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ABSTRACT

Using a two-year dataset (2016Ð17) from 17 one-minute rain gauges located in the moist forest region of Ghana,
the performance of Integrated Multis atellite Retrievals for GPM, version 6b (IMERG), is evaluated based on a
subdaily time scale, down to the level of the underlying passive microwave (PMW) and infrared (IR) sources.
Additionally, the spaceborne cloud product Cloud Property D ataset Using SEVIRI, editio n 2 (CLAAS-2), available
every 15 min, is used to link IMERG rainfall to cloud-top pr operties. Several important issues are identiÞed: 1)
IMERGÕs proneness to low-intensity false alarms, accounting for more than a Þfth of total rainfall; 2) IMERGÕs
overestimation of the rainfall amount from frequently occu rring weak convective events, while that of relatively rare
but strong mesoscale convective systems is underestimated, resulting in an error compensation; and 3) a decrease of
skill during the little dry season in July and August, known to feature enhanced low-level cloudiness and warm rain.
These Þndings are related to 1) ageneral oversensitivity for clouds with low ice and liquid water path and a particular
oversensitivity for low cloud optical thickness, a problem which is slightly reduced for direct PMW overpasses; 2) a
pronounced negative bias for high rain intensities, strongest when IR data are included; and 3) a large fraction
of missed events linked with rainfall out of warm clouds, which are inherently misinterpreted by IMERG and
its sources. This paper emphasizes the potential of validating spaceborne rainfall products with high-resolution
rain gauges on a subdaily time scale, particularly for the understudied West African region.

1. Introduction

Human activities and socioeconomic stability in de-
veloping countries within the tropics are strongly inßu-
enced by the availability and variability of precipitation
(UN 2009). Droughts and torrential rainfall belong to
the risks on the extreme sides of the rainfall spectrum
and have distressed West Africa in the past few decades

(Nicholson 1981; Lamb and Peppler 1992; Benson and
Clay 1998; LÕĤote et al. 2002; Paeth et al. 2011; Panthou
et al. 2014; Sanogo et al. 2015). Historically, rain gauges
have been the most reliable source for the investigation
of West African rainfall characteristics and trends (e.g.,
Nicholson et al. 2012). In the current age of remote
sensing, spaceborne rainfall information is provided al-
most in real time and has mitigated the dependency
on often sparsely available rain gauge data in Africa,
where maintenance and accessibility have frequently
become subject to the lack of political will, interest, or
Þnancial means. Thus, satellite-based precipitation es-
timates play a key role in the ongoing development of
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hydrological and numerical weather models as well as
water resource management, which can help preventing
rainfall-related socioeconomic losses (Thiemig et al. 2012).

A recent result of continuous technical advance-
ment is the satellite-based, globally gridded rain-
fall product Integrated Mult i-Satellite Retrievals for
Global Precipitation Measurement (GPM) (IMERG; Hou
et al. 2014; Huffman et al. 2015), which went operational in
2014 and builds upon the legacy of the Tropical Rainfall
Measuring Mission (TRMM) Mult isatellite Precipitation
Analysis (TMPA; e.g., Kummerow et al. 1998; Huffman
et al. 2007). The fundamental idea behind IMERG is a
seamless blending of passive microwave (PMW) and in-
frared (IR) information based on a large ensemble of
satellite imagers and sounders (Huffman et al. 2019a). IR
retrieval methods beneÞt from a high data sampling rate of
radiometers aboard geostationary satellites, but correlate
rainfall through an indirect relationship with cloud-top
temperature (e.g.,Arkin et al. 1994). PMW techniques, in
turn, suffer from a lower sampling rate from satellites on
low-Earth orbits, but are physically more direct and rely
on the interaction between upwelling MW signals and
precipitation-sized hydrometeors in clouds (Petty 1995;
Kidd 2001; Kidd and Levizzani 2011). The resulting high
spatiotemporal resolution (0.18 3 0.18 and 30 min) on a
global scale makes IMERG interesting for a wide range of
hydrological applications (e.g.,Gaona et al. 2016; Zubieta
et al. 2017; Mazzoglio et al. 2019) and the investigation of
convective phenomena, particularly in the tropics (e.g.
Gaona et al. 2018; Maranan et al. 2019).

