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ABSTRACT

Nowcasts, or near-real-time (NRT) forecasts, of soil moisture based on the Soil Moisture Active and Passive
(SMAP) mission could provide substantial value for a range of applications including hazards monitoring and
agricultural planning. To provide such a NRT forecast with high Þdelity, we enhanced a time series deep
learning architecture, long short-term memory (LSTM), with a novel data integration (DI) kernel to as-
similate the most recent SMAP observations as soon as they become available. The kernel is adaptive in that it
can accommodate irregular observational schedules. Testing over the CONUS, this NRT forecast product
showcases predictions with unprecedented accuracy when evaluated against subsequent SMAP retrievals. It
showed smaller error than NRT forecasts reported in the literature, especially at longer forecast latency. The
comparative advantage was due to LSTMÕs structural improvements, as well as its ability to utilize more input
variables and more training data. The DI-LSTM was compared to the original LSTM model that runs without
data integration, referred to as the projection model here. We found that the DI procedure removed the
autocorrelated effects of forcing errors and errors due to processes not represented in the inputs, for example,
irrigation and ßoodplain/lake inundation, as well as mismatches due to unseen forcing conditions. The effects
of this purely data-driven DI kernel are discussed for the Þrst time in the geosciences. Furthermore, this work
presents an upper-bound estimate for the random component of the SMAP retrieval error.

1. Introduction

Surface soil moisture plays an important role in the
water, carbon, and energy cycles by directly coupling
atmospheric processes to land surface states. Soil
moisture is critical for many applications, for exam-
ple, irrigation planning , weather forecasts (Koster
2004), monitoring drought ( ShefÞeld and Wood 2008),
ßood potential assessment (Norbiato et al. 2008), and
landslide prediction (Ray et al. 2010; Brocca et al.
2012). Accurate near-real-time (NRT) forecasts of
soil moisture have substantial societal value.

In the past decade, our measurement capability of
surface soil moisture has been signiÞcantly improved
by several satellite missions, including the Advanced
Microwave Scanning Radiometer (AMSR) ( Njoku et al.
2003), the Advanced Scatterometer (ASCAT) ( Wagner
et al. 1999), the Soil Moisture and Ocean Salinity
(SMOS) (Kerr et al. 2010), and the Soil Moisture
Active Passive (SMAP) (Entekhabi et al. 2010), among
others. These spaceborne missions provide a global

measurement of soil moisture with typically ; 2Ð3 days
of revisit time. Due to the inherent characteristics of
L-band microwave remote sensing, this revisit time is
not expected to be reduced. Notwithstanding their great
value, such temporal gaps may limit its use in applica-
tions demanding NRT soil moisture estimates.

Alternatively but not employed in this study, land
surface models (LSMs) and data assimilation (DA)
techniques such as ensemble Kalman Þltering (EnKF)
(Evensen 1994, 2003) could be used to generate NRT
soil moisture forecasts or nowcasts. With the help of an
observational operator, an estimate of observational
uncertainty, and an ensemble of model runs that allows
the estimation of a covariance matrix between simulated
states, EnKF uses the observations to update model
internal states. The assimilation of data is beneÞcial in
that it will rectify model or forcing errors. With the
updated states, the model can make better forecasts.

Several issues remain when we use DA to improve soil
moisture forecasts. Because DA works through the lens
of a dynamical system model (most often a process-
based model), its effects critically depend on the struc-
tures of the LSM and a number of delicate techniquesCorresponding author: Chaopeng Shen, cshen@engr.psu.edu
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and user choices, for example, assimilation frequency,
variables to be updated, and data preprocessing. For ex-
ample, DA requires the observation to be unbiased with
respect to the model. However, for soil moisture, satel-
lite observation and LSM simulations often exhibit quite
different mean values and variability. Often, as a pre-
processing step of DA, satellite soil moisture products
are locally rescaled and shifted to match the model cli-
matology (Reichle 2004). It has been reported that such
bias correction practices tend to exclude signals that
disagree with model hypotheses (Kumar et al. 2015) and
hence remove independent information provided by
observations (Kolassa et al. 2017). In addition, because
choices need to be made regarding which states to in-
clude in the covariance matrix, the DA scheme needs to
be tailored and extensively tested for each different
observational variable and LSM.

