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ABSTRACT

This study downscaled more than five years of data (1999–2004) for hydrometeorological fields over the
upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsyl-
vania State University–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5,
version 3)] and two forcing datasets that include National Centers for Environmental Prediction (NCEP)–
NCAR reanalysis-1 (R1) and North America Regional Reanalysis (NARR) data. The long-term high-
resolution simulation results show detailed patterns of hydroclimatological fields that are highly related to
the characteristics of the regional terrain; the most important of these patterns are precipitation localization
features caused by the complex topography. In comparison with station observational data, the downscaling
processing, on whichever forcing field is used, generated more accurate surface temperature and humidity
fields than the Eta Model and NARR data, although it still included marked errors, such as a negative
(positive) bias toward the daily maximum (minimum) temperature and overestimated precipitation, espe-
cially in the cold season.

Comparing the downscaling results forced by the NARR and R1 with both the gridded and station
observational data shows that under the NARR forcing, the MM5 model produced generally better results
for precipitation, temperature, and humidity than it did under the R1 forcing. These improvements were
more apparent in winter and spring. During the warm season, although the use of NARR improved the
precipitation estimates statistically at the regional (basin) scale, it substantially underestimated them over
the southern upper Rio Grande basin, partly because the NARR forcing data exhibited warm and dry biases
in the monsoon-active region during the simulation period and improper domain selection. Analyses also
indicate that over mountainous regions, both the Climate Prediction Center’s (CPC’s) gridded (0.25°) and
NARR forcings underestimate precipitation in comparison with station gauge data.

1. Introduction

The Rio Grande, flowing southward almost 2000
miles from its headwater in southern Colorado to the
Gulf of Mexico, drains a basin of more than 350 000 mi2

and is the lifeblood of the semiarid region. The river
supplies water for more than 3.5 million people, as well
as for agricultural, recreational, hydropower, and in-
dustrial uses. Because freshwater supplies are limited
and the demand for them is expanding, correctly esti-
mating the variability of water resources in the basin is
of practical importance and could have positive eco-

nomic consequences. The upper Rio Grande basin
(URGB) is a typical river basin in the southwestern
semiarid region of the United States. In this narrow
north–south-oriented river basin (Fig. 1), its elevation
from the headwater (�38.5°N) to the southern outlet
(�31°N) changes from about 4000 to about 1200 m, and
accordingly, annual precipitation varies from more than
130 to less than 15 cm. Modeling and analyzing the
hydroclimate within such a river basin is a challenge.
The complex terrain of the URGB suggests that using a
regional climate model to downscale hydrometeorolog-
ical fields from the coarse-scale fields provided by cli-
mate model output or reanalysis is necessary to inves-
tigate basin- or catchment-scale hydroclimate.

Many studies over the mountainous western United
States, whose research domain wholly or partially cov-
ers the URGB, have used the dynamic downscaling
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method (e.g., Giorgi 1991; Giorgi et al. 1994; Roads
et al. 1994; Anderson and Roads 2002; Anderson et al.
2004; Berbery 2001; Gochis et al. 2003; Kim et al. 2000;
Leung and Qian 2003; Leung et al. 2003; Schmitz and
Mullen 1996; Kanamitsu and Mo 2003; Higgins et al.
1999; Mo et al. 2005). These studies have shown the
benefits of using a high spatial resolution over the re-
gion to understand how orography affects hydroclima-
tology. For example, using the European Centre for
Medium-Range Weather Forecasts (ECMWF) 1° by 1°
reanalysis data, Schmitz and Mullen (1996) showed, as
Gochis et al. (2003) summarized, that the moisture flux
into the southwestern United States is attributable to
low-level stationary components over the Gulf of Cali-
fornia and that larger-scale circulation is responsible for
transporting moisture from the midtropospheric level.
The comparatively small transient component of the
moisture flux comprises a substantial portion of the to-
tal moisture flux emanating from the northern part of
the Gulf of California. In analyzing the direction of
integrated moisture flux over the Gulf of California,
Berbery (2001) found substantial differences between
the results of Schmitz and Mullen (1996) and the out-
comes of the 48-km Eta Data Assimilation System
(EDAS). Berbery (2001) suggested that these differ-
ences in flux fields are attributable to the models’ high-

resolution representation of regional topography and
are mesoscale in nature. In an investigation of the sen-
sitivity of precipitation and snowpack simulations to
model resolution, Leung and Qian (2003) concluded
that because “there are no uniform improvements
in climate simulations as model resolution increases,
processes that are strongly forced by terrain appear to
benefit more from the use of higher spatial resolution.”

Currently, although regional climate models can run
at grid resolutions as high as a few kilometers to hun-
dreds of meters, they are used mainly for research on
short-term weather and hydrologic predictions [see the
review of Roebber et al. (2004); Faccani et al. (2003)].
Some previous studies have indicated that this fine-
resolution modeling offers the potential to predict
storms and streamflow over the mountainous western
United States, where very high spatial resolution is
needed to model physical processes, surface heteroge-
neity, and complex topography (Warner and Hsu 2000;
Li et al. 2003a,b; Cotton et al. 2006; Saleeby et al. 2007;
Westrick and Mass 2001; Westrick et al. 2002). As
shown in Fig. 1, a 4-km elevation map can capture much
more detailed topography features over the URGB
than can a 12-km map. So far, however, few attempts
have been made to employ very fine spatial resolutions
for (long term) hydroclimatology studies. One of the

FIG. 1. Contours of the topography over the upper Rio Grande basin: (left) 12-km
resolution and (right) 4-km resolution.