Passive rainfall retrieval techniques are inherently
prone to errors and biases (Islam et al. 2017), which are
often region speciÞc (McCollum et al. 2000; Petkovic«
and Kummerow 2017). The signiÞcance of IMERG as
well as TMPA has led to a large number of validation
efforts against ground-based rainfall observations on
several time scales (e.g.,Wolff et al. 2005; Nair et al.
2009; Wang and Wolff 2010; Karaseva et al. 2012; Chen
et al. 2013; Mantas et al. 2015; Tan et al. 2016; Gaona
et al. 2016; Xu et al. 2017), and in particular for the data-
sparse African continent (e.g., Adeyewa and Nakamura
2003; Nicholson et al. 2003; Dinku et al. 2007; Roca et al.
2010; Jobard et al. 2011; Thiemig et al. 2012; Gosset et al.
2013; Pfeifroth et al. 2016; Dezfuli et al. 2017b,a; Monsieurs
et al. 2018;Camberlin et al. 2019). A general conclusion that
can be drawn from these studies is that IMERG and TMPA
belong to the best rainfall products on monthly down to
daily time scales. Much of the good performance has been
credited to the monthly calibration against rain gauges,
which has successfully led to an overall reduction of bias.

One ongoing challenge, however, is the question how
spaceborne rainfall products perform on a subdaily time
scale. DeÞciencies in the observations of single rainfall

events eventually lead to erroneous rainfall amounts on
larger time scales unless gauge calibration mitigates this
issue. Thus, understanding the sources of errors on the
shortest possible time scale is a key element in improv-
ing the overall product (Huffman et al. 2007). In the case
of the densely populated West Africa, there is a general
shortage of spatiotemporally high-resolution validation
sources for rainfall, such as rain gauges and radars, as
well as sources for environmental conditions, such as
in situ weather stations and radiosondes (Fink et al.
2011), and only few studies analyzed the behavior of
IMERG/TMPA for this region on a subdaily time scale.
Dezfuli et al. (2017b) investigated the performance of
IMERG compared to TMPA with high-resolution rain
gauges from the Trans-African Hydrometeorological
Observatory (TAHMO) project ( van de Giesen et al.
2014) based on different rainfall types in West Africa.
Owing to the higher spatiotemporal resolution, they
concluded that IMERG has improved from TMPA in
capturing the distributions of rainfall rates, especially
during intense rainfall events, which is a known weak-
ness of TMPA (Monsieurs et al. 2018). Furthermore,
over some well-gauged West African sites,Pfeifroth
et al. (2016) recently highlighted a delay in the diurnal
rainfall cycle within multisatellite-based products such
as TMPA, which largely originate from the underlying
IR data sources. In this context of source-speciÞc un-
certainties, Tompkins and Adebiyi (2012) found that
TMPA reacts to deep cloud structures in the coastal area
with more enhanced rainfall than products based purely
on PMW data, with the latter being more sensitive to
high ice content in SoudanoÐSahelian cloud systems
than TMPA. Consequently, the works of Tan et al.
(2016) and Gebregiorgis et al. (2017) recommend an
individual evaluation of the underlying PMW and IR
sources, ideally for different seasons, in order to detect
error cancellation effects. Analyzed for North America,
IR tends to produce higher magnitudes in misses and
false alarms than PMW, the latter of which, however,
exhibits varying error contributions between the sum-
mer and winter season.

The aim of this work is to build upon aforementioned
validation strategies to identify and deduce sources
of errors in IMERG at its half-hour time scale for
the understudied West African forest zone. In the
framework of the DynamicsÐAerosolÐChemistryÐCloud
Interactions in West Africa (DACCIWA) project
(Knippertz et al. 2015, 2017; Flamant et al. 2018), a
dense network of 17 one-minute rain gauges was es-
tablished in southern Ghana in 2015, which will serve
as the validation dataset. The region is a suitable test-
bed for the validation of IMERG because of the di-
versity of the rainy and dry seasons, and the occurrence
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of different rainfall types throughout the year ( Hamilton
et al. 1945; Eldridge 1957; Kamara 1986; Fink et al. 2006;
Janiga and Thorncroft 2014; Maranan et al. 2018). In a
further step, IMERG rainfall is linked to various mi-
crophysical cloud-top properties. This unique approach,
that is, a subdaily, seasonal-, rainfall-type-, IMERG-
source-, and cloud-property-based evaluation, can pro-
vide valuable insights into the behavior, strengths, and
deÞciencies of IMERG.