Previously, Koster et al. (2017, hereafter K17) intro-
duced a data-driven method that produced NRT soil
moisture forecasts based on SMAP data, with impres-
sive and state-of-the-art results then. In that approach,
soil moisture loss from evapotranspiration and drainage
is deÞned as a function of soil moisture state, and the
shape of the soil moisture loss function can be regarded
as piecewise linear, to be estimated locally at each pixel.
However, it is not clear if such a linear model could fully
describe the process of soil moisture change, and, es-
pecially, provide strong performance for forecasts with a
few days of latency.

Deep learning (DL) is well known for its ability
to learn nonlinear mapping relationships and model
dynamical systems (Shen 2018; LeCun et al. 2015;
Schmidhuber 2015). In our previous work ( Fang et al.
2017), we employed long short-term memory (LSTM)
in a time series DL model to predict surface soil
moisture based on climatic forcings and physiographic
attributes such as soil texture and terrain slope. We
showed that the LSTM model could reproduce SMAP
soil moisture with unprecedented Þdelity compared to
conventional methods (Fang et al. 2017). Evaluated
against in situ data, a SMAP-trained LSTM model
could also add value to the long-term predictions and
capture long-term trends (Fang et al. 2019a). However,
previously our approach did not have the capability to
assimilate NRT observations. Observations were used
merely as the target in the training period, and not
during forward simulations (ÔÔinferenceÕÕ in the machine
learning terminology), that is, we did not exploit the
value of recent observations to improve forecasts.
Although forwarding lagged targets is a common prac-
tice in LSTM applications, for example, see Karpathy
and Fei-Fei (2015), it is nontrivial to inject SMAP ob-
servations due to its irregular temporal gaps, which are

unavoidable for remote sensing, as well as many in situ
measurements. We refer to such a model without data
injection during a forward simulation as the projection
model, in contrast to the forecastmodel that injects the
latest observations during its prediction.

The overall objectives of this paper are 1) to introduce
an adaptive and easy-to-implement kernel for the LSTM
model to achieve NRT forecasts for soil moisture with
high Þdelity to SMAP, amenable to irregular observa-
tions, and 2) to interpret the differences between the
projection and the forecast model and shed light on how
hydrologic processes could impact soil moisture pre-
dictions. With the proposed approach, not only do we
avoid the need for an LSM, we also avoid making ex-
plicit choices about how to use the observations. We call
our procedure data integration (DI). DI achieves the
goal of improving forecast using observations, but,
compared to DA, it does not rely on running a forward
model and then correcting its states. This model could
serve as an operational large-scale soil moisture fore-
casting tool that can beneÞt downstream applications.

2. Methods

As an overview, a LSTM network with a data inte-
gration kernel is trained for NRT forecast of the SMAP
L3 product, using atmospheric forcing time series, geo-
graphical attributes, and SMAP observations with a
certain amount of latency (time lag between observation
and prediction steps) as inputs.

a. Input and target data

For the LSTM model, the training target is the SMAP
L3 passive radiometer product (L3_SM_P) (Entekhabi
et al. 2010). The SMAP mission intends to retrieve top
5-cm soil moisture by passive observations of surface
brightness temperature on the L-band microwave, and the
L3 product combines available swaths on a daily basis. The
spatial resolution is 36km on Equal-Area Scalable Earth
Grid (EASE-Grid). The input data consist of climatic
forcing time series and static physiographic attributes.
Climatic forcings were extracted from North American
Land Data Assimilation System phase 2 (NLDAS-2) ( Xia
et al. 2015), and included precipitation, temperature, ra-
diation, humidity, and wind speed. Physiographic attri-
butes contain soil properties extracted from the World Soil
Information (ISRIC-WISE) database ( Batjes 1995), in-
cluding sand, silt, and clay percentages, bulk density, and
soil water capacity, as well as land cover attributes pro-
vided by SMAP auxiliary data , including mountainous
terrain, ice, surface roughness, urban areas, water bodies,
land cover classes, and vegetation density. All of the inputs
were regridded to EASE-Grid based on area weighting.
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b. LSTM with an adaptive data integration kernel