678 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 9

Unauthenticated | Downloaded 05/13/21 05:02 PM UTC



objectives of this research was to investigate whether,
or to what extent, this modeling can improve the accu-
racy of hydroclimate studies.

In addition to model spatial resolution, the choice of
atmospheric forcing field exerts an important influence
on model performance. Previous studies (Liang et al.
2001, 2004) have indicated that the use of different forc-
ing fields can result in marked differences in model
outcomes. Therefore, we will separately downscale two
different forcing datasets [North America Regional Re-
analysis (NARR) and National Centers for Environ-
mental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalysis-1 (R1)] to the
same high-resolution grids (4 km) over the URGB re-
gion and compare the major surface hydroclimatologi-
cal variables of precipitation and temperature. The goal
of this research is to examine the performance of the
dynamic downscaling technique when applied to the
URGB region’s complex terrain at very high resolu-
tions, integrated for multiple years, and using two dif-
ferent forcing datasets.

2. Methodology

a. Selected cases and forcing data

Water resources in the URGB come mainly from
winter snowfall and summer monsoon rainfall, depend-
ing on the specific location. Thus, we selected six sum-
mer seasons and five winter seasons as test cases for the
research reported in this paper. This time period in-
cluded dry, normal, and wet years.

As mentioned before, R1 data (Kalnay et al. 1996),
which covers approximately 2.5° and 6-h increments
globally, is widely used as forcing data to investigate
the southwestern U.S. regional climate variability (e.g.,
Liang et al. 2004; Leung et al. 2003; Gochis et al. 2003;
Li et al. 2005). This research also used the R1 as the
forcing field to determine whether it is reliable for use
in downscaling to a few kilometers. More recently, a
new dataset, the NARR (Mesinger et al. 2006), has
become available. In comparison with the R1, the
NARR is generated with high spatial (32 km) and tem-
poral (3 hourly) resolution and a more detailed physics
process, and it shows great improvements in many as-
pects, such as surface wind and troposphere state vari-
ables, especially in cold seasons (Mesinger et al. 2006).
For this reason, NARR data are becoming popular as a
benchmark and are now widely used (Mo et al. 2006;
Nigam and Ruiz-Barradas 2006). The research reported
in this paper also used the NARR as forcing data to
determine whether the model result could be improved
over the results from the R1 data.

The simulation period was from June 1999 to Sep-
tember 2004. The model ran monthly in the non-
snowfall season and every 4 months in the snowfall
season without reinitialization (i.e., December through
March of the following year, mainly to check the mod-
el’s snowpack performance). A sensitivity test showed
that after one week of integration, variations in mod-
eled topsoil moisture that started from different days
(30, 20, 10, 5, and 0 days) converged closely, whereas
third-layer soil moisture variations were similar, but
they maintained a drying trend (see Fig. 3 in Li et al.
2007). Thus, we started the model about 10 days before
the monthly (or 4 monthly) simulation and discarded
the first 10 days of the simulation data. This way of
timing the model’s initialization may decrease the ac-
curacy of the model’s results in comparison with the
more frequent model initialization, as indicated by
Qian et al. (2003).

b. Domain setup

Using R1 data as forcing fields, this research used
four nested and two-way communication domains (see
Fig. 2). Domain one (D1), at a 108-km grid resolution,
covers the entire United States, Mexico, southern
Canada, Central America, and the surrounding oceans.
Domain two (D2) covers the western United States and
northern Mexico at a 36-km grid resolution. Domain
three (D3) covers the southwestern United States,
northern Mexico, southern Utah, and Colorado at a
12-km grid resolution. Domain four (D4), at a 4-km
grid resolution, covers the URGB at a 4-km grid. With
the NARR data as forcing fields, the research used
three nested and two-way communication domains.
Here, D-1, at a 36-km resolution, is the dashed box in
Fig. 2, and its related D-2 and D-3 are the same as the
forcing data R1’s D3 and D4, respectively. As men-
tioned in the introduction, Fig. 1 shows the URGB re-
gion’s topography at 12-km (D3 or D-2) and 4-km
spatial resolutions (D4 or D-3). The higher-resolution
domain resolved finer topographical structures. In D4
(or D-3), the height of mountains and hills becomes
higher and the depth of valleys becomes lower than
those at 12-km spatial resolution. The 4-km resolution
also represents clouds better than the 12-km resolution
(Cotton et al. 2006; Saleeby et al. 2007).

The outer domains’ setup responds to the fact that
the NCEP reanalysis data’s resolution is about 2.5° and
cannot very effectively resolve surface and low-level
meteorological fields over land, whereas the NARR
data provide higher resolution and more precise surface
and low-level meteorological fields (Mesinger et al.
2006).
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c. Model setup

