On the Evolution of the QE II Storm. I: Synoptic Aspects

JOHN R. GYAKUM

Department of Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139

(Manuscript received 21 June 1982, in final form 26 October 1982)

ABSTRACT

The hurricane-force winds and heavy seas which battered the liner *Queen Elizabeth II* on 10 and 11 September 1978 were associated with an extreme example of a meteorological "bomb" as defined by Sanders and Gyakum. Despite the existence of surface buoys, and the relatively high density of mobile ships in the North Atlantic, real-time weather analyses, subjective forecasts, and numerical prognoses all erred in the intensity and track of this storm. In this study, deficiencies in the real-time surface analysis were compensated for by the addition of Seasat-A surface wind fields and previously-discard/conventional ship reports. This paper examines the synoptic aspects of this case with emphasis on physical mechanisms most likely responsible for the development.

The cyclone originated as a shallow baroclinic disturbance west of Atlantic City, New Jersey, and explosive deepening (≈60 mb/24 h) commenced once the storm moved offshore, and in association with cumulus convection adjacent to the storm center. The hurricane-force winds, a deep tropospheric warm core, and a clear eye-like center, all characteristics of a tropical cyclone, were associated with this storm at 1200 GMT 10 September.

A diagnostic assessment of baroclinic forcing reveals that, although the cyclone formed on the anticyclonic shear side of the 500 mb flow, a shallow lower tropospheric layer of cyclonic thermal vorticity advection existed over the surface cyclone center. Calculations using a diagnostic, adiabatic, inviscid quasi-geostrophic model, which can approximately replicate the shallow baroclinic structure of this cyclone, yield instantaneous vertical motion and deepening rates far less than those observed. It is suggested that the convection associated with this cyclone during its explosive deepening played a substantial additional role, as in tropical cyclone formation, in this cyclone's evolution.

1. Introduction

The meteorological conditions associated with the explosive intensification of the September 1978 cyclone which battered the liner *Queen Elizabeth II* (*QE II*), and in which the dragger *Captain Cosmo* was lost (NOAA, 1979) constitute the prime topic of this paper. We will see that tropical cyclone characteristics of wind, deep convection and a clear, warm eyeline center were all associated with this cyclone, even though this cyclogenesis occurred just north of 40°N in the western Atlantic Ocean. Fig. 1 shows the extreme horizontal pressure contrasts experienced by the freighter *Euroliner* as it passed through the mature storm's center on 10 September. The data contained in this study reveal this initially shallow surface low to have intensified nearly 60 mb in 24 h, thus qualifying it as an extreme case of a "bomb" as defined by Sanders and Gyakum (1980, hereafter referred to as SG).

The numerical prognoses of both the National Meteorological Center (NMC) and Fleet Numerical Weather Central (FNWC) missed virtually all of this intensification. The addition of conventional ship reports, available in real time, and of Seasat-A surface wind reports helped to compensate for deficiencies in NMC's real-time analysis of this case, so that we will be able to see unusually detailed fields of wind and mass in this "bomb." That such a well-documented explosively-developing extratropical storm contained important similarities to that of a tropical cyclone and that its intensification was missed by the operational numerical models demand that further study be undertaken.

This paper details the synoptic aspects of the explosive cyclogenesis, while a companion paper examines the three-dimensional dynamic and thermodynamic storm structure, and why such explosive development occurred. Section 2 describes the data set used to document this case. The mesoscale and synoptic-scale conditions surrounding the cyclone will be discussed in Section 3. Operational numerical model performance will be discussed in Section 4, while Section 5 examines the vertical motions and quasi-geostrophic forcing associated with this cyclone. Results are discussed and conclusions presented in Section 6.

2. Data base

Aside from the surface data commonly available in real time (Service A hourlies, Service C 6-hourly...
GLEST-east satellite visible and infrared images were obtained from the Satellite Data Services Division of the National Climatic Center (NCC) in Washington, D.C. Visible and infrared imagery of much higher horizontal resolution were obtained from the polar-orbiting Defense Meteorological Satellite.

Radar data were obtained from NCC in the form of nationwide summary charts of precipitation echoes, data sheets containing observations at individual radar stations, and film records of the actual plan position indicator (PPI). The individual stations used in this study are Atlantic City, New Jersey; New York, New York; Patuxent River, Maryland; and Chatham, Massachusetts; the locations of which are indicated in Fig. 2.

