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ABSTRACT

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses
of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for
understanding the interactions and mechanisms between climatic variables and hydrological components,
are not well constrained. In this study, relying on land surface models, we isolate Pve component storage
anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment
mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA),
snhow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater
storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are
then evaluated over 168 global basins. The lag between TWSA and is quantibed by calculating the cor-
relation coefbcients between GRACE-based TWSA and P for different time lags, then identifying the lag
(measured in months) corresponding to the maximum correlation coefbcient. A multivariate regression
model is used to explore the relationship between climatc and basin characteristics and the lag between TWSA and
P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the
period January 2004bDecember 2013. TWSA is positively related td over basins but with lags of variable du-
ration. The lags are shorter in the low- and midlatitude basins (1D2 months) than thosén the high-latitude basins
(6D9 months). The spatial patterns of the maximum corelations and the corresponding lags between individual
components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA
(3D8 months) and CWSA (0 months). Tte lags between GWSA, SMSA, and SWSA toP can be arranged as
GWSA . SMSA $ SWSA. Regression analysis resultshow that the lags between TWSA andP are related to the
mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

1. Introduction (Pan et al. 2017 Strassberg et al. 2009Tregoning et al.
2012 seeappendix for a list of acronyms used in this
paper). Precipitation P is a major input to terrestrial
water Bux (Gao et al. 2014. In the water balance
equation [d(TWSA)/dt5 P2 ET 2 R, where ET is
evapotranspiration and R is runoff], it is the derivative of
TWS anomalies (TWSA) that relates simultaneously to
P, and therefore a time lag is expected Eagleson 197§.
& Supplemental information related to this paper is available atthe  Xu et al. (2018) also showed that whenP is converted to
Journals Online website: https://doi.org/10.1175/JHM-D-18-0253.s1  T\w/s through water distribution, there is a theoretically
delayed response of TWS toP. Determining the specibc
Corresponding author. Bin He, hebin@bnu.edu.cn lag between TWS andP and the spatial variation of this

Terrestrial water storage (TWS) is a vital compo-
nent of the global hydrological cycle and can be di-
vided into surface water storage (SWS), soil moisture
storage (SMS), canopy water storage (CWS), snow wa-
ter equivalent (SWE), and groundwater storage (GWS)

DOI: 10.1175/JHM-D-18-0253.1

2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses
8QDXWKHQWLFDWHG _ 'RZQORDGHG



1982

lag are crucial to understanding interactions in the cli-
mate factors and the hydrological cycle.

Recently, the relationship between P and TWS has
been investigated over a number of basinsSyed et al.
(2008) demonstrated that terrestrial water storage
change (TWSC) based on land surface model simula-
tions in the Global Land Data Assimilation System
(GLDAS) is strongly correlated with P in low-latitude
areas. Based on TWSA from the Gravity Recovery
and Climate Experiment (GRACE), Mo et al. (2016)
found a stronger correlation between P and TWSA in
southern than in northern China. Xu et al. (2018)
identiped a 2-month lag in a study of GRACE-based
TWSA response toP in the Three Rivers source region
of the Tibetan Plateau, similar to the 1D2-month lag
between GRACE-based TWSA and P found by Soni
and Syed (2015)for Indian river basins. Ndehedehe
et al. (2016) determined a 1b2-month lag for TWSA
responses toP for West Africa basins.

Previous studies have also found that the different
components of TWS may have different responses td°.
The maximum lag between TWSA and P in the Three
Rivers source region of Tibet is 2 months, whereas soil
moisture there can respond to P without delay (Xu
etal. (2018). In southern Manitoba, Canada,Chen et al.
(2002) found that the responses of groundwater level
to P vary among different wells, with time lags ranging
from 3 months to 3b4 yearsLorenzo-Lacruz etal. (2017)
analyzed the relationship between a standardized
groundwater index (SGI) and a 48-month standardized
precipitation index (SPI) to investigate the relationship
between groundwater storage andP variability in the
Mediterranean region. They identiPed the responses of
groundwater storage anomalies (GWSA) to P for dif-
ferent aquifers, including lags of 6 months for the Can
Bajoca aquifer, 9 months for the Massanella red aqui-
fer, and 46 months for the Estremera aquifer. Liesch
and Ohmer (2016) established that the lags for both
GWSA-P and SMSA-P were 1 month in Jordan.