LSTM is a type of recurrent neural network (RNN),
which makes use of sequential information. The ÔÔvanillaÕÕ
RNN suffered from the ÔÔvanishing gradientÕÕ issueÑthe
gradient values in the network shrink exponentially
through time steps and prevent it from learning long-term
dependencies. To deal with this issue, LSTM introduces a
memory mechanism, where ÔÔmemory statesÕÕ units and
ÔÔgatesÕÕ are trained to decide when and what to remem-
ber or forget. The forward pass of LSTM is written as

(input transfer) x(t) 5 ReLU( Wxxx
(t)
0 1 bxx) , (1)

(input node) g(t) 5 tanh
h
WgxD (x(t) )

1 WghD (h(t2 1)) 1 bg

i
, (2)

(input gate)i(t) 5 s
�
WixD (x(t) ) 1 WihD (h(t2 1)) 1 bi

�
,

(3)

(forget gate)f (t) 5 s
h
WfxD (x(t)) 1 WfhD (h(t2 1)) 1 bf

i
,

(4)

(output gate)o(t) 5 s
�
WoxD (x(t) )

1 WohD (h(t2 1)) 1 bo

�
, (5)

(cell state)s(t) 5 D (g(t) ) 1 i(t) 1 s(t2 1) 1 f (t) , (6)

(hidden gate)h(t) 5 tanh(s(t) ) 1 o(t) , and (7)

(output layer) y(t) 5 Whyh
(t) 1 by , (8)

where the superscript refers to the time step;x0 is the
vector of raw inputs; z is observation, andy is network
output; h is the hidden state;sis memory cells, which are
designed to hold long-term memory; ReLU is the rec-
tiÞed linear unit; s is the activation function; D is the
dropout operator ( Zaremba et al. 2015); 1 refers to the
point-wise multiplication; W is network weight; and b
is bias.

In the original design of LSTM, at no time were recent
observations employed in the predictions. Here we
would like to append recent observations as a data-
injection term to the other inputs described above.
However, due to the prevalence of missing SMAP
data (about 2/3 time steps for SMAP L3 data), a
special, ÔÔclosed-loopÕÕ procedure was needed to pro-
vide the data-injection term when no observations
were available (Fig. 1). In this implementation, at
time step t 2 1, the network would produce a pre-
diction for time step t, which will, at the next time step,
serve as the default data-injection term, unless actual
observations exist:

(observation integration)xt
0

5

(
[X (t) , z(t2 1)], if z(t2 1) exist

[X (t) , y(t2 1)], otherwise
, (9)

where X is the vector of input data including climatic
forcings and physiographic attributes, and z(t2 1) and
y(t2 1) are observed and predicted soil moisture from the
last time step, respectively.

This closed-loop is different from directly supplying
lagged observations as an input to LSTM. A major dif-
ference is that if we directly supply lagged observations,

FIG . 1. A ßow diagram of the data integration kernel. The solid lines stand for information
passing forward, and the dashed lines stand for backward propagation. The LSTM cells have
the same weights for all time steps. ÔÔGeo-attributesÕÕ stands for geographically distributed
physiographic attributes.
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all training data can be prepared before training starts,
yet this cannot be done for the closed-loop one. For
the latter, the network essentially provides itself with
training data for the data-injection term when no new
information is available. This happens at runtime (both
training and testing) so that each absent observation
may inßuence the training data of the next time step and
so on. To enable it, a time loop is implemented in the
ÔÔforwardÕÕ function, and a condition of whether obser-
vation exists or not was tested in the loop. The closed-
loop kernel was out of necessity: without such a kernel,
the LSTM algorithm will crash when missing data or
ÔÔNaNÕÕ are fed to it as inputs. Interpolation is not suit-
able because values from future time steps are not
available for interpolation for forecast tasks. Hence we
need a forward extrapolator, and the LSTM algorithm
itself is the most suitable one. This setup means that,
during the Þrst few epochs of the training, the network
would produce poor predictions that would lead to in-
correct gap Þlling data. However, as the prediction
network improves during training, it also improves its
gap Þlling capability, and the training would converge.