3. Mesoscale and synoptic overview

Fig. 3 shows mesoscale surface charts for 0000 and 0600 GMT 9 September 1978. At the former time, a surface front extended southeastward from the Great Lakes to Atlantic City, New Jersey. This frontal system separated an area of anomalously warm air prevalent in the southwestern Great Lakes from a relatively cool surface ridge centered over southeastern New York. This general pattern persisted for much of the month (Taubensee, 1978). Horizontal temperature contrasts in the frontal zone were in excess of 8°C/100 km. At this time, an incipient cy-

Fig. 2. Geographical locator map, in which circled letters represent radiosonde stations. The set of stations includes those mentioned in the text, plus radiosonde stations. International identifier numbers follow, wherever applicable: A-Atlantic City, NJ-72407; B-Fort Totten/New York, NY-74466; C-Patuxent River, MD-72404; D-Chatham, MA-74494; E-Trenton, NJ; F-Wallops Island, VA-72402; G-Dulles International, VA-72403; H-Portland, ME-72606; I-Caribou, ME-72712; J-Cape Hatteras, NC-72304; K-Greensboro, NC-72317; L-Buffalo, NY-72528; M-Albany, NY-72518; N-Sep Iles, Quebec-7281; O-Shebe, Nova Scotia-74399; P-Sable Island, NS-72600; Q-Stephenville, Newfoundland-72815; R-St. John's, Newfoundland-72801.

Fig. 1. Euroliner barograph trace for 9-10 September 1978.
clonic circulation center appeared about 20 km west of Atlantic City, New Jersey. Note the relatively strong pressure falls (>2 mb/3 h) along the New Jersey coast, and the associated strong low-level warm advection in this region. Precipitation was confined to the north of the surface trough in the form of thunderstorms with 13 km maximum cloud tops and echo intensities corresponding to rainfall rates of 50–100
mm h\(^{-1}\), as shown in the 2335 GMT radar summary (Fig. 4). By 0600 GMT the intensifying low (1008 mb) had moved northeastward offshore to just northwest of the NOAA buoy while the convective cells moved rapidly southeastward.

At this time, the developing cyclone was in the relatively clear air 60 km to the northwest of a rapidly developing convective cloud cluster, which fit Maddox's (1980) criteria for a mesoscale convective complex (MCC). This MCC and the surface cyclone center are shown in the infrared \(M_B\)-enhanced satellite image (Fig. 5). This enhancement, used by the National Environmental Satellite Service to indicate narrow ranges of cloud-top temperatures below \(-32^\circ\text{C}\), is described by Corbell \textit{et al.} (1976). The MCC can be traced back in time to a few developing cells in east-central Pennsylvania at 0000 GMT on the 9th and is seen as the small area of thundershowers with 10 km maximum tops in the 0335 GMT radar summary (Fig. 4). The horizontal area of cold \((< -32^\circ\text{C})\) cloud tops of the incipient MCC had increased from 2500 km\(^2\) at 0330 GMT to 105 000 km\(^2\) at 0600 GMT. The \(M_B\) enhancement shows cloud tops extending up to 170 mb \((-63^\circ\text{C})\). The MCC traveled an average of 23 m s\(^{-1}\) to the east-southeast, with a steering level of \(~700\) mb, and apparently moved independently of the east-northeastward moving surface cyclone. It reached a maximum size of 420 000 km\(^2\) at 1000 GMT.

The upper-level charts for 0000 GMT on the 9th are shown in Fig. 6. The most noteworthy feature is the rapidity with which the surface trough disappears with height. No associated trough exists at either the 500 mb or 250 mb levels. In fact, cyclonic relative vorticity in the Wallops–Fort Totten–Dulles triangle (indicated by WAL, JFK, and IAD in Fig. 6) is confined to levels below 890 mb. Cold high-tropopause air, which is characteristic of a subtropical atmosphere, is directly over the surface cyclone.

Once offshore, the cyclone assumed a more eastward track at an increased speed averaging 18 m s\(^{-1}\) between 0600 and 1200 GMT. Fig. 7 shows the time section of buoy observations at 40.1°N, 73.0°W, and at 40.8°N, 68.5°W. This deepening low clearly passed just to the north of the first buoy prior to 0700 GMT, and to the south of the second buoy between 1200 and 1300 GMT.

The storm continued on its eastward path and by 1200 GMT on the 9th had deepened to 1004 mb, as is shown in Fig. 8. The sea-level pressure (Fig. 9) analysis has been reinforced by the addition of Seasat surface winds.

The Seasat set adds considerable detail to the information given by the existing array of ship reports and buoy observations. This surface wind set was used to construct an isotach–isogon analysis from which divergences and relative vorticities have been computed on a one-degree latitude by one-degree longitude grid. This same procedure is used for 1200 GMT 10 September when Seasat coverage also exists. A rather high relative vorticity value of \(17 \times 10^{-5} \text{ s}^{-1}\) is computed at 1200 GMT 9 September at the surface cyclone center.