In addition, several studies tried to reveal the rea-
sons for the delayed response of TWSA toP. A study
in Ethiopia ( Awange et al. 2014 showed that aquifer
properties have a strong inBuence on the lag be-
tween TWSA and P, such as 0-month time lag in karst-
dominated regions and a lag of up to 6 months in
unconsolidated sediment regions.Chen et al. (2002)
established that the different recharge characteristics
and permeability of sediments inBuence the response
of groundwater level to P. Heterogeneous lithology
and the percentage of clay in an aquifer were found by
Lorenzo-Lacruz et al. (2017)to inBuence the response
of GWSA and TWSA to P. For example, a longer
lag between GWSA and P occurred mostly in areas
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where high-permeability rocks predominated, with lower
correlation coefbcients betweenP and aquifer storage
being found in areas of higher clay content.Soni and Syed
(2015) showed that the relationship between P and
TWSA and the associated lag were inBuenced by such
factors as climatic conditions, vegetation density, runoff
pathlength, basin size, and the abundance of surface
water bodies. However, despite these various studies, the
spatial pattern of the responses of TWSA and its indi-
vidual components to P, and the inBuence of climatic
factors, vegetation behavior, and basin characteristics on
the associated lags, remain unclear over global scale.

Traditionally, TWS is obtained from model simula-
tions and in situ observations. Global Land Data As-
similation System (GLDAS) land surface models can be
used to successfully simulate some components of TWS,
such as SMS and SWE, but perform relatively poorly in
capturing other components, such as GWS $yed et al.
2008 Xu et al. 2018). To now, in situ measurements
of TWS have not been obtained at a global scale. The
GRACE satellite, launched in 2002 to monitor EarthOs
time-variable gravity beld, which reRects EarthOs surface
mass redistribution and transport, provides unique data
on TWS over large regions (Tapley et al. 2004 Wahr
et al. 2009. These data can be used to accurately mea-
sure the vertically integrated water resources stored
above and beneath EarthOs surfacdif et al. 201Q Long
et al. 2016 Rodell et al. 2004g Syed et al. 2008 Wahr
etal. 1998 Yang et al. 2013. Therefore, using TWS data
from GRACE, the goals of this study are to 1) examine
the responses of TWSA and its individual components
to P for 168 global basins using both basin-average and
grid-based approaches, 2) distinguish the differences in
time lags between individual components of TWSA and
P, and 3) explore the factors that may inBuence the lag
between TWSA and P.

2. Materials and methods

a. Study regions

In this study, we analyze the TWSAEP relationship for
168 global basins. The criteria for basin selection followed
those of Scanlon et al. (2016) which are 1) basins with
areas. 40000knt and 2) basins with radius. 200km
(Fig. 1). Applying these criteria, data for 168 basins cov-
ering 663 10Pkm? are extracted from the Global Runoff
Data Centre (GRDC; http://grdc.bafg.de) (Fig. 1).

b. Data

1) GRACE DATA

Global monthly TWSA data retrieved from GRACE
are obtained from the latest-release (RLO5) mass
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FiG. 1. Distribution of the 168 river basins examined in this study. Basins with areas of
. 500000 knf are numbered 1 through 31 in order of decreasing basin size: 1, Amazon; 2,
Congo; 3, Mississippi, 4, Ob; 5, Parana; 6, Nile; 7, Yenisei; 8, Lena; 9, Niger; 10, Amur; 11,
Yangtze; 12, Mackenzie; 13, Volga; 14, Zambezi; 15, Nelson; 16, Murray; 17, Ganges; 18,
Orange; 19, Indus; 20, Tocantins; 21, Yukon; 22, Danube; 23, Mekong; 24, Yellow River; 25,
Columbia; 26, Brahmaputra; 27, Kolyma; 28, Colorado (Argentina); 29, Colorado (Caribbean
Sea); 30, Colorado (Pacibc Ocean); and 31, Sao Francisco.