A regional model, the fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search Mesoscale Model (MM5, version 3), was chosen
to provide integrated physical modeling because many
researchers have used it to study the regional climate
over the southwestern United States. MM5 provides
multiple options and schemes to represent a variety of
physical processes. The most important scheme for our
purposes was the convective parameterization scheme
(CPS), especially for summer rainfall simulations. A
previous study shows that the Grell CPS (Grell 1993)
generates more reliable atmospheric fields in southern
New Mexico (Warner and Hsu 2000) than does the
Kain–Fritsch CPS (Kain and Fritsch 1990). Our pretest
over this region shows that although performance may

vary with rainfall types and model configurations, when
the Grell CPS is used in the coarse domains, it gener-
ates more realistic rainfall patterns over low-elevation
areas in New Mexico in the D4 (D-3) than when using
the Kain–Fritsch CPS. This study used the Grell CPS in
the 108-, 36-, and 12-km resolution domains (i.e., D1,
D2, and D3, or D-1 and D-2). All the physics options
and model parameters are listed in Table 1.

d. Observational data

As previous studies (de Ela et al. 2002; Leung and
Qian 2003) have shown, even if very high spatial reso-
lution improves weather forecasts, the current methods
used to quantify forecast skill and observational net-
works that lack sufficient spatial coverage will limit the
demonstration of the higher spatial resolution’s added

FIG. 2. Model domain setup. NCEP–NCAR reanalysis data are used with D1, D2, D3, and
D4. NARR data are used with D-1, D-2, and D-3. D-2 and D3 are the same coverage, whereas
D-3 and D4 are the same coverage. (left) Whole domains shown with G1 and G2. (right)
Enlarged D3 (D-2) and D4 (D-3) showing the boundary of the upper Rio Grande basin (solid
line). Triangles in the figure represent surface observation stations.

TABLE 1. Model and physics parameters.

Model parameters Physics parameters

Map projection Lambert conformal Microphysics scheme Simple ice-explicit moisture
adjustment (Dudhia 1989)

Projection center R1: 34°N, 107°W
NARR: 34°N, 106°W

Radiation scheme Cloud radiation (Dudhia 1989)

Grid number for R1 forcing D1: 52 � 64
D2: 61 � 58
D3: 97 � 94
D4: 112 � 208

Convective parameterization scheme Grell CPS (Grell 1993)

Grid number for NARR forcing D-1: 67 � 73
D-2: 97 � 94
D-3: 112 � 208

Boundary layer scheme Medium-range forecast PBL
(Hong and Pan 1996)

Sigma layers 28 layers up to 100 mb Land surface process Noah (Chen and Dudhia 2001)
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skill. This research used multisource data to evaluate
the model’s performance, including the following:

1) The 25-km gridded daily precipitation analysis data
from the National Weather Service’s Climate Pre-
diction Center (CPC-P; Higgins et al. 1999). The
gauge data were interpolated from daily gauge ob-
servations and covered the United States. Approxi-
mately 247 grid cells cover the upper Rio Grande
basin.

2) Surface meteorological station data. A total of 64
stations were selected, including 15 routine meteo-
rological observation stations and 49 Snowpack Te-
lemetry (SNOTEL) stations (http://www.wcc.nrcs.
usda.gov/snow/). The locations of the 64 stations are
labeled in Fig. 2.

3) Operational NCEP Eta Model 212 grid (40 km) sur-
face analysis data (http://dss.ucar.edu/datasets/
ds609.2). Approximately 155 grid cells cover the
upper Rio Grande basin. No data are available
for October and November 1999. The NARR
data were also used in comparison with the MM5
result.

It is important to point out the following two issues
related to these datasets:

1) Precipitation was measured at irregular and widely
spaced locations and may not have captured all the
precipitation, especially when it was windy and
snowing (Roads et al. 1994).

2) The URGB “area,” as represented in the MM5
model coverage, CPC grid gauge, and Eta Model
analysis data coverage, is slightly different because
the resolution affects the basin boundary so that the
area is not exactly in reference to its actual real-
world location.

3. Examination of downscaling results

In this paper, the model performance is examined
only in the innermost domain (i.e., D4 and D-3 in Fig.
2), which covers the entire URGB with a 4-km grid
mesh. Observational and analysis data are used to
evaluate the surface atmospheric variables (with an em-
phasis on precipitation and temperature) driven by the
NARR and R1 forcing data, respectively. To easily
identify various data in the comparison, we labeled in-
dividual data with a name consisting of the data’s major
characteristic, followed by the variable’s symbol. For
example, NR-P represents the NARR (NR) forced pre-
cipitation (P) data. The following acronyms and terms
are used:

NR: NARR forced downscaling results,
R1: NCEP–NCAR reanalysis-1 forced downscaling

results,
CPC: CPC gridded daily observations,
NARR: North American Regional Reanalysis data,
Eta Model: Eta analysis data,
P: Precipitation,
Tmin: 2-m daily minimum temperature,
Tmax: 2-m daily maximum temperature,
T2: 2-m air temperature,
Q2: 2-m mixing ratio, and
U10 and V10: 10-m wind speeds.

a. Precipitation

In most dynamic downscaling studies of hydro-
climate, precipitation is the main prognostic vari-
able examined. This paper evaluates primarily (mod-
eled) precipitation distribution using the gridded
data and precipitation quantity using the station
data.