As mentioned earlier, here we refer to the model with
the data integration kernel as the ÔÔforecastmodelÕÕ and
the one without it as the ÔÔprojection model.ÕÕ The data
integration kernel is ÔÔadaptiveÕÕ as it can accommodate
irregular observational schedules. It is also nearÐreal
time in the sense that all observations, as soon as they
become available, are subsequently employed in the
prediction of future time steps. Typically, SMAP data
are disseminated with 1-day latency. This model was
implemented using PyTorch (Paszke et al. 2017). As in
Fang et al. (2017), the input and hidden size of LSTM
were set to 256, and dropout rate is 0.5. The network
was optimized for 500 epochs using the AdaDelta al-
gorithm ( Zeiler 2012), which adaptively updates the
learning rate.

c. Model training and evaluation

The training period was from 1 April 2015 to 31 March
2016, and the testing period was from 1 April 2016 to 31
March 2018. Considering computational efÞciency, we
collected one pixel from every 2 3 2 pixels to form
the training data, resulting in a 1/4 coverage of the
continental United States (CONUS). Four statistical
metrics, including the time-averaged difference (bias),
root-mean-square error (RMSE), RMSE calculated after
removing bias (ubRMSE), and Pearson correlation (R)
were calculated between model-predicted soil moisture
and SMAP.

For the forecast model, we reported the error metrics
for different numbers of forecast days. For example, for
any forecast time step tf, we found its most recently

available SMAP observation in the past, at to, and re-
ferred to it as a tf 2 to day forecast. As the SMAP sat-
ellite returns every ; 2Ð3 days and would not report soil
moisture when the ground is frozen, forecasts within
3 days cover 84.5% of the time window on the CONUS
(41.0%, 31.2%, and 12.1% for 1-, 2-, and 3-day forecasts,
respectively). However, we can only calculate error
metrics when SMAP observations are available, which is
41.2% of the total time. Within those times, the propor-
tions of 1-, 2-, and 3-day forecasts are 23.9%, 47.0%, and
25.1%, respectively. In addition, to illustrate the beneÞt
of data integration, we calculated the difference in RMSE
and R between the forecast and projection model.

We trained a separate model to compare with the
model in K17, which was trained with 5 months of
data (1 May 2015Ð30 September 2015) and only pre-
cipitation as the input. T his model was tested on
1 May 2016Ð30 September 2016. We would like to
provide different levels of comparisons to understand
the respective beneÞts that were offered by (i) the
structural advantage of LSTM over the linear func-
tions, (ii) more training data, and (iii) more climate
forcing variables as inputs. To this end, we retrained
the DI-LSTM models using identical training periods
as K17, and, separately, with precipitation only and
with all forcing data.

3. Results and discussion

a. Overall performance of forecast model

Overall, the forecast model was capable of predicting
the SMAP L3 soil moisture product with unprecedented
accuracy. We only present the error metrics of 1-, 2-, and
3-day forecasts as they Þll most of the temporal gaps of
the SMAP product. As Fig. 2ashows, the 1-day forecast
product is highly consistent with the SMAP L3 product,
producing a median RMSE of 0.022 and a median
Pearson correlation of 0.92. For 2- and 3-day forecasts,
the performance decayed slightly to a median RMSE of
0.024 and a median correlation of 0.90, but there were no
obvious differences between the 2- and 3-day forecasts.
The forecast models also produced autocorrelations that
were much closer to SMAP than those from a land
surface model (appendix A and Fig. A1). Comparing
this version of the model with the results from K17, our
approach reduced the error by roughly 20%. In general,
there are many pixels with RMSE values less than 0.01
and few pixels above 0.04 (Fig. 3a). In comparison, the
patch under Lake Michigan is 0.03 in our work and 0.06
in K17 (Fig. B1).