concentration (mascon) solutions processed by Jet
Propulsion Laboratory (JPL) processing centers at
NASA and by the Center for Space Research (CSR) at
the University of Texas at Austin. Based on the equal-
area 3 3 3 spherical cap mascon function, the JPL
mascon data uses a priori constraints, including altime-
try data and forward models (GLDAS land surface
models; Rodell et al. 20048) for land, and Estimating
the Circulation and Climate of the Ocean 2 for oceans
(Menemenlis et al. 2008, to estimate the global
gravity Pelds. These procelures can minimize the
effect of measurement errors. The coarse 8 3 38JPL
mascon data (0.8 3 0.58latitudeblongitude grid) are
then multiplied by the Community Land Model 4.0
(downsampled from 18 3 18to 0.58 3 0.58 provided by
the Tellus website to reduce leakage errors intro-
duced by the mascon basis function Watkins et al.
2015. We obtain the JPL mascon data from https://
grace.jpl.nasa.gov/data/get-data/jpl_global_masconsA
detailed description of these JPL mascon data can be
found in Wiese et al. (2016) The CSR mascons, calcu-
lated based on equal-area geodesic grids of approx-
imately 120km (18 at the equator), are processed by
constraining the original GRACE level-1 data through
the Tikhonov regularization method, which effectively
suppressed the northBsouth stripe errors in the GRACE
measurements. We obtain the CSR mascon data from
http://www.csr.utexas.edu/grace/RLO5_mascons.htmA
detailed description of the CSR mascon data is given in
Save et al. (2016) Monthly anomalies of TWS are ob-
tained relative to the baseline average for the period

months (Andrew et al. 2017; Long et al. 2015 Mo et al.
2016, and the mean TWSA from the GRACE JPL and

GRACE CSR mascons is then calculated. Details of the
TWSA dataset used in this study are reported inTable 1.

2) PRECIPITATION

The global 0.58monthly P datasets used in the present
study are obtained from the Global Precipitation Cli-
matology Centre (GPCC) (Schneider et al. 2014 and
the Climatic Research Unit (CRU) Time Series Version
4.00 dataset Harris et al. 2014), designated asPgpcc
and Pcry, respectively. Details of these two datasets are
given in Table 1.

3) INDIVIDUAL COMPONENTS OF TWS

In this study, the soil moisture (SM), SWE, surface
water (SW), and canopy water (CW), are obtained from
NASA GLDAS land surface models (LSMs) ( Feng etal.
2013 Beaudoing and 2015;Rodell et al. 2004b; https://
disc.sci.gsfc.nasa.goy/ Owing to the different versions,
structures, and parameters of these models, the LSMs
have been previously divided into the Community Land
Model (CLM) ( Dai et al. 2001), Community Land
Model 4.0 (CLM4.0) (Oleson et al. 201Q, variable
inbltration capacity (VIC) ( Liang et al. 1994, Noah-1
and Noah-2.1 (Chen et al. 1996, and Mosaic (Koster
and Suarez 1995 We obtain the individual components
of TWS, at a spatial resolution of 18 by averaging them
from the six LSMs and then calculating the all indi-
vidual component anomalies of TWSA by subtracting
the average individual components of TWS from 2003

January 2004bDecember 2009. Here, the average of the to 2014 (Chen et al. 2018. Details of the components

adjusted months is applied to complement the missing

included in the GLDAS LSMs are given in Table 2.
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Temporal Spatial
Variable Product resolution resolution Period
Terrestrial water storage (TWS) GRACE RLO5 mascon solutions (CSR) Monthly 058 Apr2002bJun 2017
GRACE RLO05 mascon solutions (JPL) Monthly 058 Apr2002DJun 2016
Precipitation (P) CRU time series, TS 4.00 Pcru) Monthly 0.58 19012014
Global Precipitation Climatology Centre Monthly 0.58 19012013
(Pepce)
Potential evapotranspiration (PET) CRU time series, TS 4.00 (CRU) Monthly 058 19012014
Global Land Data Assimilation Soil moisture storage (SMS) Monthly 18 19792014
System (GLDAS)
Canopy water storage (CWS) Monthly 18 19792014
Snow water equivalent (SWE) Monthly 18 1979D2014
Surface water storage (SWS) Monthly B 200413
Temperature CRU time series, TS 4.00 (CRU) Monthly 0.58 200413
Shortwave radiation CRU time series, TS 4.00 (CRU) Monthly 0.58 200413
Normalized difference vegetation Global Inventory Monitoring and Monthly 0.00838 200413
index (NDVI) Modeling System (GMMIS 3g)
Global basins database Global Runoff Data Centre (GRDC) Shape bles
DEM Global Multiresolution Terrain Elevation 0.0083
Data 2010 (GMTED2010)
Slope Food and Agriculture Organization of the 0.0838