The surface system at this time was still quite shallow, as no associated trough is detected at 250 mb. Fig. 9 also shows the surface low to be southwest of the maximum mean tropospheric virtual temperature gradient. Wind reports from commercial aircraft at \(~250\) mb supplement the radiosonde information. Winds are assumed to be geostrophic at this level and, with the subtraction of the corresponding 1000 mb geostrophic wind vector based upon the sea-level pressure analyses, a thermal wind is computed for each data point. This procedure is the basis for the mean tropospheric temperature analysis in Fig. 9.
Fig. 5. GOES-east M_{e}-enhanced satellite image for 0600 GMT 9 September 1978. Circle indicates the surface cyclone center, which is located just south of Long Island at 40.1°N, 73.0°W.

Fig. 6. Heights (solid lines) and isotherms (dashed) on the (a) 850, (b) 500 and (c) 250 mb surfaces for 0000 GMT 9 September 1978. Winds and temperatures are plotted as in Fig. 3. Solid circles show a temperature-dewpoint spread < 5°C. Surface cyclone is indicated by an “L.” Commercial aircraft winds are plotted on the 250 mb chart.
Fig. 7. Hourly time section of buoys located as shown, with plotting convention as in Fig. 3. Sea-surface temperatures are indicated in °C.

Fig. 10 indicates the track of the low subsequent to 1200 GMT on the 9th, along with a composite SST analysis constructed using data for the preceding three-day period. Note the low center exists over a relatively uniform sea temperature of about 22°C until after 0000 GMT on the 10th. This fact, combined with the movement to the left of the upper tropospheric flow toward cooler mean tropospheric temperatures (see Fig. 9) implies a decrease of mean tropospheric static stability following the low center. The possibility for deep convection near the center thus increases with time. An elaboration of this point is presented in later sections. The strong low-level warm advection and its associated upward motion and pressure falls eastward of the low, clearly point to this shallow system moving to the left of the mean northwesterly tropospheric flow. This left movement of the surface low is opposite to what is usually observed in a typical, developing baroclinic wave (see Sanders, 1971; Austin, 1947). This same behavior was noted by Bosart (1981) for the incipient stages of the explosively-developing President’s Day 1979 cyclone.

By 0000 GMT on the 10th, the low was east of the 1000–250 mb thermal trough (Fig. 11) and thus appeared to be in a more favorable position to intensify than was shown 12 h earlier as a result of the associated positive thermal vorticity advection (PTVA). At this time, a slight anticyclonic curvature in the thermal wind pattern directly over the surface low is shown. Unfortunately, there are no reporting ships near the center to confirm the conservative central pressure estimate of 990 mb.

There is little doubt, however, of the extraordinary intensity of the surface system at 1200 GMT on the
Fig. 9. (a) Surface, (b) 1000–250 mb thickness and (c) 250 mb geopotential height analyses, for 1200 GMT 9 September 1978. Conventional format is used for the surface chart. Pressures, not shown, agree closely with isobars. Thickness isopleths in (b) are labeled with the corresponding mean virtual temperatures. Radiosonde observations are indicated with open circles, and commercial aircraft observations have no circles. Surface low center is indicated with an "L".

Fig. 10. Track of the surface cyclone along composite sea-surface temperature analysis based upon ship observations, the locations of which are indicated with dots, for the three-day period prior to 1200 GMT 9 September 1978. Temperatures are labeled in °C × 10.
changed to 35° in Fig. 12a. The 350° wind direction was indicated in real-time on the Service C teleprinter and was probably a faulty transmission that appears credible in the absence of the *Euroliner* information.

10th. By this time, the central pressure had plunged to an estimated 945 mb. As is shown in Fig. 12, the *Euroliner* had passed very close to the cyclone center. Indeed, the *Euroliner* barogram (Fig. 1) confirms the incredibly tight pressure gradient surrounding the surface system. The 55 mb pressure fall it experienced during its 12 h odyssey into the vicinity of the eye is followed by an even more dramatic 3 h pressure rise of 31 mb. The anomalously warm 1000–250 mb thickness value of 10780 m (Fig. 12b) above the surface is supported by three critical commercial aircraft observations (adjusted for time) of wind and temperature. The central thickness value was estimated from the 250 mb height analysis (10370 m over the surface low) and the 945 mb sea-level pressure estimate. This strong warm core over the surface center resembles that of a tropical cyclone. Unfortunately, the NMC final analysis shown in Fig. 13 did not capture either the extreme intensity or the correct position of the cyclone, due to the missing *Euroliner* observation, in spite of its real-time availability on the Service C teleprinter.

Note the wind direction of the ship just to the north of the NMC-analyzed surface center in Fig. 13 was...
and satellite imagery. The revised estimate of the correct position of the surface cyclone at this time is also confirmed by the GOES-east satellite image (not shown) and by the wind reports from orbit 1080 of Seasat. This plot of surface winds is shown in Fig. 14. Note the Seasat wind directions confirm the credibility of the aforementioned 35° wind direction. Although up to four possible directions are given for each Seasat point, the directions shown represent, in the author’s view, the most consistent wind pattern. In fact, this subjectively de-aliased wind field is quite similar to Hoffman’s (1982) objective representation of the winds, with the 35° wind direction introduced into his scheme (see his Fig. 7). With the originally-reported 35° wind direction, he retrieved a de-aliased Seasat wind field that was inconsistent with the synoptic circumstances of this case (his Fig. 4).