This study is structured as follows: After a description
of the datasets and evaluation methods insections 2and
3, general characteristics of rainfall in the rain gauges
and IMERG rainfall are given in section 4 before the
performance of IMERG is evaluated in section 5. The
latter is further decomposed from the perspective of
different IMERG sources ( section 6). Finally, the link to
cloud properties is presented section in7, before the
manuscript is concluded with a discussion and summary
in sections 8and 9, respectively.

2. Data

a. IMERG V6B

IMERG V6B, Þnal version (IMERG hereafter, unless
noted otherwise; Huffman et al. 2019b), is a Level 3 glob-
ally gridded precipitation product that combines data from
several sources within the GPM satellite constellation.

It includes the GPM Core Observatory satellite with a
dual-frequency precipitation radar and the 13-channel
PMW imager GMI, multiple partner PMW instruments,
and IR information from geostationary satellites.

Rainfall estimates in IMERG are processed on a
0.18grid (blue grid in Fig. 1) every 30 min. The IMERG
algorithm builds on the satellite merging techniques
applied in its predecessor TMPA (Huffman et al. 2007,
2010). After an initial calibration of all partner PMW
sensors toward rainfall estimates of the GPM/TRMM
Combined Radar-Radiometer (CORRA), they are
merged from their native spatial resolution onto the
Level 3 IMERG grid at every half-hour time step. In
regions without a direct PMW overpass, PMW obser-
vations are spatiotemporally ÔÔmorphedÕÕ forward and
backward using water vapor motion vectors from
the hourly available reanalysis product Modern-Era
Retrospective Analysis for Research and Applications,
version 2 (MERRA-2; Gelaro et al. 2017), similar
to the principle of the Kalman Þlter (KF)-based
Climate Prediction Center (CPC) morphing tech-
nique (CMORPH-KF; Joyce and Xie 2011). Beyond a
ÔÔforecastÕÕ time of6 30 min from the closest PMW
observation, estimations from PMW-calibrated IR
information based on the principles of PERSIANN-
CCS (Hong et al. 2004) are additionally included
(Huffman et al. 2019c). In a last step, monthly IMERG

FIG . 1. Distribution of the DACCIWA RG stations in the Ashanti region of Ghana (see map
inset in the upper-left corner). Each red number represents an RG with names given in the top-
right inset. The blue grid illustrates the IMERG pixels. RG-associated IMERG pixels that are
used for the point-to-pixel comparison are denoted by the light-red shading. The gray shaded
background shows the topography of the study region as provided by the Global Land One-km
Base Elevation Project (GLOBE; Hastings et al. 1999).
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estimates are calibrated toward rain gauge data from
the Global Precipitation Cl imatology Centre (GPCC;
Schneider et al. 2008).

In similar fashion to Tan et al. (2016), three categories
of IMERG observations are considered: 1) direct PMW
overpasses (PMW-direct hereafter), 2) pure PMW morph-
ing (MORPH-only), and 3) a mixture of morphed PMW
and IR (MORPH 1 IR). As seen later, a fourth category,
IR-only, is not evaluated due to its low sample size. Within
the IMERG output variable ÔÔprecipitationCalÕÕ (containing
the gauge-calibrated precipitation Þeld), these cate-
gories can be discriminated using the auxiliary variables
ÔÔHQprecipitationÕÕ and ÔÔIRkalmanFilterWeight.ÕÕ While
the former is used to identify ÔÔPMW directÕÕ areas, the
latter refers to the weight of IR observations wherever
ÔÔPMW-directÕÕ is absent. It ranges from 0% (MORPH-
only) to 100% (IR-only).

b. Rain gauge dataset

In the framework of the DACCIWA project, a total of 17
optical rain gauges (RGs hereafter) were installed within a
radius of approximately 80km around the city of Kumasi in
the Ghanaian forest zone (Fig. 1) and went fully operational
in December 2015. Ten RG sites coincide with rain gauge
stations operated by the Ghana Meteorological Agency
(GMet). The rest were placed on secured school yards.

