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Free surface and non-divergent spectral models have been integrated using varying resolutions with both
analytic and meteorological initial fields. The results have been interpreted in terms of convergence of
solutions. Both types of integrations show that convergent solutions are obtained over a period of a few days
provided that sufficient resolution is used. Energy, enstrophy, and error distributions with planetary wave-
number also indicate crucial differences between the highest and lowest resolution integrations.

1. Introduction

Since the development of the barotropic forecasting
model, considerable advances have been made in obtain-
ing more detailed and accurate forecasts. However, the
nonlinearity of the equations of motion coupled with
the present inability to specify the initial conditions
accurately, the effects of limited model resolution and
shortcomings in simulating relevant physical processes
impose serious limitations in the forecasts. Any improve-
ments will therefore depend, in part, on a detailed study
and better understanding of these processes.

The influence of initial conditions on solutions has
been studied by various workers—Thompson (1957),
Lorenz (1969), Smagorinsky (1969), Leith (1971); the
time evolution of small initial differences between flows
has been interpreted in terms of limits of predictability
of the flows. These results suggest that even if the most
pessimistic estimate of the range of predictability should
be the most realistic, there is a definite gap between this
value and the present skill of forecasting the motion of
the atmosphere (GARP, 1970). Although it has been
noted that it should be possible to reduce this gap by
improved and increased operational network, Lorenz
(1969) has shown that there is a definite limit to this. It
is, therefore, important to evaluate the relevance of
truncation errors and proper specification of physical
processes in reducing the gap further.

Robert (1971) has strongly advocated the need for a
detailed study of truncation errors in both grid and
spectral models; Chouinard and Robert (1972) have
evaluated truncation errors in barotropic grid models
and have observed that for a 400-km grid these errors

constitute about 409, of all errors and suggest that min-

imization of such errors will enable clearer identification
of remaining errors of forecast. They also found that a
reasonable estimate of truncation errors is given by a
AX? dependence, where AX is the grid length. A study

of truncation errors in spectral models has been made by
Merilees (1972) who performed integrations of a hemi-
spheric spectral model using different spectral trunca-
tions. He found that truncation errors vary as N—=
where @~ 1.4 and NV is the longitudinal wavenumber of
resolution. However, Merilees describes the conclusions
of these experiments as tentative because of limited data
and model resolutions used (V<21). A study with a
two level quasi-geostrophic, forced general circulation
model has been made by Baer and Alyea (1971). They
found that general circulation may be predicted with as
few as twelve planetary waves and eight latitudinal
degrees of freedom, whereas detailed prediction for a
period of 15-20 days requires at least sixteen planetary
waves and eight to ten latitudinal degrees of freedom.
However, as pointed out by those authors the solutions
might not have converged because of insufficient reso-
lution. Rasmussen (1973) has described similar model
integrations to those to be described here in a GARP
Programme on Numerical Experimentation Report; the
present authors have also presented a brief account in
the same report (Puri, 1973).

The present paper is solely concerned with evaluation
of spatial truncation errors. The studies were conducted
with free surface and non-divergent spectral models.
The models embody the basic nonlinearity of equations
commonly employed to simulate the atmosphere and as
such should reflect in part the response of more compli-
cated simulations. Both models were integrated using
varying resolutions and the results were analyzed to
determine if there was convergence of solutions.

2. Brief description of model

The free surface spectral model used was developed
by Bourke (1972). The model is formulated in terms of
vorticity and divergence as dependent variables. The
final form of the free surface equations in spherical polar
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coordinates are (for details see Bourke, 1972)

9

1
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where

i) A, ¢, ¢ denote the independent variables longi-

tude, latitude and time respectively;

ii) @ denotes the radius of the earth and  the rota-
tion rate of the earth;

i) U=wu cosp, V=1 cosp where % and v are, respec-
tively, the eastward and northward components
of the horizontal wind vector V;

iv) £=k-V XYV is the vertical component of relative
vorticity ;

v) D=V-V is the horizontal divergence; and

vi) &=3-+d’ denote a time independent global mean
geopotential (®) and the time dependent per-
turbation (®).