If trained on the same period as K17, with only pre-
cipitation as the forcing, DI-LSTM models still showed
advantages overK17Õs scheme, and the differences were
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more noticeable for the 2- and 3-day forecasts than the
1-day forecast. Evaluated using the mask fromK17, the
mean RMSE of DI-LSTM increased from 0.022 (with
full forcings and 1-yr training data) to 0.025 for a 1-day
forecast, which is roughly a 7% improvement from K17
(with a RMSE of 0.027). For 2- and 3-day forecasts,
DI-LSTM with precipitation only had an average RMSE
of 0.027 and 0.028, which are 13% and 18% smaller than
K17 (0.032 and 0.034). Detailed pixel-level comparisons
with K17 are presented inappendix B, Figs. B1and B2.
Comparing the DI-LSTM models trained with different
forcings and with different lengths of training data, we
learned that the advantages of the full DI-LSTM
model, especially for 2- and 3-day forecasts, were
contributed by all of the following: (i) the structural
advantage of LSTM to model nonlinear processes and
evolve it in time with memory, (ii) the ability to easily
integrate more forcing Þelds other than precipitation,
and (iii) the ability to improve with longer training data
(appendix B).

Despite the overall high Þdelity of forecasting prod-
uct, there are regions of notably larger error, consis-
tent with the expected SMAP error patterns ( Fig. 3b).
The eastern CONUS generally has larger errors com-
pared to the west, which is due to larger annual pre-
cipitation and consequently larger moisture variability.
The error map highlights the northeast CONUS along
the Appalachian range, which resulted from the lower
quality of SMAP data there due to the high vegeta-
tion water content ( OÕNeill et al. 2015), and higher
fraction of time with frozen soil. We also see sporadic
low-R pixels along the southeast coast. Some other

notable regions of larger error include central north
CONUS (Minnesota and southern Wisconsin where
tens of thousands of lakes exist), and to the west of
the lower Mississippi (eastern side of Missouri and
Arkansas, where we Þnd agricultural lands occupying
wide ßoodplains).

The remaining RMSE with the forecast model con-
tains three components: forcing error, model structural
error, and random SMAP noise. The model structural
error refers to difÞcult-to-pr edict hydrologic processes
such as lakes, irrigation, and ßoodplain inundation.
Because the DI procedure prevented autocorrelated
effects of the Þrst two components from accumulating,
the remaining RMSE should be dominated by the noise
component. As powerful as LSTM is, it cannot predict
random noise during the test period. Hence the map
in Fig. 3 constitutes an upper bound estimate of the
random and nonsystematic component of the SMAP
dataÕs error.

The magnitude of forecast error is significantly smaller
than earlier evaluation of SMAP products against
in situ data, even the unbiased RMSE (Colliander
et al. 2017). This suggests a large portion (; 30%) of
the difference between SMAP and in situ data is due
to systematic discrepancies. For example, a well-
known discrepancy is the mismatch in sensing depths
between SMAP and in situ data (Rondinelli et al.
2015). There may be other autocorrelated retrieval
errors that are not as well known. We should not in-
terpret the unbiased error against the in situ data as
entirely random instrument noise. If it is possible to
remedy those systematic errors using either enhanced

FIG . 2. Error metrics of soil moisture prediction from the projection model, and 1-, 2-, and 3-day forecast models.
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retrieving algorithms, the difference could be much
smaller.

b. Improvement over the projection model

Comparing the projection model (without DI) to the
forecast model (with DI), the data integration process
rectiÞed forcing errors and clearly improved the per-
formance (Fig. 2). From the projection to the forecast
model (merged forecast of all leading days), median
RMSE decreased from 0.030 to 0.022, and medianR
increased from 0.85 to 0.9. More notably, the me-
dian magnitude of bias reduced from 0.009 to 0.003.
Compared to data assimilation using LSMs, the LSTM
has a very generic structure for modeling dynamical
systems. The proposed DI kernel led to improvement on
almost all pixels (. 96%) over the CONUS. However,
its spatial gradient (Fig. 4) suggests that different rea-
sons are behind this improvement.