1) COMPARISON BETWEEN THE GRIDDED

OBSERVATION AND DOWNSCALING OUTPUT

Figure 3 shows the maps of the mean precipitation
during the simulation period: the top panels are CPC-P
(0.25°), NR-P (4 km), and R1-P (4 km). The average
precipitation amounts over the region (D4 or D-3) for
CPC-P, NR-P, and R1-P are 27.3, 29.2, and 35.1 mm
month�1, respectively. Clearly, NR-P is closer to
CPC-P than to R1-P. The model adequately repro-
duced the precipitation distribution features shown
in the CPC-P map and added clear local patterns that
are strongly correlated to the 4-km elevation map in
Fig. 2. Both the NR-P and R1-P precipitation maps
show large amounts of precipitation over the high-
elevation areas in northern New Mexico and southern
Colorado. These patterns seem physically plausible.
For example, over a northern part of the Sacramento
Mountains (the solid circle in Fig. 3), the precipitation
in the CPC-P map is less than 30, but it reaches 50–100
mm month�1 in the NR-P and R1-P maps. A SNOTEL
station (site 1034; location 33.4°N, 105.79°W; elevation
3130 m) is located inside this mountain area, and its
precipitation records for the water years of 2003 and
2004 (available for these two years only) are 64 and 75
mm month�1, respectively. These amounts are much
higher than the CPC-P value, and they are within the
model’s predicted range. The following section will use
more station data to check the amounts of local pre-
cipitation that were predicted through the downscaling
processing.
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The R1-P and NR-P precipitation show differences.
In the eastern URGB (see the dashed circle in Fig. 3),
the R1-P shows an overestimation in comparison with
CPC-P, whereas the NR-P shows a slight underestima-

tion. The bottom panel of Fig. 3 shows that the precipi-
tation amounts of R1-P are larger than those of NR-P
over the mountains of the northern and southern
URGB, as well as the eastern URGB.

FIG. 3. Precipitation distribution from June 1999 to
September 2004. (top) Mean precipitation for CPC
0.25° gauge data (CPC-P), MM5 precipitation in D4
with R1-P, and MM5 precipitation D-3 with NR-P.
Besides the upper Rio Grande basin boundary, the
dashed circles and solid circles are explained in the
text. (bottom) Difference between NR-P and R1-P.
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Figure 4 shows the seasonal variations in precipita-
tion over the northern and southern parts of the
URGB. Figure 4a represents the high-elevation part
above the latitude of 36°N. It indicates that the seasonal
precipitation variations derived from all sources show a
similar trend of two precipitation peaks: one during
spring and the other during summer. The NR-P varia-
tion is closer to that of CPC-P than to that of the R1-P.
Some of the following differences exist: first, the
monthly CPC-P amounts are always less than those
from the model, except for November and December
when the amounts are similar. The R1-P shows the larg-
est amount in most of the months, especially during the
cold season. Second, the peak time of monthly precipi-
tation occurs in different months. NR-P and CPC-P
show the same peak times, during March and August,
whereas the R1-P peak times are in February and
August.

Figure 4b is the same as Fig. 4a, except for the low-
elevation southern part (�36°N) of the URGB region.
It shows that the monthly precipitation represented by
NR-P has improved in the late winter and spring in
comparison with R1-P and CPC-P. However, the NR-P
substantially underestimates precipitation in the mon-
soon season of August and September.

Figure 5 compares the modeled 2-m air temperature
and low-level (surface to 3000 m above ground level)
water vapor flux fields in July, August, and September
(JAS) forced by NARR (the left column) to R1 (the
middle column), respectively (their differences are
shown in the right column). Over the southern and
southeastern URGB, where the NARR data were used,

the model generated higher surface temperatures and
less water flux from the boundary than those forced by
the R1 data. These model features caused by NARR
forcing are not favored for generating monsoon con-
vection in that season. In particular, the low-level water
vapor flux fields (the bottom panels) show that south-
easterly moisture flux over the southern UGRB was
very small when the downscaling model was driven by
the NARR data (smaller than when the model was
driven by the R1 data), which is inconsistent with many
studies’ results on the North American monsoon over
the region (e.g., Schmitz and Mullen 1996; Mo et al.
2005). The following two potential factors may be re-
sponsible for the meteorological field differences given
the same model physics configurations: forcing data
and the locations of the two outer domains.

The results from a previous study by Mesinger et al.
(2006) indicate that in comparison with observations,
NARR data are more accurate than the global coarse
analysis data in representing surface and tropospheric
fields, especially in winter. An example shown in Fig. 6
compares the atmospheric fields from the forcing
datasets (i.e., the NARR and R1) and MM5 results with
El Paso, Texas, sounding observations (location 31.8°N,
106.4°W; elevation 1343 m) at 850, 700, and 500 mb
during the simulation period. Figure 6a compares the
mean fields among R1, NARR, and MM5 results with
different forcing and observational data. Figure 6a in-
dicates that at a 5-yr average, the trend of the analysis
fields and the MM5 results with different forcing
datasets is consistent with El Paso (EPZ) observations,
especially for temperature and relative humidity. How-
ever, in comparison with observations, the wind field
exhibits some different trends, especially at 500 mb,
whereas the analysis datasets and MM5 results exhibit
similar trends at the pressure level. Figure 6b shows the
differences between R1 and observations, between
NARR and observations, and between MM5 results
with different forcing data and observations. Figure 6b
indicates that the NARR dataset’s air temperature,
relative humidity, and wind speed are improved in com-
parison with the R1 dataset, especially in the cold sea-
son. However, Fig. 6b also demonstrates that the
NARR data (but not the R1) exhibit drier and warmer
biases at 850 and 700 mb in the warm season. As Bright
and Mullen (2002) suggest, the PBL moisture in this
semiarid region is important to convection precipitation
during the monsoon season. Therefore, the use of bi-
ased NARR data as an initial condition in the monsoon
season (the model initialized once per month at this
season) may be partly responsible for precipitation er-
rors in the downscaling outcome. Figure 6b also shows
the differences between the observations and the MM5

FIG. 4. Precipitation monthly mean (mm month�1) over the
basin showing (a) over the upper part of the upper Rio Grande
basin (�36°N) and (b) over the southern part of the upper
Rio Grande basin (�36°N).
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results when different forcing data are used. The MM5
results when using either forcing data are less accurate
than both the analysis fields and the observations.
However, for most months, the MM5 results are better
when NARR is used as forcing data rather than R1.