The non-divergent form of the equations reduces to
9k 1

ot @ cos’ep

[ (UE)+COS¢—(VE)] 20V/a, (2.4)
I

with U and V constituting the purely rotational wind.

The spectral verison of these equations is obtained by
forming truncated expansions for vorticity, divergence,
geopotential height and the two derived wind fields.
These expansions are made in terms of orthogonal
spherical harmonics, i.e.,

[m|+J

£\ = Z > YN,

m=—2J l=|m|

(2.5)

and so on for other fields. Here

i) £ denote time dependent, generally complex
coefficients;

i1) Y =P (sing)e* ;P (sing)isanassociated Leg-

endre polynomial of degree ! and order m; and

1ii) J defines the rhomboidal truncation wavenumber.

Integration of the primitive equations is performed
using the spectral-grid transform method (Orszag, 1970;
Eliasen et al., 1970; Bourke, 1972). This involves per-
forming differentiations and linear operations in spec-
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tral space and nonlinear operations in grid space. This
procedure eliminates the troublesome complexity of the
interaction coefficient method and is much more effi-
cient. Transformation from spectral space to grid space
and vice versa is facilitated by the use of fast Four-
ier transforms; also Gaussian quadrature provides a
relatively efficient procedure for inverse Legendre
transforms.

3. Definitions

Some of the quantities used in subsequent sections
will now be defined.
a. Root mean square deviation

The mean square deviation- between two solutions 4,
B is given by the area integral over the sphere

1 27 /2
MSas)=— / / x%é,\) cospdpd\  (3.1)
4w Jo —7/2

where (¢) denotes day number and

X (¢7>\) = ‘le (¢; )\) —'ll/B (¢; >\)}

Yalp, N) and (@, N\) being the fields for solutions 4
and B. To obtain the expression for MS 4, 5(f) in terms
of spectral amplitudes, X is written in terms of spherical
harmonics in 3.1, i.e.,

MS 4 5(0)
[ml4+T

/ SRR SR PR

oz m=T 1=l

J o lal+J

X T 2 x"YpUe,\) cosp d dX

a=—J p=|g|

——ZZZsz X»?

4o m 1 a

27 /2
>< f / V(@)Y () coss dp dn
—m/2

=- Z PO Z xi"xp (=)™ ™65},

2 m 1 q
where
§¥=1 if x=y
=0 if x=y.
Hence
J |m|+J .
MSs()=3 2. 2 xi™™,
m=—J l=|m|

X* denotes the complex conjugate of X, and 4 and
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B will now refer to the truncation wavenumbers for
the two solutions. Finally in terms of the fields,

J o mi4+J

MSapt)=% X 2 [War(O)—¢sm(0]

m—J I=|m|

XWamO—¥em 01 (3.2)

Expressions in sub-sections b, ¢, and d below are de-
rived using similar algebra. The root-mean-square devi-
ation between the two solutions is given by

RMS 4, 8()=VMS 4,5(). (3.3)

In subsequent analysis spectral coefficients of the
streamfunction, ¢, are used. (The streamfunction is
related to vorticity by the relation £=V%)). Units of
the streamfunction are in km? sec™. The rms of stream-
function in equivalent dekameters is obtained by multi-
plying the value in km? sec™ by 0.7 (This is based on the
linear balance relation with f evaluated from an area
averaged value of ¢, i.e., p=230°).