The most obvious effect of DI is to remove error au-
tocorrelation, that is, it prevents errors from accumu-
lating or persisting. For example, for several selected

pixels with relatively large differences between the
projection and forecast models, the time series plots
(Fig. 5) clearly show that most of the projection model
errors were autocorrelated, that is, the difference be-
tween the projection and SMAP persisted for many days
after its initial occurrence. With pixel A, the difference
starting in April 2017 did not vanish until the beginning
of July. For pixel B, a difference that occurred in
October 2016 lasted until January 2017. For pixel F, the
projection model overestimated soil moisture starting at
the beginning of 2017, and a very similar difference was
carried through April. In contrast, DI-LSTM seldom
deviated more than one consecutive day from SMAP.

The improvement due to DI ( Fig. 4) was substantial
over many agricultural regions over the CONUS, in-
cluding the southern parts of Illinois and the boundary
of Iowa and Missouri (an example is pixel C in Fig. 5),
North Dakota (pixel B in Fig. 5), the Central Valley,
and the Mississippi Embayment (an example is pixel E
in Fig. 5). The Central Valley region in California
saw . 30% reduction in RMSE, although the inßuence

FIG . 3. Performance of soil moisture forecasts evaluated against SMAP L3 product. Shown are (a),(c),(e) the
RMSE for 1-, 2-, and 3-day forecasts, respectively, and (b),(d),(f)R.

404 J O U R N A L O F H Y D R O M E T E O R O L O G Y V OLUME 21

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



on R is not obvious there. The northern half of
North Dakota is covered by spring wheat Þelds. The
Mississippi Embayment regionhas extensive cropping
of rice, soybean, and cotton. These patterns suggest
that irrigation may be an important factor causing
projection model error, which agrees with previous
studies showing that SMAP could detect irrigation
(Kumar et al. 2015; Lawston et al. 2017). As irrigation
is absent from the input, the projection model could
not have anticipated the added water input and hence
underestimated soil moisture, as shown with pixel B in
Fig. 5 in 2017. However, the forecast model greatly
reduced that error after assimilating recent SMAP
observations. In fact, as Fig. 6 shows, for different
types of crops, the improvement from data integra-
tion had distinct climatology that generally agrees
with the cropÕs growing schedule: the improvement is
the most signiÞcant over summer, spring, and winter
for corn, spring wheat, and winter wheat, respectively,
while the improvement for corn is the weakest. In
contrast to Felfelani et al.Õs (2018)work, which as-
similated SMAP into the Community Land Model
via a 1D EnKF to constrain irrigation, the LSTM did
not have an irrigation module and required the DI to
reduce error.

One can compare the green-colored regions sur-
rounding pixel C in Fig. 5b and the corn fraction
map in Fig. 6b to see that the DI beneÞt was small for
corn-dominated regions. This pattern agrees with
the general understanding that a large fraction of
the corn Þelds in the central plains are rainfed.
Thus, the projection model already knew the water
input (rainfall) and performed quite well in this
region (Fig. 3). It is also worth mentioning that the
Dakotas were not generally regarded as heavily irri-
gated regions (Kumar et al. 2015). However, the
spring wheat has quite a different seasonal cycle
in water use. There were also some discrepancies in
the amount of irrigation in the Dakotas between

survey-based and MODIS-derived estimates (Ozdogan
and Gutman 2008).

In addition to rice and other crops, the Mississippi
Embayment (pixel E in Fig. 5) also contains extensive
woody wetlands, large ßoodplains, and many river
conßuences into the Mississippi, all contributing to
large open water surface areas. The surface areas, al-
though not large enough to occupy SMAP pixels, could
have impacted SMAP signals. Over adjacent Þelds
classiÞed as rice, signiÞcant DI beneÞts were obvious
not only in May and June (due to rice irrigation), but
more so in November and December (Fig. 6a). The DI
beneÞts in November and December were likely at-
tributable to the changes in ßoodplain inundation. As
shown in the example of pixel E in Fig. 5, the projection
model tended to overestimate soil moisture during this
period. November and December are months where
the Mississippi River stage is typically low but rising.
Our interpretation is that, during low water periods,
the inundation extent was lower than average. As the
river stage was unknown to LSTM, the projection
model could not resolve the reason for this decline
and thus overestimated soil moisture. On the ßip side,
the projection model tended to underestimate during
JanuaryÐApril of the year, which is the high-water
stage. After river stage stabilized and started to change
more slowly, the DI beneÞts became smaller. Similarly,
relatively large DI beneÞts can be found in Wisconsin
and Minnesota (two states to the west of Lake Michigan),
where there are ÔÔthousands of lakes.ÕÕ Presumably, the
projection model had difÞculty capturing riverine and
lake inundation processes, while DI prevented errors
from accumulating.