The observed (predominately Seasat) winds reinforce the Euroliner 1200 GMT pressure and wind report, and show the existence of hurricane force winds 110–170 km south and west of the surface center, while the resolution of these winds is sufficient to capture the minimum speeds of 10 m s$^{-1}$ close to the surface center. Our extrapolation of the horizontal pressure gradient yields a central pressure of 945 mb. An overly conservative estimate of the central pressure based on inviscid, cyclostrophic flow, the Euroliner report, and on the Seasat winds, yields a central pressure of 947 mb.

We have noted the cyclone’s warm core structure, and its hurricane force winds. We will now compare other characteristics with the tropical cyclone. Although the 110–170 km radius of maximum wind (RMW) is generally higher than the 65 km RMW usually found for a tropical cyclone (Gray and Shea, 1973), this distinction is a fine one; for RMW’s in hurricanes are highly variable and occasionally do range much higher than the mean. The surface relative vorticity approached 50×10^{-3} s$^{-1}$, and is comparable to corresponding values found by Gray and Shea in the vicinity of the hurricane’s eyewall region. Clearly, the profiles of wind and pressure bear a close resemblance to that of a tropical cyclone.

Satellite images covering the 25.5 h period prior to 1330 GMT on the 10th are shown in Fig. 15. Cyclone center positions were determined from the author’s surface analyses; and for off-synoptic times, spatial and temporal interpolation was used between these 6 h positions. The 1200 GMT 9 September M_2-enhanced image shows the northern edge of the large MCC to be 280 km south of the developing surface center (southeast of Cape Cod) whose cloud tops are no higher than 800 mb. Clouds over the surface cyclone continue to deepen until at 1700 GMT with the MCC and the surface low diverging, a small area of deep clouds over the surface cyclone extends above 350 mb (not shown). The area covered by deep convective cells continues to expand and the cloud tops rise during the next 12 h. The DMSP infrared image at 0350 GMT on the 10th shows the extreme intensity of the storm (centered at 41.9$^\circ$N, 55.1$^\circ$W), with the deepest convective cells as close as 100 km northeast of the center. Evidence for the strong surface circulation is seen in the form of open convection cells to the center’s southwest and the associated cold air pen-
Fig. 15. (a) As in Fig. 5, except for 1200 GMT 9 September 1978. (Misgridding: shift gridding northward ~30 km relative to image.) (b) DMSP infrared image for 0350 GMT 10 September 1978. Gridding is accurate. (c) As for (b) except for 0859 GMT 10 September 1978. (d) As for (b) except for the DMSP visible image for 1330 GMT 10 September 1978. Circles denote surface cyclone location in each part, except (d) in which the cloud free area at 44°N, 49.8°W shows the center.
image for 1330 GMT shows a cloud-free eye-like storm center, though the infrared image (not shown) for the same time shows the nearby clouds to be relatively shallow and the deep convection well off to the east and northeast to be lined up along the frontal band shown in Fig. 12.

When compared with Holliday and Thompson's (1979) sample of 305 typhoons at mean latitude 18°N, the extremely rapid development of this surface cyclone at 59 mb in 24 h at 42°N would represent a geostrophically equivalent 24 h pressure fall of greater than 27 mb. This would place the QE II case at the 57th percentile of their sample of 24 h typhoon deepening rates. The deep convection associated with the cyclogenesis along with the hurricane force winds, the clear eye-like center and the intense tropospheric warm core are all similarities to that of a tropical cyclone in this otherwise extratropical case.

4. Operational model performance

The NMC LFM-II initial analysis for 1200 GMT on the 9th, along with the resulting 12 h and 24 h forecasts are shown in Fig. 16. The model does proceed with cyclogenesis in approximately the correct locations. The major problem is with the intensity forecast. The central pressure forecast of 1000 mb for 1200 GMT on the 10th is 55 mb higher than what was actually observed. The corresponding wind and wave forecasts for the affected area were thus egregiously erroneous. As an example, the forecast maximum geostrophic wind just to the north of the center was \(\sim 15 \text{ m s}^{-1} \), while Fig. 12 shows geostrophic wind speeds to the north and west of the center to be 150 m s\(^{-1}\). The problem was exacerbated by the fact that even the real-time analysis of the situation at 1200 GMT on the 10th (see Fig. 13) grossly underestimated the severity of this storm. The LFM-II product is the result of a numerical integration of the primitive equations (see Shuman and Hovermale, 1968; and Gerrity, 1977), and its horizontal grid mesh length is approximately 120 km. For such a large system with observed winds of at least 15 m s\(^{-1}\) extending at least 1100 km from the storm center in all directions (see Fig. 14), the 120 km grid spacing does not appear to be the primary source of the problem.