United Nations (FAO)

Reservoir storage, considered as an important compo-
nent of water storage (Castle et al. 2014 Famiglietti et al.
20121 Scanlon et al. 2012 Shamsudduha et al. 2017Soni
and Syed 2015 Strassberg et al. 2009 is disregarded in
this study because of the lack of data on integrated res-
ervoir storage for global basins.

4) CLIMATIC AND BASIN CHARACTERISTICS DATA

Data on basin properties, vegetation, and climate char-
acteristics data are collectedto investigate how catchments
regulate the time lag between TWSA and P. Basin elevation
(DEM) is derived from Global Multiresolution Terrain El-
evation Data 2010 (GMTED2010) provided by the U.S.
Geological Survey and the Nationd Geospatial-Intelligence
Agency (https://topotools.cr.usgs.gov/IGMTED_viewer/
viewer.htm) (Danielson and Gesch 201}. Slope data are
obtained from the Food and Agriculture Organization
of the United Nations ( http://www.fao.org/soils-portal/
soil-survey/soil-maps-and-databases/harmonized-world-
soil-database-vl2/en). The P datasets are collected
from the CRU and GPCC. Shortwave radiation data R
and temperature data T at 0.58 spatial resolution for

from the CRU and National Centers for Environ-
mental Prediction (ftp://nacp.ornl.gov/synthesis/2009/
frescati/temp/land_use_change/original/readme.hth
basin vegetation coverage (described by a monthly nor-
malized difference vegetation index (NDVI) dataset with a
spatial resolution of 0.0083 is obtained from the Global
Inventory Modeling and Mapping Studies group (https:/
ecocast.arc.nasa.gov/data/pub/gimms/3g.yIfucker et al.
2005. Details of all the above data are given in Table 1.
These monthly datasets are aggregated to multiyear
averages over basins scale.

c. Trend analysis

We determine the long-term trends of TWSA and P
using the nonparametric MannbKendall method Kendall
1979. This method has been used extensively in trend tests
of climatic and hydrological variables (Asoka et al. 2017,
Scanlon et al. 2018. The signibcance level of the trends
isp, 0.05.

d. Time lag analysis

Pearson correlation analysis is used to explore the

the period January 2003bDecember 2014 are obtained relationships betweenP and TWSA. For each basin,

TABLE 2. Summary of components included in the land surface models used in this study. (Note thai means the componentisincludedin
the model, however, 3 means the component is not included in the model.)

Model VIC GLDAS 1 CLM GLDAS 1 NOAH GLDAS 1 NOAH GLDAS 2.1 MOSAIC GLDAS 1 CLM-4.0
SWS Surface runoff and snowmelt i}
SMS u u u U u u
GWS 3 3 3 3 3 a
CwWSs u u u V] u u
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we obtain the correlation coefbcients between P

and TWSA for different t ime lags (0B12 months)
by moving the TWSA time series forward 1 month ata

time (Frappart et al. 2013 Ndehedehe et al. 2016
Soni and Syed 2015Yang et al. 2014. We are then

able to identify the maximum correlation coefpcient

and the lag time corresponding to that maximum

correlation coefpcient. Only positive and statistically

significant correlations (p, 0.05) are included in the
analysis.

e. Individual TWSA component anomalies

As mentioned in section 2b(3), the values of CWS,
SWS, SMS, and SWE are averaged from six LSMs. We
calculated the anomalies as