Data integration could also Þx issues due to forcing
conditions unseen in the training period. This issue is
inevitable when the training data are still being ac-
cumulated. For example, for a pixel in northern Texas,
if the projection model was trained on 2017, we notice
underestimation of soil moisture during 2015 when

FIG . 4. Improvements from projection to forecast models. (a) RMSE and (b) R improvements were cal-
culated as {[RMSE(projection) 2 RMSE(forecast)]/RMSE(projection)} 3 100% and {[R(forecast) 2
R(projection)]/ R(projection)} 3 100%.
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extreme precipitation occurred (Fig. 7). Data inte-
gration can effectively correct this issue. It is worth
mentioning that this issue could be mitigated by
training on a comprehensivedataset or using weight-
ing techniques in the loss function to emphasize the
extreme events, which could be a future pursuit.

In summary, the projection model cannot predict
processes that are not described by the inputs, for
example, irrigation and ri verine/lake inundation. Also,
the performance of the projection model would de-
crease in unseen events. Data integration is most
effective in removing the autocorrelated effects of
forcing errors. With our DI framework, observa-
tion data can signiÞcantly reduce the model bias for

such situations and elevate the accuracy to an un-
precedented level.

c. Further discussion

While its Þrst application in hydrology appears to be
as recent as 2017 (Fang et al. 2017), LSTM has already
been utilized in a number of prediction tasks, for ex-
ample, streamßow (Kratzert et al. 2018), lake water
temperature (Jia et al. 2019), pan evaporation (Majhi
et al. 2020), water table depth (J. Zhang et al. 2018), and
sewer outßow (D. Zhang et al. 2018), proving its versa-
tility and general applicability. However, forecast ap-
plications have been more difÞcult due to often irregular
observations. Here we show that, with a small amount of

FIG . 5. (a) Soil moisture time series for pixels that have large differences between the pro-
jection and forecast models. (b) Locations of the chosen pixels.
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modiÞcation [Eq. (9)], DL can be adaptive and can ap-
proach forecast problems and deliver superb per-
formance. The network itself served as a forward
extrapolator that provided training for itself when no
observation was available, and it converged as the
training proceeded. The adaptive nature of the pro-
posed kernel gives us great convenience in dealing

with intermittent observations. If the projection model
mimics a hydrologic model, then the forecast model
approximates both the hydrologic process and the
data injection procedure, which is a completely dif-
ferent problem than projection alone. Many applica-
tions could beneÞt from this DI framework. As the
computational cost of a forward run of DL model is

FIG . 7. Soil moisture time series from the projection and forecast models for a pixel in northern Texas. Here we
trained the model from 1 Apr 2017 to 31 Mar 2018, and tested it from 1 Apr 2015 to 31 Mar 2017. (top) The soil
moisture time series from the projection model, the forecast model, and SMAP. (bottom) Precipitation.

FIG . 6. (a) Box plot of DI beneÞts [RMSE(projection) 2 RMSE(forecast)] of different crops for each month.
(b)Ð(e) Area fractions of corn, spring wheat, winter wheat, and rice, respectively.
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trivial, our model will bring the latency to the same
level as meteorology datasets. It can also Þll the gaps
due to satellite revisit tim e with a small performance
penalty.