When one of the solutions, say A, has the highest
resolution (i.e., 4=236) then MS, p(¢) and RMS 4, 5(f)
are referred to as errors in solution B.

b. Planetary wave error spectrum

The mean-square-error spectrum (EM.S) and root
mean square-error spectrum (ERM.S) are defined as a
function of wavenumber m and of time as

m|4-36

Iml+
EMSp(mb)= 2 ](ll/ss.z”‘—‘/'B,z’")(\bss.zm*—yl/zs,z”‘*), (3.4)

I=|m

ERMSg(m,t)=NEMSg(m,l). (3.5)
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Also of interest is the time average of EMSg(m,f). This
is given by

1 ~
EMSB(W)=— Z EMSB(m,t).

.Z\(Y =1

(3.6)

Time means are taken over N=8 days at 1 day
intervals.
c. Energy spectrum

The mean kinetic energy of the non-divergent model,
which is an invariant of the model, is given by

a® 5 \mi4s

E)=— ¥ 2 W+ . G.7)
4 m=—J l=|m| .
However, a quantity of more interest is
@ \migs ‘
E(m,t)=— ZI W40, (3.8)
4 l=|m

which gives the distribution of the mean kinetic energy
as a function of the planetary wavenumber m. The
time average of E(m,t) is given by

1 ~
E(m)=—73 E(m,t).
N =1

(3.9)

d. Eunstrophy spectrum

The mean enstrophy of a non-divergent model is also
an invariant and quantities similar to those for energy

SOUTHERN HEMISPHERE

Fig. 1. Initial global IGY 500-mb streamfunction field.
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F16. 2. Streamfunction patterns for the J =20 integration

can be defined. These are

[ml4-7
EN(mt)=3 ZZ|3 | L1 T3 O (), (3.10)
1 w
EN(m)=— 73 EN(m,t).
N =1

(3.11)

e. Number of degrees of freedom

The number of degrees of freedom of a model, which
is a function of the rhomboidal truncation wavenumber
is defined as

F)=20+1=(+1)

and in fact is the number of terms taken in the spectral
expansion.

(3.12)

4. Numerical experiments.

The numerical experiments have been concerned with
integrations from analytic and real initial conditions.

with Phillips’ analytic initialization at days 3, 6, 9, and 12.

Analytic initializations were studied following the
observation of pronounced truncation dependence of
the solutions during preliminary model testing; in view
of the common usage of such initializations it was con-
sidered that it would be of general interest to define a
convergent solution.

The real initialization experiments employed a global
IGY 500-mb streamfunction as given in the spherical
harmonic analysis of Merilees (1968). The initial field
is truncated at wavenumber J=15; a global plot of the
field is shown in Fig. 1. ~

The IGY data have been used in initializing both the
free surface and non-divergent models; the analytic
initialization has been used in the free surface model.

A prime objective of the experiments was to study the
convergence aspects of the solutions. Two solutions with
J=A and J= B may be said to converge if RM.54,5(f)
is below some small predefined value. This definition of.
convergence, however, is not very useful because it is
not clear what value is a tolerable difference. Another
way of looking at convergence is to consider a series of
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integrations with increasing resolutions J; with i=1, 2, It has been shown analytically that in a non-divergent
... m, Jn, being the maximum resolution; in general atmosphere such a flow pattern will move from west to
RMSjm,r:(%) decrease as ¢ is increased from 1 tom—1. east without change of shape with a phase of speed 9.6°
Also, values of RM.Sy; sis1(f) decrease as 4 is increased per day (Haurwitz, 1940; Neamtan, 1946; Silberman,
from 1 to m—1 and these should approach a limiting 1954; and Phillips, 1959). However, for a free surface
value asymptotically in the convergence region, if one model, the presence of divergence retards the rate of
exists. Although it is not possible to define this limiting progression of the pattern although the shape of the
value the asymptotic nature of the RMSyisi11(f) pattern is still approximately maintained (Phillips,
curves is recognizable. 1959).
Experiments with the Phillips initialization consisted
of integrating the free surface equations with J=35, 6,
The free surface model [Eqgs. (2.1) to (2.3)Jhasbeen 7, -, 15, 19, and 20. The mean height of the free sur-
integrated with a Phillips analytic initialization (Phil- face was 5.4 km. Initially the divergence was set to zero
lips, 1959). The initial streamfunction was and the geopotential was evaluated using a reverse non-
YO N) =YV 0 (@ N+t Vst (d\) Fys V54 (d,)\) linea}r ba]anc.e procedure. Use of a semi«implicit inte-
gration algorithm enabled the use of large timesteps—
with one hour time steps for integrations up to /=15 and 3/4
7 Q 8 1 @ hour for /=19 and 20. Integrations at J=35 and J=15
Yi'=— [-a>— and yit=— [—a*—. using an explicit algorithm with a 10-min time step were
385 10 also performed; an RMS analysis showed a negligible