The operational FNWC product is shown for the same three times in Fig. 17. The intensity forecast is similarly deficient to that of the LFM-II with the 999 mb center being forecast for 1200 GMT on the 10th. The slow displacement of the surface system is one additional problem the LFM-II did not have and may be attributed to the FNWC model's coarse horizontal resolution of about 381 km. This primitive equation model is discussed in Kesel and Winninghoff (1972).

The problem of underforecasting maritime cyclogenesis is well-known, and has been documented by Leary (1971), SG, and more recently by Silberberg and Bosart (1982). Since this deficiency has been relatively insensitive to the increase in the horizontal
grid resolution, the trend to faster computing machines and therefore to finer mesh models does not represent the sole solution to this problem.

In order to explore possible reasons for the numerical model's poor performance, the role that adiabatic, inviscid quasi-geostrophic dynamics may have played in this storm's evolution is examined in the next section. A careful compilation of all existing data for this case will be utilized in order to examine this role as accurately as possible.

5. Vertical motions and quasi-geostrophic diagnosis

Kinematically-computed vertical motion profiles for the Wallops–Fort Totten–Dulles triangle for 0000 GMT 9 September are shown in Fig. 18. These profiles were computed from wind data at approximately 30 mb intervals from 1000 to 100 mb. Omega is assumed zero at the lower boundary with a constant correction applied to the divergence profile so that omega is zero at 100 mb. The low at this time is
located approximately at the centroid of this triangle (Fig. 3). The slight upward motion, peaking below 940 mb in the uncorrected profile, indicates the triangle-scale upward motion is quite shallow, as is the surface low. Strong triangle-scale subsidence is shown in the middle and upper troposphere.

Vertical motion profiles have also been computed in the vicinity of the surface cyclone for 1200 GMT on 9 and 10 September. These profiles are based upon independent wind analyses at the surface and 250 mb from which the divergence calculations described earlier were performed. The divergence profiles, constructed for each grid point, are assumed linear from 1000 to 100 mb with observed surface and 250 mb values specifying these lines. The resulting kinematically-computed profile for grid point 40°N, 68°W is shown in Fig. 19. The corrected profile is found in the manner discussed earlier. The agreement in sign of the corrected and uncorrected ω's is encouraging.

However, our procedure also specifies the level of maximum vertical motion to be 550 mb—likely to be unrealistic for this time when the disturbance is still confined to the lower troposphere. In spite of this caveat, the horizontal distribution of ω at 550 mb, shown in Fig. 19, agrees qualitatively with the known locations of the low and of the MCC. By 1200 GMT on the 10th, with the low at or near peak intensity, the strong outflow at 250 mb over the surface cyclone, and northeastward to the deep cumulonimbus cells, is shown in the 250 mb wind observations and in the resulting divergence field (Fig. 20). The surface divergence pattern, also shown in Fig. 20, is generally consistent with the 250 mb divergences. The resulting vertical motions in and around the surface low have more than tripled in 24 h, with corrected ω's on the order of -50×10^{-3} mb s$^{-1}$ at four grid points near the center, though the likely breakdown of the linear divergence assumption
causes us to question the level at which the ascent maxima are located. These vertical motions are quite close to the -58×10^{-3} mb s$^{-1}$ mean value found in the eyewall region of tropical cyclones (see Gray and Shea, 1973).

To gain a quantitative understanding of the quasi-geostrophic forcing taking place during the cyclone development, the thickness field at 0000 GMT 10 September has been used to diagnose the instantaneous central pressure tendency. This tendency is computed from the geopotential fall found in the quasi-geostrophic model discussed in SG (a modification of the Sanders (1971) analytical model). Table 1 shows the values of the various parameters used in the computation, each of which is defined in the Appendix. The active deepening mechanism in the model is the cyclonic thermal vorticity advection over the surface cyclone center. The dimensionless static stability parameter $\gamma = 0.063$ represents the mean thermal stratification (referred to the moist adiabat) found in the 68 weather ship radiosonde observations described in SG. The computed instantaneous 12 h central pressure fall of 3.6 mb falls far short of that which is observed. From our knowledge of the storm's evolution, a conservative estimate of the instantaneous deepening rate at this time is 29 mb. The computations were made assuming λ to be $L/4$, the atmosphere to be saturated (thus minimizing the effective static stability), and the frictional filling effect.

Fig. 18. Profiles of kinematically computed omega (units of 10^{-3} mb s$^{-1}$) for the triangle defined by Wallops Island, Virginia (WAL), Fort Totten, New York (JFK), and Dulles International Airport (IAD).