Figure 7 is the mean precipitable water comparison
between R1 and NARR data in July, August, Septem-
ber, and October from 1999 to 2004. The figure indi-
cates that R1 was wetter than NARR in the Rockies,
the eastern Pacific, the tropical Pacific (where the D1
southern boundary is located), and Mexico (where the

D-1 southern boundary is located). The column water
content distributions in Fig. 7 indicate that MM5
showed a wetter eastern and southern boundary when
R-1 was used than when NARR was used. This bound-
ary feature from different forcing datasets may also
generate precipitation biases over the upper Rio
Grande during the warm and monsoon seasons.

Many previous studies (e.g., Seth and Giorgi 1989)
also indicate that the selection of the outer domain
boundary location can affect the model’s results. This
paper briefly describes the differences caused by the

FIG. 5. (top left) Models NR-T2 and (top middle) R1-T2, and (top right) their differences from JAS from 1999
to 2004. (bottom) Same as in top, but for lower-level water vapor fluxes vector. The gray shaded areas denote
V-flux values.
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outer domain’s location. We performed the following
four tests (see Fig. 2) from July to October 1999 (a wet
monsoon season): T1 (running G1 with R1), T2 (run-
ning G1 with NARR), T3 (running G2 with R1), and T4
(running G2 with NARR). Here, G1 is just slightly
smaller than D1, considering the NARR data coverage
at the southwestern location of D1, and G2 is the same
as D-1. Figure 8 shows the mean precipitation differ-
ences over land based on the four runs. The top panel
of Fig. 8 shows the precipitation differences caused by
the two forcing datasets. It indicates the trend that in
comparison with NARR, using R1 for forcing fields can
generate more precipitation over the mountainous up-
per Rio Grande basin but less precipitation over the
southern upper Rio Grande basin, although there are
some differences in the amounts. The bottom panel of
Fig. 8 indicates the precipitation differences caused by
differences in the location of domain boundary when
the same forcing data are used. It also shows that in-
creasing the domain size generates less precipitation
over the upper Rio Grande mountain areas but more
precipitation over the southern upper Rio Grande ba-
sin. Figure 8 indicates that when NARR is used, in the
warm season, enlarging the outer domain of D-1 can
remove more precipitation biases over the upper Rio
Grande basin than can the current model domain (i.e.,
D-1) setup. Also, using NARR as a forcing dataset can
remove certain biases in precipitation over the URGB
mountainous areas.

2) COMPARISON BETWEEN STATION DATA AND

DOWNSCALING OUTPUT

The gridded precipitation data are usually interpo-
lated through station measurements. The current inter-
polation technique will result in errors in gridded pre-
cipitation, especially in the gauge-sparse mountainous
region. Using high-resolution models to relieve the lack
of available observations over the mountainous areas
may provide an alternative. Here, we evaluate precipi-
tation for this purpose, comparing the measurements at
stations with the interpolated precipitation (CPC-P) or
the model’s precipitation (NR-P, R1-P, and NARR-P)
at the grid box closest to the station.

Over the study region (D4 or D-3), we found 15 rou-
tine rain gauges and 49 SNOTEL stations with uninter-
rupted measurements (see the triangle locations in
Fig. 2). Figure 9 shows the monthly mean precipitation
for the 64 stations and for the corresponding precipita-
tion from different sources, including the CPC-P (25
km), NR-P (4 km), R1-P (4 km), and NARR-P (32 km).
As shown in Fig. 2, most of the stations are located in
the northern part of the study region. Thus, Fig. 9 rep-
resents mainly the precipitation feature over the moun-

tainous areas. Because the CPC-P data have been as-
similated into the NARR system (Mesinger et al. 2006),
NARR-P always matches well with CPC-P. The pre-
cipitation seasonal variations derived from all five
sources show the two-peak pattern, and they are similar
to each other in the transiting months of May, June,
July, and December. In Fig. 9, NARR-P is the lowest,
R1-P is the highest, and NR-P and the station data are
in the middle and are similar to each other. In compari-
son with the station data, CPC-P and NARR-P possess
negative biases, whereas NR-P and R1-P possess posi-
tive biases. The NR-P bias is much smaller than that of
R1-P.

Figure 10 is the scattering plot of monthly mean pre-
cipitation between the station measurements and the
CPC-P, NR-P, R1-P, and NARR-P estimates at the cor-
responding grid boxes for the 5-yr period. The seasonal
and annual statistics are listed in Table 2. The bias is
calculated according to Giorgi et al. (1994) as follows:

Ba �
1
N �

i�1

N

�ai
m � ai

o	. �1	

It measures the deviation of estimates am from their
observations ao. Other statistics, such as mean, correla-
tion coefficient, and RSME, are defined as normal.