Could the projection model have done a better job at
describing the missing processes? We believe it could, if
it was given better information and improved conÞgu-
ration of network structure. For example, if we further
provide the time series of the Mississippi River stage
and some information that characterizes the stageÐ
inundation relationship, it could allow the network to
better capture the impacts of riverine inundation on
SMAP readings. For another example, if more infor-
mation is provided regarding the crops and irriga-
tion schedule, the corresponding errors would reduce.
However, DI would still generate better results in these
scenarios. Another point to further examine is the im-
pacts of training regional models and a global model.
K17 trained pixel-by-pixel models whereas our model
is trained simultaneously with training data from all
pixels, which potentially im posed stronger constraints
and suppressed overÞtting. We hypothesize that such
training procedure allows the LSTM to extract com-
monality across regions and generalize the true soil
moisture dynamics as modulated by different land-
scapes. This behavior could be why the present model
showed smaller error metrics.

Ensemble modelÐbased data assimilation and DL-based
data integration deliver the forecast capability with very
different mechanisms. With DA, one needs to make
many decisions regarding the process-based model, a
suitable DA and bias correction scheme, the observa-
tion operator, variables to include in the covariance
matrix, and so on. With the proposed DI scheme, there is
no need for a separate forward model and it does not
require a speciÞc assimilation scheme. One focuses on
posing the problem, that is, which inputs are relevant to
the outputs and providing the dataset, and allowing the
neural network to discover the mathematical structures
that connect them. Such automation is the soul of DL
and one of the main reasons behind its recent rise in
popularity, along with accurate predictions. This sim-
plicity is bound to make socially relevant forecasts
more accessible to a wider variety of users. In contrast,
the advantage of DA is that the observations can be
used to update other unobserved physical variables,
as discussed previously. Currently, our DI scheme
cannot perform this important task. It remains difÞcult
to place physical signiÞcance on most the network-
internal states.

LSTM contains hidden states and cell states, calledh
and sin Eq. (1), respectively, which serve as the internal
memory and states of the model. Along with uncertainty

estimates (Fang et al. 2019b; Kendall and Gal 2017) and
knowledge of observation variance, it is certainly pos-
sible to update these states using a more explicit ap-
proach that is similar in spirit to EnKF. It should also be
possible to introduce physics in the deep network (Shen
et al. 2018; Karpatne et al. 2017; Zhu et al. 2019). Such an
effort is out of the scope of this paper. Here we elected
to employ a simple scheme where LSTM decides how to
best use the recent observations. We are quite certain
that LSTM utilizes the assimilated observations to up-
date both h and s, which, again, cannot be normally be
interpreted as physical variables. It would be difÞcult to
avoid a performance penalty when we add concurrent
objectives or manual changes to the network structure.
Nevertheless, we think different approaches should be
attempted and compared in the future so that the com-
munity can learn their respective strengths.

Compared to the models inK17, DL can easily utilize
forcing variables in the inputs due to its automation.
Moreover, we showed that the performance of LSTM
increased with additional training data (Fig. B2). DL is
designed to thrive in a big data environment. Previous
work in artiÞcial intelligence found it is difÞcult to assess
the potential limit in performance. For example, for
image recognition tasks,Sun et al. (2017)found that a
vision networkÕs performance continued to improve
even when the number of training images was increased
to 300 million. Simpler functions may cease to improve
(or become ÔÔknowledge-saturatedÕÕ) much earlier, in
our case perhaps after being trained with a few months
of data.

In this work we mainly focused on the accuracy of
hydrologic forecasts and neglected the error due to
weather forecasts. The Þrst reason is that SMAP data
are provided with 1-day latency and thus accurate
weather forcings could be available. The other reason is
that the errors due to weather forecasts have already
been shown byK17.

4. Conclusions

In this paper we described a time series DL model
with an adaptive data integration kernel to produce
nowcasts and near-real-time forecasts for SMAP-based
soil moisture. Adding to the war chest of hydrologic DL,
this is the Þrst time, to the best of our knowledge, a
stepwise data integration kernel for DL has been reported
in the hydrologic literature. The results showed unprece-
dented Þdelity to the SMAP product, higher than SMAP
design accuracy and those reported in the literature. The
proposed DI kernel can be adopted by other operational
forecast missions. Compared to data assimilation tech-
niques, this approach avoids making choices such as bias
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