The RG instrumentation operates on the principle
that rainwater is funneled through a rain collector,
forming drops equal to 0.01 mm of rainfall. These are
counted by an IR sensor and stored in a logger every
minute. Comparable RG networks in West Africa with
such a high precision only exists in the framework of
African Monsoon Multidisciplinary AnalysisÐCoupling
the Tropical Atmosphere and the Hydrological Cycle
(AMMA-CATCH; Lebel et al. 2009) and the TAHMO
project (van de Giesen et al. 2014). The upper bound of
measurable rainfall rate is approximately 300 mm h2 1,
which would cause a water stream rather than the for-
mation of drops.

For the present study, quality-controlled RG data
from 2016 and 2017 are used for validation. The quality
control was performed on daily rainfall and followed
two steps. First, a manual removal of obviously erro-
neous periods, such as unrealistic values or long periods
of obvious failed recordings, was performed by com-
parison with neighboring RGs. Second, daily RG rain-
fall was compared with collocated GMet data. While no
speciÞc threshold value was applied, days that exhibit a
strong deviation to GMET were removed. Although
valuable rainfall data exist for large parts of the two years,
intermittent power outages and other issues due to
electronics and environmental inßuences caused epi-
sodes of missing data (Fig. S1 in the online supplemental

material). Larger data gaps exist from September 2016
to May 2017, when data were temporarily obtained from
only seven RGs. Therefore, RGs with longer data rec-
ords may have a stronger inßuence in the skill measures
(Monsieurs et al. 2018). Since no rainfall data from these
RGs were ingested into the Global Telecommunication
System, they were not part of the monthly IMERG
gauge calibration and thus serve as an independent
validation source. The raw rainfall data used in the
present study are available underhttps://doi.org/10.6096/
baobab-dacciwa.1772.

c. CLAAS-2

To investigate cloud properties around rainy episodes,
RG and IMERG rainfall is linked to cloud-top in-
formation from the Cloud Property Dataset Using
SEVIRI, edition 2 (CLAAS-2) dataset ( Stengel et al.
2014; Benas et al. 2017). CLAAS-2 is compiled by the
Satellite Application Facility on Climate Monitoring
(CM SAF), which processes data from the multichan-
nel Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on board the Meteosat satellite with a spa-
tiotemporal resolution of 3 km (at nadir) and 15 min,
respectively (Aminou 2002). We make particular use of
three quantities: 1) the cloud optical thickness (COT) in
the visible spectrum, increasing with stronger scattering
by water droplets and ice crystals (Glickman 2000); 2) the
IR cloud-top brightness temperature (CTT); and 3) the
cloud drop effective radius (Reff), deÞned as the weighted
mean of the droplet size distribution (Hansen and Travis
1974). All values are taken at the nearest grid points and
closest time stamps of the rainfall events.

The retrieval of the cloud properties follows the
scheme described inRoebeling et al. (2008). Initially,
the cloud phase at a given cloudy pixel is determined
through several threshold tests with observed and sim-
ulated IR brightness temperature Þelds, which ulti-
mately yields a ßag (ÔÔliquidÕÕ or ÔÔiceÕÕ). Through an
iterative matching algorithm similar to that described in
Nakajima and King (1990), Reff and COT are then es-
timated using lookup tables of simulated reßectances for
liquid or ice phase at the wavelengths 0.6 and 1.6mm.
While liquid droplets are assumed to be spherical with
Reff,l ranging between 3 and 34mm, ice particles are
considered to be monodisperse, hexagonal, and ran-
domly orientated with Reff,i values from 5 to 80mm
(CM SAF 2016). In both cases, the maximum of COT is
set to 100. Beyond this value, COT becomes indistin-
guishable from higher values for a givenReff. Combining
COT and Reff, the liquid and ice water path (LWP,
IWP), that is, the vertically integrated amount of liquid
and frozen water droplets, respectively (Glickman 2000),
can be estimated via (Stephens 1978; Benas et al. 2017):
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LWP, IWP 5
2
3

r (l,i)COTReff,(l,i) , (1)

where r (l,i) are the densities of water and ice, respec-
tively. Note that since the retrieval of Reff and COT
require solar radiation, both can be determined only
during daytime.