To check the results’ statistical significance, a Stu-
dent’s t test was used to check the calculated correlation
coefficients. Given a significance level 
 (0.05 in this
study) and the statistical number N, the threshold Stu-
dent’s t test value ta is given from the t table. The
threshold correlation coefficient rc is then calculated as
follows:

rc �� t a
2

N � 2 � t a
2. �2	

In this case, rc equals 0.254 at a significance level of
0.05. Because all the correlation coefficients in Table 2
are greater than 0.254, the statistical analysis data are
significant at a monthly to seasonal time scale.

The statistics in Fig. 10 and Table 2 were calculated
based on the station’s measurements. They confirm the
following conclusions we made based on the compari-
son with the gridded precipitation (i.e., CPC-P):

1) CPC-P and NARR-P show negative biases in every
season, whereas NR-P and R1-P show positive bi-
ases in every season. Considering that the grid box
sizes of CPC-P and NARR-P are much larger than
those of NR-P and R1-P and that most of the se-
lected stations are located at high elevations, it can
be concluded that CPC-P and NARR-P precipita-
tion are underestimated in relation to the “ground
truth.”
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2) Checking the absolute value of bias, NR-P and
CPC-P have the smallest range (less than 0.35 mm
day�1), NARR-P has the medium range (less than
0.52 mm day�1), and R1-P has the largest range (less
than 0.76 mm day�1). In the seasons of March,
April, May (MAM), September, October, Novem-
ber (SON), December, January, and February [DJF;
except for June, July, and August (JJA)], NR-P has
smaller bias values than CPC-P. Clearly, downscal-
ing using NARR forcing improved precipitation
predictions over the mountainous area.

3) As addressed by Roads et al. (1994) and others, be-
cause the gauge measurements may not capture all
precipitation, especially in windy and snowy condi-

tions, the station measurements have negative bi-
ases in comparison with the ground truth. There-
fore, the positive biases of NR-P and R1-P may be
slightly mitigated.

4) Table 2 shows that the correlation coefficients be-
tween the NR-P and R1-P precipitation, and the
station measurements for MAM, SON, and DJF,
not for JJA, are quite high (0.74–0.85 for NR-P and
0.63–0.79 for R1-P). In addition, these correlation co-
efficients are close to those of CPC-P and NARR-P.
CPC-P uses the station measurements for inter-
polation, and NARR-P frequently assimilates the
CPC-P. This result indicates that the downscaling
model can, in general, produce precipitation at the

FIG. 6. (a) Mean trend of temperature, relative humidity, and U and V components between analysis data, MM5
output, and sounding observation at EPZ from July 1999 to September 2004 showing observation (line), the NCEP
reanalysis data (filled triangle), the NARR data and observation (filled square), the MM5 result when NCEP
reanalysis data forcing (R1 run; empty triangle), and the MM5 result when NARR forcing (NARR run; empty
square). (b) Same as in (a), but the differences are shown as R1 and observation (filled triangle), NARR data and
observation (filled square), the MM5 result when R1 forcing and observation (empty triangle), and the MM5 result
when NARR forcing and observation (NARR run; empty square).
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right location and time at monthly to seasonal
scales, except for JJA. With the use of JJA, the
model did not perform well, partly because of un-
certainties caused by the forcing data and the outer
domain location selection, as mentioned above.

b. Some other surface hydrometeorological
variables

This section examines certain MM5 surface variables
using gridded analysis data and station data. The results
indicate that a high spatial resolution model has the
potential to obtain much more reliable meteorological
fields, such as temperature and mixing ratio, especially
when using NARR forcing data.

Figure 11 illustrates the monthly variations of the T2
and the Q2, and the 10-m wind components over the
upper Rio Grande basin. The differences between the
downscaling results and the Eta Model analysis data
are plotted on the right side. The surface temperature

(NR-T2 and R1-T2) and the mixing ratio (RN-Q2 and
R1-Q2) match the Eta Model analysis well at the mean
monthly scale, whereas the wind field analysis exhibits
the differences between MM5 output and Eta Model
analysis data. NR-T2 had warm biases in all of the
months except for June and October. R1-T2 exhibited
warm biases in the winter and in June, and cold biases
in the spring and the monsoon season. The 2-m mixing
ratio differences indicate that in comparison with the
Eta Model analysis, NR-Q2 and R1-Q2 were charac-
terized by dry biases in summer and wet biases in the
other months. The variations of MM5-modeled T2 and
Q2 that were caused by different forcing datasets are
consistent with the corresponding precipitation. The
mean U component indicates a prevailing westerly wind
over the basin. However, the westerly wind from R1-
U10 was mild from late summer to the following spring.
During the simulation period, the NR-U10 was close to
the Eta Model analysis. In the V component, the NR-
V10 (in contrast with the Eta Model data) showed a

FIG. 6. (Continued)
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weaker southerly wind than the R1-V10, which is con-
sistent with the variations in the low-level V flux shown
in Fig. 5.

We also compared T2 and Q2 to the station and the
gridded point closest to it; the related statistical features
are listed in Table 3 (figures not shown). At the
monthly scale, all model temperatures correspond gen-
erally well to the station measurements. The results in
Table 3 indicate that NR-T2 has the smallest bias
(�0.09°C) and the highest correlation coefficient
among the four gridded datasets. NARR T2 exhibits a
mean bias as high as 1.54°C during the simulation pe-
riod. The Q2 statistics shown in Table 3 also indicate
that the NR-Q2 has the smallest bias (�0.05 g kg�1)
and the closest mean in comparison with the station
data, whereas NARR Q2 has a negative bias (�0.15 g
kg�1). The results shown in Table 3 indicate that at high
resolutions, the model can mitigate the biases of the
NARR forcing data.

