliminated. The $Z-Z_{DR}$ pairs with Z between 20 and 50 dBZ are then grouped into sixteen 2-dB bins, and the mean values of Z_{DR} from each bin are then calculated. The value of α is estimated using a slope of the $Z-Z_{DR}$ dependence in rain which is updated on a scan-to-scan basis. The advantage of using the Z_{DR} slope is that it is

Fig. 10. (a) Radial profiles of A estimated using the original approach (dotted line) and modified approach (solid line). (b) Radial profiles of rainfall rate estimated from $R(A)$ only (dotted line) and the combination of $R(A) + R(K_{DP})$ (solid line).

Fig. 11. The flowchart of the S-band polarimetric QPE algorithm that uses specific attenuation A and specific differential phase K_{DP}.
almost insensitive to the miscalibration of \(Z \) and \(Z_{\text{DR}} \). The \(A \) field is then estimated with the obtained \(\alpha \) for those gates with \(\rho_{HV} > 0.98 \), and \(Z \) between 5 and 50 dBZ. A “hail-adjusted” \(R(K_{\text{DP}}) \) relation complements \(R(A) \) in areas where hail contamination is likely.

The basic version of the \(R(A) + R(K_{\text{DP}}) \) algorithm presented in this study will be further upgraded by taking into account several potential limitations inherent to this version. However, this preliminary version has already outperformed other QPE techniques as large-scale validation efforts in Part II demonstrate.

Acknowledgments. Funding was provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement NA16OAR4320115, U.S. Department of Commerce, as well as the Radar Operations Center technology transfer memorandum of understanding.

REFERENCES