a. Analytic Free Surface Model Integrations
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1G. treamfunction patterns for the J=35 integration at days 3, 6, 9, and 12.

8QDXWKHQWLFDWHG _ 'RZQORDGHG



MONTHLY WEATHER REVIEW

VoLuME 102

|\

S N

s |

L\
L

o

J

\.,

r .

R~ S AR - "= N

\\““. e 7

e
5 L

) N

\ e
W

L

B

)

3

T T ik

Fic. 4. Streamfunction patterns for the J=10 integration at days 3, 6, 9, and 12. ‘

difference between the semi-implicit and explicit calcu-
lations after 15 days.

Fig. 2 displays the streamfunction patterns for the
J=20runat 3, 6,9, and 12 days. This solution preserves
the shape of the initial streamfunction pattern and
yields an average (over the first 5 days) phase speed of
8.85° per day. Figs. 3, 4, and 5 display the streamfunc-
tion patterns for the /=35, 10, and 15 integrations re-
spectively. The 4-wave pattern of the initial stream-
function is easily recognizable. The J=15 solution
agrees well with the J =20 solution in both intensities
and phases up to day 9. At day 12 this solution becomes
slightly distorted although the phases are in fairly good
agreement. The J=>5 and 10 solutions agree with J=20
after 3 days. Both become distorted subsequently
although the J =10 solution still resembles the J=20
solution after 6 days. The J=35 solution in fact has
maximum distortion from the initial pattern after 8%
days, although the pattern recovers its original shape
after about 17 days.

Figs. 2 to 5 suggest that there is a convergence of
solutions at J=15. However, as will be shown by fur-
ther analysis, substantial convergence in fact occurs
at J=12. The oscillating nature of the J =35 solution is
evidently a feature of low wavenumber truncation.
This is demonstrated by plots in Fig, 6 where the ampli-
tude of the y;* term is plotted for integrations with
different truncations. Table 1, which displays the argu-
ments of the ¢;* term, emphasizes the truncation depen-
dence of arguments and indicates a convergence for the
higher resolution integrations.

Fig. 7 shows plots of RM Sy ;(f) against the common
number of degrees of freedom [for f(J) less than 231
(i.e., J<10) the figure is somewhat complicated by the
oscillatory nature .of solutions]. For the first five days
the deviations of solution with J=13 [ f(J)=278] and

. higher are small. Also, the improvement in solutions

obtained by increasing the truncation wavenumber
above J=13 is extremely small, thereby indicating a
convergence in solutions for J =13 and higher (although
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there is a substantial convergence at J=12). After 5 TaBLE 1. Arguments in degrees for different integrations
days the /=13 and 14 solutions deteriorate and J =15
or higher has to be used to obtain satisfactory solutions. ~ N°
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The analytic initialization integrations indicate that > /=10 /=0 7=2
: : : 4 0 360 360 60

onvergence of solutions is attainable in models such as 5231 394875 374,905 324,894
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F16. 7. RM Sy, 7(f) as a function of the common number of degrees
of freedom. Units of RM Ss, s are in km? sec™.