SMSAS5 SMS, 2 SMS,
CWSAS5 CWS, 2 GWS,
SWEA 5 SWE 2 SWE,

SWSAS5 SWS§, 2 SWS, (@H)]
where SMS,, is the SMS in month u of year y and SMS is
the average SMS for the period January 2003 to December
2014 Chen et al. 2017; the terms for the other compo-
nents are debned similarly.

f. Quantifying groundwater storage anomalies

Theoretically, TWS is the sum of its individual com-
ponents (Scanlon et al. 2016:

TWS5 SWE1l CWS1 SWS1 SMS1 GWS. 2)
In addition to GWS, GLDAS-based TWS incorpo-
rates SWS, SMS, CWS, and SWE. Therefore, GWS can
be obtained by differencing GLDAS-based TWS from
GRACE TWS ( Jin and Feng 2013 Rodell et al. 2009).
GWSA can thus be calculated as

GWSA 5 GRACE_TWSA 2 SMSA2 CWSA

2 SWEA 2 SWSA. ©)
Jin and Feng (2013)found that GWS calculated from
GRACEDGLDAS is robust for estimating global GWS.
In addition, a good agreement has been found between
GWS calculated from GRACEBGLDAS and in situ
observations (J. Chen et al. 2014 T. Chen et al. 2014
X. Chen et al. 2014 Jin and Feng 2013Long et al. 2016
Xiao et al. 2015).

g. TWSA component contribution ratios

We also determine the contributions of individual
components (GWSA, SMSA, SWSA, and SWEA) to
TWSA, which is crucial for understanding the effect of
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these components on land water changes. We apply the
component contribution ratio (CCR) proposed by Kim
et al. (2009) to calculate the contribution of individual
components to TWSA for the studied global basins as
follows:

ccrs MAD

TV “)

where MAD is the mean absolute deviation of the
individual component [MAD 5 (1/N) thstz Sj; Sre-
fers to the individual storage components, for exam-
ple, GWS, SMS, and SWSS§; is the value of individual
components in month t; and N is the number of
months] and TV is the sum of the MAD of all com-
ponents TV 5  :°?°MAD).

S

h. Linking lags to climatic and basin characteristics

Linear regression analysis is used to evaluate the re-
lationship between the lags of the response of TWSA to
P and the climatic and basin characteristics. The climatic
characteristics include: (i) basin mean temperature, (ii)
basin mean precipitation, (iii) basin mean short radiation,
and (iv) basin mean NDVI. The related basin charac-
teristics include (i) mean latitude, (i) mean longitude,
(iiiy mean elevation, (iv) mean slope, and (v) mean area.
Table S1 in the online supplemental material lists the
statistical measures of the climatic and basin character-
istics for the 168 studied basins.

Multiple regression analysis is used to construct a
statistical model of the relationship between climatic,
vegetation, and basin characteristics and the lag between
GRACE-based TWSA and P. Finally, for evaluating the
applicability of the regression models, the normality, ho-
moscedasticity, and independence of the residuals are
checked, as detailed below.

i. Residuals analysis

To evaluate the appropriateness of the regression
models, the residuals are examined for homoscedas-
ticity, independence, and normality (Xu 2001). These
tests are conducted using SPSS statistics 22 (analytze
regression/ linear; Elliott and Woodward 2007).

1) HOMOSCEDASTICITY TEST

When the variance of errors is the same for different
values of the independent variables, homoscedasticity
is indicated. A plot of the standardized residuals (the
error) versus the regression standardized predicted
value is used to check for homoscedasticity. The
presence of homoscedasticity in the plot is indicated
by the residuals being randomly scattered around 0 and
the data scatter showing no clear pattern Osbourne and
Waters 2002.
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FIG. 2. (top) Trend of precipitation ( Pcry) and (bottom) GRACE-based TWSA for the period January 2004D
December 2013 for the 168 studied basins. The signibcance of the trends was assesseg at 0.05.

2) INDEPENDENCE TEST

The test for independence of residuals involves

checking that the residuals are uncorrelated Osbourne

and Waters 2003. The DurbinBWatson statistic is used

to test for the presence of autocorrelation, with the value

of the statistic ranging from 0 to 4. Values close to 2
indicate that the residuals are independent. Values near

0 indicate the presence of sigiibcant positive autocor-

relation and those near 4 indicate the presence of sig-

nificant negative autocorrelation (Altman and Bland
1995 Chan 2004 Durbin and Watson 1971).