3. Methods

a. Measures for point-to-pixel validation

IMERG is validated on a half-hourly point-to-pixel
basis by taking the closest grid cell to the respective RGs
(e.g.,Thiemig et al. 2012). It shall be stressed that point
measurements by RGs sometimes lack representative-
ness of the averaged rainfall in satellite pixels, which
presumably becomes less severe with increasing reso-
lution in satellites ( Tan et al. 2016; Monsieurs et al.
2018). In the present setting, only one IMERG pixel
contains more than one RG for a potential investigation
of intrapixel variabilities. Potential effects on the results
are discussed insection 8. Hence, while acknowledging
this caveat, no further processing such as spatial aver-
aging of RG data is performed. Half-hour intervals with
an aggregated amount of less than 0.1 mm (0.2 mm h2 1)
are discarded to account for potential noise in the RG
dataset. The same threshold is applied to IMERG,
which corresponds to the minimum detectable rainfall
rate of the GPM Ka-band radar ( Tan et al. 2016).

Two groups of statistical measures are used. The Þrst
group is derived from the 2 3 2 contingency table with
hits H (rainfall in both RG and IMERG), misses M
(rainfall in RG only), false alarms F (rainfall in IMERG
only), and correct negativesN (zero rainfall in both RG
and IMERG) (see Fig. 2). The probability of detection
(POD), probability of false alarms (POFA), bias in

detection (BID), and the Heidke skill score (HSS) are
then deÞned by (seeWilks 2011)

POD 5
H

H 1 M
, (2)

POFA 5
F

H 1 F
, (3)

BID 5
H 1 F
H 1 M

, (4)

HSS5
2(HN 2 FM)

(H 1 F)(F 1 N) 1 (H 1 M)(M 1 N)
. (5)

POD quantiÞes the ability of IMERG to detect rainy
episodes as recorded by the RGs and is perfect when
POD 5 1. Similarly, POFA is the fraction of false alarms
relative to all rainfall occurrences in IMERG. If no false
alarms are produced, then POFA 5 0. BID determines
whether IMERG tends to overestimate (BID . 1) or
underestimate (BID , 1) the rainfall frequency. Finally,
the HSS evaluates the performance of IMERG com-
pared to random chance. A value of HSS5 1 indicates
maximum skill, a value of HSS 5 0 means no skill.
Technically, the HSS can become negative, which would
imply a lower skill of IMERG than random draws.

As in Tan et al. (2016), the second group of measures
compares the rainfall rates from the subset of hits, where
the mean error (ME) and mean absolute error (MAE)
and their normalized counterparts, NME and NMAE,
are calculated via

ME 5
1
n
�

i
(yi 2 xi) and NME 5

1
n
�

i
(yi 2 xi)

1
n
�

i
xi

, (6)

FIG . 2. Schematic showing how hits, misses, and false alarms are deÞned based on an exemplary half-hourly
rainfall pattern in (Þrst row) RG and (second row) IMERG with wet (black, $ 0.2 mm h2 1) and dry time steps
(white). (third row) The standard approach designates misses (false alarms) wherever a rainy time step in RG
(IMERG) is associated with a dry time step in IMERG (RG). (fourth row) In the event-based approach, misses
(false alarms) in adjacent time steps of hits are considered as a reduction (prolongation) of the event duration,
hence termed Duration2 (Duration 1 ). ÔÔIsolatedÕÕ errors are called true misses and false alarms, respectively.
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MAE 5
1
n
�

i
jyi 2 xi j and NMAE 5

1
n
�

i
jyi 2 xi j

1
n
�

i
xi

, (7)

where xi and yi denote a pair of RG and IMERG rain
rates, andn the number of hits. All error measures are
perfect if 0. While MAE quantiÞes the overall error
magnitude, ME indicates the direction of the bias.
Through normalization related to a background cli-
matology of rain rates, the error magnitudes become
comparable, for instance, for different rainfall rates
across different seasons.

b. Identi�cation and de�nition of rainfall types

In addition to half-hourly rainfall, IMERGÕs perfor-
mance for different rainfall types is investigated. Here,
the RG network is considered as a unit, meaning that
spatiotemporally coherent signals at several RGs can be
associated to the same rainfall event. The high temporal
resolution of the RGs then allows an assignment to
speciÞc rainfall types.