Figure 12 is the scattering plot of Tmax and Tmin
between the station data and the downscaling results
(Tmax and Tmin are not archived in the Eta Model
analysis data or in the NARR data). The related statis-
tics are also shown in Table 3. The results from Table 3
and Fig. 12 show that NR-Tmax is better than R1-Tmax
(NR-Tmax has lower biases and higher correlation co-
efficients). However, whichever forcing data were used,
the model generated a negative (positive) bias for the
daily maximum (minimum) temperature.

The seasonal statistics (figures not shown) for T2 and
Q2 were also calculated. In comparison with the station

observations, different grid data behave differently. For
example, Eta Model T2 shows a negative bias in DJF
(�0.49°C) and MAM (�0.21°C), and it exhibits very
small biases during the simulation period in JJA and
SON. NARR T2 exhibits a positive bias in all seasons,
especially in JJA and SON when the bias reaches 2.03°
and 1.77°C, respectively. The Eta Model Q2 data ex-
hibit positive biases in all seasons, except in JJA when
a very small negative bias (�0.08) appears. On the
other hand, NARR Q2 data show a negative bias in
JJA (�0.93 g kg�1) and SON (�0.1 g kg�1), and a posi-
tive bias in DJF and MAM. The following two points
may be summarized based on the seasonal statistical
results of the Eta Model analysis and NARR data:

1) The NARR data’s temperature and humidity fea-
tures, including the variation in the low troposphere,
are partly responsible for the NR-P underestimation
in the warm season and overestimation in the cold
season, although the NR-P is improved in compari-
son with R1-P.

2) Although the Eta Model and NARR data are out-
put from the same assimilation system (i.e., EDAS;
see Mesinger et al. 2006), the two datasets exhibit
different features.

4. Discussion

This comparative study confirms that high-resolu-
tion downscaling improves the capability of hydrocli-
matological predictions over the mountainous URGB,
but the results can be stronfected by many factors. In

FIG. 7. Mean precipitable water comparison between R1 and NARR in July, August, September, and October
from 1999 to 2004. The NARR coverage does not reach to the southwest corner (i.e., D1 coverage in MM5).
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addition to discussing the downscaling errors caused by
the forcing data, we will briefly discuss three possible
error sources that have been presented in the literature
and raised by the reviewers.

First, as reported by Qian et al. (2003), when the
model is reinitialized frequently, its results become
more realistic. Qian et al. tested model reinitialization
every 10, 30, and 90 days, and they found that the model
performed most accurately when it was reinitialized ev-
ery 10 days. We also conducted similar tests: we
changed the monthly runs by reinitializing the model
every 10 days, and for the 4-month run, we reinitialized
the model monthly. We found that this method works
for the cold season (e.g., in October 2000, the monthly
NR-P changed from 115 to 51 mm; in January 2001, the

R1-P changed from 75 to 63 mm), but it does not work
for the summer (e.g., in August 2001, the precipitation
changed from 22.5 mm in the monthly initialized run to
17.1 mm in every 10-day initialization run). This result

FIG. 8. Mean precipitation differences over land between different sensitivity runs (T1, T2, T3, and T4) from
July to October 1999.

FIG. 9. Precipitation monthly mean from 64 stations and the grid
point that is closest to the station from June 1999 to September 2004.
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is consistent with the features of the NARR forcing
fields, which are improved in the cold season but show
large warm and dry biases in the warm season.

The second possible error source has been discussed
by Gochis et al. (2003), Liang et al. (2004), and others
who reported that CPS would affect precipitation mod-
eling over the southwestern United States. As men-
tioned in section 2, we have tested the results using the
Kain–Fritsch CPS instead of the Grell CPS with the
NARR forcing for the month of August in 1999 and
2001. When the Kain–Fritsch CPS was used, the results
for rainfall over the URGB became less accurate. For
example, in August 1999, the rainfall over the URGB
was 45.5 mm when the Grell CPS was used, but it was
reduced to 5.9 mm with the Kain–Fritsch CPS, whereas
the CPC-P value was 79.4 mm. Similar severe biases
have been reported for storm simulations over southern
New Mexico (Warner and Hsu 2000).

The third potential error source is the need to further
increase the spatial resolution and improve the micro-
physics schemes (e.g., Saleeby et al. 2007). W. R. Cot-
ton (2007, personal communication) addresses the issue
that a 4–5-km spatial resolution is not enough to fully
resolve the scale of the clouds. At a 4–5-km resolution,
the model can only resolve entrainment processes on
scales similar to those of these resolutions. Therefore,
the model underpredicts entrainment, and convection
is essentially wet adiabatic because the water content is
too high, causing the model to overpredict precipita-
tion. Cotton suggests that to fully resolve the cloud
scale, the resolution should be about 500 m. With re-
spect to winter storms, Cotton et al. (2006) found that
current microphysics schemes have inadequate param-
eterizations for the types of embedded convection that
occur in the mountains’ southwestern slopes. The
URGB is located in the southern part of the Rockies

FIG. 10. Scattering plot of monthly mean precipitation between the station measurements
and the CPC-P, NR-P, R1-P, and NARR-P estimates at the corresponding grid boxes for the
5-yr study.