3) NORMALITY TEST

The regression model used is also based on the as-

sumption that residuals follow a normal distribution
(Altman and Bland 1995; Driscoll et al. 2000; Field 2013,
Pallant 200J). Visual inspection of the distributions,
namely, the frequency distribution (histogram) and the
probabilitybprobability (pPp) plot ( Field 2013), are used

for assessing normality. The histogram (of standard-
ized residuals) provides a visual judgment of whether
the distribution of the residuals is bell shaped (Thode
2002. The pbp diagram shows the cumulative proba-
bility of the expected values plotted against the cumu-
lative probability of the observed values. Data plotting
on or near a straight diagonal line indicate normally
distributed residuals (Field 2013).

3. Results

a. Spatial and temporal trends of precipitation and
TWSA over global basins

Trend analysis is a widely used tool among hydrolo-
gists (Scanlon et al. 2018 and is used here to examine
the covariation of TWSA and P. Figure 2 (top: Pcru)
and Fig. S1 Pgpcc) show the spatial patterns of the
trend of P for 168 global basins for the period January
2004 to December 2013. Results refer to that the trends

8QDXWKHQWLFDWHG _ 'RZQORDGHG
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of P based on the CRU and the GPCC are consistent
with each other. However, there is no signibcant vari-
ation trend existing in P over global 168 basins. Among
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approach (Figs. 4a,h Figs. S3a,b) and a basin-average
approach (Figs. 5a,h Figs. S4a,b). The spatial patterns
of the maximum correlation coefbcient and the corre-

which, a nonsignibcant decrease can be observed in sponding lag month are similar for both approaches. The

South America (e.g., the Amazon and Orinoco basins),
in southern North America (e.g., the Mississippi basin),
in the Indus basin, and in southern Africa (e.g., the
Orange and Zambezi basins). However, the increased
trend for P is mainly in eastern Asia (e.g., the Yangtze
and Amur basins), in northern Asia (e.g., the Lena,
Yenisei, and Ob River basins), in eastern Australia (e.g.,
the Murray basin), and in northern Africa (e.g., the Nile
and Congo basins).

Figure 2 (bottom) shows the spatial pattern of
GRACE-based TWSA over for global basins. Most low-
latitude basins show an increase (signibcant) in TWSA
(26%), including the Nile, Congo, Murray, and Zambezi
basins. Increased TWSA is observed in several basins in
the midlatitudes of the Northern Hemisphere, such as
the Mississippi and Yangtze basins. Decreases in TWSA
are observed for 30.4% of global basins, which are
seen mostly in basins at high and midlatitudes of the
Northern Hemisphere, such as the Lena, Yenisei, and
Ob basins, and those in northern India. These identi-
bed patterns of TWSA are consistent with those noted
by some previous global or regional-scale investigations,
such as those ofAhmed et al. (2014) and Scanlon
et al. (2016).

Coherence betweenP and TWSA is found for most
of the studied basins, but TWSA shows more instances
of signibcant increase and é@crease trends, implying
potential inBuences of other factors on TWSA besides
P. Interestingly, for some basins, such as the Ob, Lena,
and Yenisei basins, increasingP corresponds to de-
creasing TWSA. However, in the Amazon basin, for
example, P shows a decreasing trend and TWSA an
increasing trend.

b. Response of TWSA to precipitation

Figure 3 shows the variation in correlation coefbcient
between TWSA and P with different lags (0B12 month)
for 31 large basins (shown inFig. 1). For some basins, the
correlation coefpcient transforms from positive to neg-
ative with the increasing of the lag months, particularly
in low- and midlatitude basins, such as the Amazon
basin (Fig. 3, basin label 1). Some basins change from
negative to positive, which mainly occur in high lati-
tudes, such as in the Mississippi basin (label 3). Similar
patterns are shown for TWSA and Pgpcc (Fig. S2).