First, the identiÞcation of rainfall events follows
the correlation-regression method by Upton (2002),
for which the time series of all available RGs were
aggregated to 5-min data. Each rainfall event is then
categorized into one of three rainfall types based
on the deÞnitions in Dezfuli et al. (2017b). Weak
convective rainfall (WCR) exhibits a mean rainfall
rate and duration of less than 10 mm h2 1 and 80 min,
respectively. Accordingly, strong convective rainfall
(SCR) is deÞned for events with at least 10 mm h2 1.
Any event exhibiting at least 80 min of uninterrupted
rainfall at one RG or more is classiÞed as a mesoscale
convective system (MCS). Again, RGs affected by the
same event are considered together. For instance, if the
rainfall proÞle at one station matches the criterion for an
MCS, the proÞles of all other stations are collectively
assigned to MCS, even if they would not fulÞll the cri-
terion individually. That way, we believe that a reason-
able quantiÞcation of number and integrated rainfall of
each rainfall type can be obtained.

From the perspective of rainfall events, misses and
false alarms are deÞned slightly differently compared to
single half-hour time steps (seeFig. 2). Over the length
of a given rainfall event in the RGs, a ÔÔtrue missÕÕ is
considered when no respective IMERG time step con-
tains any rainfall. Otherwise, the duration of the rainfall
event is cut short (Duration2 ). The same principle ap-
plies for ÔÔtrue false alarmsÕÕ and Duration1 . Finally, we
note that a half-hour RG time step is considered as rainy
as soon as rainfall is detected in at least one of the 5-min
periods.

4. General characteristics of RG and IMERG
rainfall

a. RG-based rainfall types

A total of 2552 separate rainfall events were identiÞed
within the 2-yr period. Figure 3 shows how they fall into
the rainfall categories described in the previous section.
The bulk of events is short lived and has low intensity
(Fig. 3a) with WCRs accounting for over half of all
events (see %n in the legend). Roughly a tenth can be
attributed to longer-lasting MCSs, but these account for
over 60% of total rainfall, while WCRs contribute only
5% (see %RR). This pattern resembles the results in the
satellite-based study of Maranan et al. (2018) for a
broader domain in southern West Africa, where the
contribution of frequent but small-scale convection is
almost negligible.

The temporal evolution of rainfall rates during the
passage of each rainfall type is depicted inFigs. 3bÐd. It
is usually marked by a sudden increase within the Þrst
15 min followed by a more gradual weakening during
the remainder of the event. We note that these proÞles
are highly variable as seen by the interquartile range
(shaded areas). The enhanced rainfall rate in the early
stages is clearly associated with the convective part of
the rainfall system. It is strongest for SCRs (Fig. 3c),
which likely comprise young, but vigorous convective
cells. A major characteristic of MCSs is the extended
trailing stratiform region, which can contribute sub-
stantially to their integrated rainfall amount (green
curve in Fig. 3d). However, because of the weaker na-
ture of this stratiform rainfall, the mean intensity of
the strongest events decreases quasi-exponentially with
longer event durations (Fig. 3a). Note that the inten-
sity of the leading convective part is highly variable
(cf. Dezfuli et al. 2017b), where some of the weaker
events may be related to dissipating MCSs. For WCRs,
a clear convective part cannot be identiÞed in many
cases, as they often last only 5Ð10 min. Also debris of
decaying MCSs occasionally causes instances of weak
and short events.

b. Seasonal evolution of rainfall types in RGs
and IMERG

The composition of rainfall types throughout the year
changes depending on the stage of the West African
monsoon (WAM; e.g., Fink et al. 2006; Janiga and
Thorncroft 2014; Maranan et al. 2018). In Fig. 4a, the
monthly evolution of both the overall number of events
(green curve) and the respective fractions of the rainfall
types are presented. Two number maxima are pres-
ent in June and September, in line with the bi-
modal cycle typical of the West African forest zone
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