TABLE 2. Precipitation statistics.

MAM JJA SON DJF Total

Average (mm day�1) Station 1.54 1.61 1.67 1.52 1.59
CPC-P 1.23 1.54 1.35 1.17 1.33
NR-P 1.80 1.82 1.91 1.83 1.84
R1-P 2.09 2.01 2.43 2.22 2.18
NARR-P 0.85 1.46 1.22 0.99 1.13

RSME (mm day�1) Station 1.50 1.49 1.52 1.29 1.45
CPC-P 1.14 0.96 1.08 1.03 1.06
NR-P 1.76 1.28 1.72 1.42 1.55
R1-P 1.81 1.77 2.07 1.76 1.86
NARR-P 0.9 0.98 1.05 1.08 1.02

Bias (mm day�1) CPC-P �0.32 �0.06 �0.32 �0.35 �0.25
NR-P 0.26 0.22 0.24 0.31 0.26
R1-P 0.54 0.41 0.76 0.70 0.60
NARR-P �0.23 �0.15 �0.45 �0.52 �0.39

Correlation coefficient CPC-P 0.854 0.643 0.743 0.828 0.757
NR-P 0.830 0.470 0.757 0.779 0.707
R1-P 0.756 0.372 0.663 0.791 0.629
NARR 0.793 0.673 0.801 0.89 0.766
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and, therefore, it falls within the range of Cotton et al.’s
hypothesis. In their most recent paper, Saleeby et al.
(2007) use a bin-emulation approach to riming on the
supercooled liquid water predication and precipita-
tion instead of the bulk riming scheme used in current
mesoscale models. Their case study indicates that the
bin-emulation approach can alleviate wintertime pre-
cipitation overestimation. This is a promising approach
for future research.

5. Summary

The results reported here are from a downscaling
study for hydroclimate predictions over the URGB, lo-
cated in the mountainous semiarid southwestern
United States. A novel aspect of this study is the 5-yr-
long (June 1999–September 2004) integrals of the re-
gional climate (mesoscale) model at the high grid reso-
lution of 4 km, driven separately by two forcing

FIG. 11. Surface variable comparison between model mean and Eta Model analysis data,
and their difference at the basin scale.

TABLE 3. Statistics of surface meteorological fields.

T2
(°C)

Tmax
(°C)

Tmin
(°C)

Q2
(g kg�1)

Average Station 15.1 21.1 4.3 4.8
Eta Model 14.9 5.0
NR 15.2 20.7 6.2 4.9
R1 14.4 19.5 5.9 5.2
NARR 16.6 4.7

RSME Station 7.8 9.3 9.1 2.6
Eta 8.0 3.2
NR 8.2 9.9 8.5 2.2
N1 7.8 9.8 7.9 2.2
NARR 8.1 2.1

Bias Eta �0.15 0.12
NR 0.09 �0.35 1.86 0.05
R1 �0.67 �1.55 1.56 0.36
NARR 1.54 �0.15

Correlation
coefficient

Eta 0.960 0.97
NR 0.982 0.980 0.974 0.949
R1 0.974 0.955 0.956 0.898
NARR 0.980 0.981
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datasets: the NCEP–NCAR global reanalysis-1 (R1)
and the North American Regional Reanalysis
(NARR). The results indicate the following:

1) By downscaling to a 4-km grid mesh, the model,
especially when driven by the NARR data, demon-
strates a capability of predicting precipitation local-
ization features that is highly correlated with the
URGB’s complex terrain characteristics. When
these results are checked with observational data,
the predicted climatologic patterns of precipitation
are physically plausible. The precipitation amounts
are close to, and sometimes even more accurate
than, those of interpolated station data (CPC-P) and
low-resolution but frequently assimilated model re-
sults, such as those of the NARR-P.

2) The quality of the forcing data plays a crucial role in
the downscaling approach to modeling. Many stud-
ies (see also Fig. 5) have shown that the NARR
dataset provides higher resolution (32 km) and more
realistic fields than the R1 dataset, so that the pre-
dicted hydroclimate variables forced by the NARR
dataset are consistently better than those forced by
the R1 dataset at monthly and seasonal scales, ex-
cept for the monsoon season (JAS).

3) In JAS, the downscaling results forced by the
NARR dataset are substantially degraded and even
worse than the results forced by the R1 dataset. This
is partly because the forcing field NARR data in the
study period exhibited greater dryness in the mon-
soon seasons and partly because the outer domain
(i.e., D-1) is an inappropriate selection. Sensitivity
tests indicate that enlarging D-1 in the south can
remove more of the bias in the prediction of warm-
season precipitation over the upper Rio Grande ba-
sin than does the current model domain D-1 setup
when NARR is used.

4) A comparative analysis using high-elevation SNOTEL
precipitation measurements indicates that the pre-
cipitation data interpolated from the station obser-
vations (CPC-P) and the low resolution but fre-
quently assimilated model precipitation data
(NARR-P) are underestimated over the mountain-
ous northern URGB.

We believe that with continuous improvements in
prediction skill and increasing computational power,
high-resolution dynamic downscaling technique will be,
in the near future, the major technique that is used to

FIG. 12. Same as in Fig. 10, but for 2-m daily maximum and minimum temperature
between the station measurement and the NR and R-1 estimates.
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meet increasing needs for regional climate, hydrologic,
and water resource applications.
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