Fig. 19. (a) Vertical motion profile close to the surface cyclone center (40°N, 68°W) for 1200 GMT 9 September and (b) corrected ω's for 550 mb. Units are 10^{-3} mb s$^{-1}$. L's indicate the surface cyclone positions. The curled area outlines the area enclosed by the MCC.
TABLE 1. Quasi-geostrophic parameters used in the model to compute the cyclone’s central pressure tendency at 0000 GMT 10 September 1978 [see Sanders and Gyakum (1980) for further details].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1800 km</td>
</tr>
<tr>
<td>a</td>
<td>1.16×10^{-5} K m$^{-1}$</td>
</tr>
<tr>
<td>τ</td>
<td>1.0 K</td>
</tr>
<tr>
<td>f_0</td>
<td>0.99×10^{-4} s$^{-1}$</td>
</tr>
<tr>
<td>η_0</td>
<td>1.8×10^{-4} s$^{-1}$</td>
</tr>
<tr>
<td>T_0</td>
<td>250 K</td>
</tr>
<tr>
<td>γ</td>
<td>0.063</td>
</tr>
<tr>
<td>λ/L</td>
<td>0.19</td>
</tr>
<tr>
<td>x_{10}</td>
<td>-3.3 mb/12 h (without λ correction) -3.6 mb/12 h</td>
</tr>
</tbody>
</table>

* Observed instantaneous central pressure tendency at 0000 GMT 10 September was -29 mb/12 h.

has been ignored. Thus, the maximum amount of intensification has been extracted from this quasi-geostrophic model, for the above-mentioned physical effects would each tend to reduce our computed central pressure fall.

As an additional check on quasi-geostrophic forcing taking place within this system, we have utilized a more complicated version of the previous model. The model differs from the previous one discussed in that the thermodynamic structure is specified in three distinct layers. The lowest layer has the maximum horizontal temperature contrast. The depth of each layer is determined by the synoptic analysis for each computation. The goal is to allow for vertical differences in the horizontal temperature contrast. Thus, we may focus upon the strong low-level vertical wind shear observed in this case. Further details of the model are given in the Appendix. Indeed, we have
seen this disturbance to be quite shallow through 1200 GMT on the 9th, and a much stronger baroclinic zone exists in the lower troposphere than in the upper levels (Figs. 3, 6 and 10). More generally, SG has shown the low-level baroclinicity as being particularly strong in the vicinity of oceanic “bomb” frequency maxima. Staley and Gall (1977) have used a four-level quasi-geostrophic model to show the importance of both low static stability and strong wind shear in the lower layers in the enhancement of short baroclinic wave growth. More recent theoretical work by Satyamurti et al. (1982) has shown small scale (∼1000 km) baroclinic waves to have their amplitude confined to the lower troposphere.

The expression for the geopotential tendency is given in the Appendix. We used the 1000–850 mb thickness field (derived in precisely the same manner as for the 1000–250 mb thickness fields and shown in Fig. 21a) to compute the low-level temperature structure. The winds used were 850 mb radiosonde winds and low-level cloud winds derived from the GOES-east imagery. Table 2 presents the results of our computations. The instantaneous deepening rate of 3.2 mb/12 h still falls far short of the observed estimate of 11 mb 12 h, but is an improvement over the zero deepening we would have computed had we used the total tropospheric thermal field for this time (Fig. 9), as is required by the cruder quasi-geostrophic model discussed in SG.

For these computations, γ is based on the observed stratification with respect to the moist adiabat, λ is assumed to be L/4, and frictional filling has been ignored. Even a halving of the low-level static stability (the one parameter about which we are most uncertain) will raise the central pressure fall to only 4.7 mb/12 h. As a more graphic illustration of the problem, the quasi-geostrophic vertical motion profiles over the center, on which these calculations are based, are shown in Fig. 21b. The vertical motion ω₁ is forced by positive thermal vorticity advection, while ω₁₂ is forced by the advection of earth vorticity by the thermal wind. This latter component is negligibly positive and, therefore, represents a slight brake on the cyclone's quasi-geostrophic intensification. A comparison with Fig. 19 shows this quasi-geostrophic estimate to be only a third of what the probable maximum ascent actually was over the center.

Further computations using this model in a relatively data-rich area, have been performed with the most optimal pattern of surface isotherms, found at 0300 GMT 9 September (similar to those found in Fig. 3). The resulting computed fall of 2.7 mb/12 h still falls short of the observed fall of 7 mb/12 h.