The maximum correlation coefbcients between
GRACE-based TWSA and P, and the lags (measured
in months) corresponding to those maximum correla-
tion coefbcients, are determined using both a grid-based

correlation coefpcients are signibcantly positive over
several very large land areas Fig. 4aand Fig. S3a), in-
cluding northern South America, Africa, southern India,
southern China, and most of Russia. At a basin scale,
the larger correlation coefbcients are observed for the
Amazon basin (0.92 forPcry and GRACE-based TWSA;
0.94 for Pgpcc and GRACE-based TWSA), Nile basin
(0.86 and 0.84), Niger basin (0.89 and 0.90), Yangtze basin
(both 0.85), and Mekong basin (0.90 and 0.93) Fig. 5a
and Fig. S4a).

The lags between GRACE-based TWSA and P cor-
responding to the maximum correlation coefpbcients are
shorter for basins in low latitudes than for those in mid
and high latitudes. Generally, the GRACE-based TWSA
at low latitudes responds toP with a 2D3-month lag but in
the mid and high latitudes with a 7©9-month lag. For most
basins in South America, Africa, Australia, China, India,
and Australia, the lag is 1D2 months Fig. 4band Fig. S3b).
At the basin scale, the lower lags are found in the Amazon
(2 months), Congo (2 months), Nile (2 months), Yangtze
(1 month), and Ganges (2 months) basins Fig. 5b and
Fig. S4b). The larger lags are observed mostly in the mid
and high-latitude parts of the Northern Hemisphere and
in southern South America, southern Africa, and south-
eastern Australia (Fig. 4b and Fig. S3b). At a basin scale,
these include the Mississippi (9 months), Ob (8 months),
Yenisei (8 months), Lena (8 months), and Murray
(7 months) basins §ig. 5b and Fig. S4b).

In addition, the maximum correlation and the corre-
sponding lag of GLDAS-based TWSA and P are evalu-
ated (Figs. 4c,dand 5c¢,d, Figs. S3c,d and S4c,d). We bnd
that the maximum correlation coefbcients are positive
(Figs. 4cand 5c¢, Figs. S3c and S4c) and that the spatial
pattern of the lags between GLDAS-based TWSA and P
is similar to that of the lags between GRACE-based
TWSA and P (Figs. 4d and 5d and Figs.S3d and S4d).
However, the lag between GLDAS-based TWSA and P
(about 7B8 months at high latitudes) is shorter than
that between GRACE-based TWSA and P (about 9B
10 months at high latitudes).

Furthermore, we calculate the difference of the
lag months between GRACE-based TWSA to P and
GLDAS-based TWSA to P by the grid-based approach
(Fig. 6aand Fig. S5a) and basin-based approactHig. 6b
and Fig. S5b), respectively. We bnd that the spatial
patterns for both methods are similar. The differences of
the lag months are about 1 month for most of the global
areas, which are mainly in the Africa (Congo basin, Nile
basin, Niger basin, etc.), in the northern South America
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FIG. 3. Variation in correlation coefbcients between TWSA and PCRU for the 31 largest studied basins for different
lags (in months).

(Amazon basin and Parana basin, etc.), in India (Ganges in Australia (Murray basin), and in the east of north-
basin, etc.), in the south of the China (Mekong basin, ern Asia (it is also mainly shown for the grid-based ap-
etc.), and in the most of the north of Asia (Ob basin, proach). These possible reasons for the differences of
Yenisei basin, and Lena basin, etc.). In addition, we bnd the lag month between GRACE-based TWSA and
that the differences are larger in most of southern North  GLDAS-based TWSA may be caused by 1) the lack of
America (it is mainly shown for the grid-based approach), GWSA in GLDAS-based TWSA, 2) uncertainties of the
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FIG. 4. Maximum Pearson correlation coefbcients between monthlyPcry, and GRACE-based TWSA (TWSA grace EPcru) and
GLDAS-based TWSA (TWSA cLpas BPcru) using a grid-based approach for (a),(c) the period January 2004BDecember 2013 and (b),(d)
the corresponding lag months. The lag months indicate that precedes TWSA. A correlation coefpcient of 6 0.179 indicates a signibPcance
level of p5 0.05.
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