“used here. The oscillatory nature of the low wavenumber
truncation integrations indicates the importance of
using sufhicient resolution to avoid truncation dependent
results. (Truncation dependent results are also obtained
when mountains are introduced into the free surface
model. Studies using analytic mountains show that the
model has to be truncated at a larger wavenumber than
that of the mountains to maintain energy conservation,
see Puri, 1972). In the present series of truncation ex-
periments the substantial convergence above wave-
number 12 can be interpreted in terms of the initial
4-wave pattern. In a flow with no horizontal divergence,
the contribution of the nonlinear terms to the tendency
of ¢ is identically zero, resulting in a solid body rotation
of the pattern in which the amplitude of the y;* term
remains constant. In the free surface model, however,
the reverse nonlinear balance procedure initially intro-
duces variance in the geopotential components with
zonal wavenumber m=4 and 8 and subsequently in
m=12,16, .... These interact via the divergence equa-
tion with the streamfunction to produce variance in ¥
at m=38, 12,16, .... Analysis shows that the variance

above wavenumber 12 is negligible and thus any in- .

tegration retaining components upto wavenumber 12
gives reasonable solutions. This leads to the speculation
that a model must be truncated to resolve not only the
variance introduced by dominant first order inter-
actions, e.g. (m1=4)4 (m2=4)to give m=8, but also the
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variance introduced by subsequent second order inter-
actions, e.g. (m1=4)+ (m,=8) to give m=12.

It should be noted here that Hoskins (1973) has used
similar initializations to study the stability of the Phil-
lips wave. The results show that a wave of zonal wave-
number 4 is stable while one of wavenumber 8 breaks
down completely. On duplicating Hoskins’ integration
for the wave with zonal wavenumber 8 (and using trun-
cation wavenumber J=16) and then repeating the
calculations with J=24 and J =32, it was found that,
although the conclusion concerning the instability of
this wave is not truncation dependent, the details in
the integration are. The amplitudes of the Y8 coeffi-
cient at day 5 were 119, 209, and 179, of the initial
amplitude for the J=16, 24, and 32 calculations, respec-
tively, while at day 6 the percentages were 489}, 369,
and 369%.

b. IGY model inlegrations

Eight-day integrations were performed with the non-
divergent model truncated at wavenumbers J=:15, 21,
27, 30, 33, and 36. All integrations used single precision
arithmetic, although a calculation in double precision
was performed with /=30 to check the adequacy of
single precision. A root-mean-square comparison showed
a negligible difference between the two integrations.

Figs. 8 and 9 show global plots for the J=15 and
J=236integrations at days 1 and 4 respectively. The two
solutions look similar at day 1 but they diverge with
time and at day 4 there are significant differences be-
tween them. Although the main systems in the two cal-
culations can be identified, there are amplitude and
phase differences. Also, the J=15 solution has much
more short wave activity, a feature which shows up in
a more detailed analysis which will now be considered.

1) RMS4,5(t) pLOTS

The convergence aspects of the integrations may be
considered in terms of the quantity RM.S 4,z (f) as given
in (3.3). In Fig. 10 are plots of RMS36,7(f) with J=15,
21,27, 30, and 33, as a function of ¢ in days. As might be
expected, the RM S;,7 (f) decrease with increasing values
of J. A feature of the plots which suggests convergence
in solutions for /=27 and upwards for the first three
days is that although there is a reduction in RM Sy, (¢)
as J increases from 27 through 30 to 33, this reduction is -
small in comparison to that when J is increased from 15
through 21 to 27. Thus at day 2, RM.Ss6,7(2)=4.81,
2.85, 1.65, 1.06, 0.744 for J=15, 21, 27, 30, and 33, re-
spectively. The leveling off in the reduction of RMS for
higher resolutions indicates a convergence in these solu-
tions. The plots in Fig. 10 also show an increase in devi-
ations with time for all solutions.

Fig. 11 represents plots of RM.S 4, 5(t) for all pairs 4,
B against the common number of degrees offireedom.
The points of interest, i.e., RMSi5,01(8), RMSs1,2:(t),
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