We conclude from all of this that shallow baroclinic forcing initiated the cyclonic surface development at 0000 GMT 9 September, but its accelerated development by 0300 GMT on the 9th, and indeed throughout its life cycle, cannot be accounted for by

![Figure 21](image)

Fig. 21. (a) 1000–850 mb thickness analysis for 1200 GMT 9 September with isopleths also labeled with the corresponding mean virtual temperatures (°C). The surface low center is indicated with an "L." Radiosondes are indicated with open circles, and satellite wind observation points have no circles. Units are in m. (b) Quasi-geostrophic profiles of ω₁ and ω₁₂ at λ = L/4. Units are 10⁻³ mb s⁻¹.
adiabatic (excluding the effect of latent heat release in saturated cyclone-scale ascent), inviscid quasi-geostrophic dynamics. The fact the operational numerical models also produced a comparably poor simulation of the observed explosive cyclogenesis indicates that incorporation of the model’s assumed superior physics (including non quasi-geostrophic effects) was not helpful in producing a successful simulation. Although data-deficient initial fields may have contributed to the poor forecasts, other physical processes may be responsible for the observed rapid development. The observed deep convection in and around the developing storm center is a plausible process through its dynamic and thermodynamic effects on the cyclone scale. These effects have not been incorporated into our models and may be improperly simulated in the operational models, as has been suggested by Tracton (1973).

6. Summary and Discussion

The powerful cyclone which battered the liner Queen Elizabeth II, and in which the dragger, Captain Cosmo, was lost originated as a shallow baroclinic disturbance over the middle Atlantic states. This disturbance appears to have developed just after 0000 GMT 9 September as a result of a favorable low-level thermal trough–ridge pattern due to rain-cooled surface air existing westward of a warmer maritime environment (Fig. 3). The low was “steered” by the low-level warm advection, associated with intense sea-surface temperature contrasts, to the left of the upper-level flow in contrast to the instantaneous motions of most lows. This early development and steering, dictated by the existing mesoscale environment, appears responsible for the surface cyclone environment becoming hydrostatically and dynamically less stable through increasingly deep layers with time. Thus, the mesoscale conditions in the storm’s incipient stages are linked with the storm’s subsequent explosive development on the synoptic scale.

The early development also took place in the clear air just to the northwest of a rapidly developing MCC. Many tropical cyclones also initially develop under similar circumstances, as has been shown observationally by Weickmann et al. (1977), and by Fingerhut and Gray in Grube’s (1979) work. Although we have described conditions which point to some of the early rapid cyclogenetic development to have been associated with the developing MCC (prior to 0600 GMT 9 September), the MCC appears to have been unrelated to the explosive cyclogenesis documented subsequent to 1200 GMT 9 September. The deep convection which seems important for the explosive development first appeared at 1700 GMT 9 September when the MCC was 450 km southwest of the cyclone center. The subsequent vertical and horizontal growth of this convection area was concurrent with the cyclone’s most explosive development.

The storm deepened nearly 60 mb in the 24 h period subsequent to 1200 GMT 9 September in association with an initially shallow lower tropospheric short-wave trough and with deep cumulus convection in and around the storm center. The rapidity with which this storm intensified and grew in size to supersynoptic scale by 11 September (James, 1979) makes such a class of cyclone even more dangerous to marine interests than are tropical cyclones. Operational numerical models missed virtually all of the cyclone intensification, and the NMC final surface analysis at 1200 GMT on 10 September overestimated the storm central pressure by 35 mb owing to the absence of the Euroliner observation. This datum existed on the Service C network and, along with the Euroliner weather log and barograph trace, proved to be crucial in more correctly estimating the storm’s central intensity. This fact should serve as a caveat to those whose sole contact with the current weather is based upon the use of final NMC-analyzed meteorological fields.

The Seasat-A surface wind fields also proved to be instrumental in capturing the cyclone’s central intensity and reinforced the Euroliner observations. The hurricane force winds shown by the Seasat instrumentation package represent important information to the meteorologist and to the mariner had they been available in real-time. This type of instrumentation package would be a major boon to the present surface maritime observing system.

We have shown the surface winds to be of hurricane force, storm-scale surface relative vorticities and ascent to be comparable to those found in tropical cyclones, and the rapid 24 h central pressure fall to be greater than those found in the majority of typhoons. The deep convection in and around the storm center, the clear eyewall center at the storm’s mature stage, and the intense tropospheric warm core...
are all features found in tropical cyclones. What distinguishes this cyclone from tropical cyclones includes its strong low-level baroclinic zone and asymmetric distribution of convection with respect to the center. The development of the upper-level trough occurred after the surface low appeared, in a manner similar to that discussed by Bosart (1981) for the President’s Day snowstorm.

Quasi-geostrophic computations of vertical motions and central pressure tendencies performed throughout the life cycle of this cyclone reveal solutions which fall far short of the “observed” vertical motions and intensification. However, the use of a three-layer quasi-geostrophic model did allow us to compute some deepening using a lower tropospheric thickness pattern at 1200 GMT 9 September, while the use of the troposphere field in a similar analysis yields zero deepening. At this time, the model does show upward motion sufficient to lift the potentially unstable air and set off the convection in and around the storm center a few hours later. Thus, while the quasi-geostrophic ascent was insufficient alone to account for the observed instantaneous intensification, this effect may have been critical for the cyclone evolution, through its triggering and organization of the convection. Suggestions have already been made in the literature that convection may be of critical importance in extratropical cyclogenesis (see, for example, Tracton, 1973; Rasmussen, 1979; Reed, 1979; and Bosart, 1981). Part II of this study will explore the probable role that cumulus convection played in the explosive cyclogenesis found in the QGHE II case.

APPENDIX

Further Details of the Model

The three-layer quasi-geostrophic model differs from that described in SG in that the horizontal temperature gradient is assumed independent of height from 1000 mb (P0) only up to some specified pressure level P2. A linear decrease with pressure of this temperature gradient takes place from P2 up to another specified pressure height P3, where it is assumed zero. Above this level, the horizontal temperature gradient is assumed zero to the top of the atmosphere. The expression used for the geopotential tendency at the surface low center χ10 is

$$\dot{\chi}_{10} = \frac{\partial}{\partial t} \sin(2\pi \lambda/L),$$

where L indicates the wavelength of the synoptic-scale thermal trough-ridge pattern, and λ is the upstream displacement of the surface center from the warm ridge. Therefore, $\dot{\chi}_{10}$ is the height tendency of the low center located a distance L/4 upstream from the warm ridge. In this model

$$\dot{\chi}_{10} = \frac{f_0 \sigma_0}{b_1} \left[\frac{q_i(A + A_4)}{P_3} \left(\frac{P_3}{P_0} \right)^{q_1} - \frac{(C + C_4)}{P_2} \left(\frac{P_2}{P_0} \right)^{q_1} \right. + \frac{(E + E_4)q_i}{P_0} + \frac{(D + D_4)}{P_2} \left(\frac{P_2}{P_0} \right)^{q_1} - \frac{(B + B_4)}{P_2} \left(\frac{P_2}{P_0} \right)^{q_1} \right. + \left. \frac{a_1 k_1}{b_1^2} + \frac{(k_1 - k_4)}{b_1} \right],$$

where the variables are as follows:

$$k_1 = \left(\frac{2\pi}{L} \right)^3 \frac{R a T_0}{T_0 \gamma} \left(\frac{\partial f}{\partial y} \right)_0,$$

$$k_4 = \left(\frac{2\pi}{L} \right)^2 \frac{\dot{T}}{\gamma T_0} \left(\frac{\partial f}{\partial y} \right)_0,$$

$$A = \left(\frac{-M_2 P_3^3}{(6a_1 - b_1)} \right) \left(\frac{3a_1 M_2 P_3^3}{(2a_1 - b_1)^2} \right) \left[\frac{3M_2 P_3^3}{(6a_1 - b_1)} \right] + \frac{2a_1 P_3^3}{b_1(2a_1 - b_1)} + \frac{M_2 P_3^3}{(2a_1 - b_1)} + \frac{a_1 M_2 P_3^3}{b_1^2},$$

$$B = \left(\frac{-3M_2 P_3^3}{(6a_1 - b_1)} \right) \left(\frac{6a_1 M_2 P_3^3}{(2a_1 - b_1)^2} \right) + \frac{2a_1 + b_1 M_2 P_3^3}{(2a_1 - b_1) b_1} + \frac{2a_1 + b_1 M_2 P_3^3}{(2a_1 - b_1) b_1} + \frac{a_1 P_3^3}{b_1^2},$$

$$C = \frac{2a_1 + b_1 M_2 P_3^3}{(2a_1 - b_1) b_1} + \frac{P_2}{b_1^2} \left[\frac{M_1 P_3 - k_1 \ln \left(\frac{P_2}{P_0} \right)}{b_1} \right] + \frac{M_2 P_3^3}{(6a_1 - b_1)} \left(\frac{3a_1 M_2 P_3^3}{(2a_1 - b_1)^2} \right) + \frac{P_3^3}{b_1^2} \left[\frac{(M_1 + P_3 M_2)}{b_1} \right] + \frac{2a_1 M_2 P_3^3}{b_1^2},$$

$$D = \frac{a_1 (P_3^3 M_2 - k_4)}{b_1} + \frac{P_3 (M_1 + P_3 M_2)}{b_1} + \frac{\left[\ln \left(\frac{P_2}{P_0} \right) + 1 \right]}{b_1} + \frac{3 M_2 P_3^3}{(6a_1 - b_1)} - \frac{6a_1 M_2 P_3^3}{(2a_1 - b_1)^2} + \frac{2 P_2 (M_1 + P_3 M_2)}{b_1} + \frac{2 (a_1 + b_1) M_2 P_3}{b_1 (2a_1 - b_1)},$$

$$D = \frac{3 M_2 P_3^3}{(6a_1 - b_1)} \left(\frac{6a_1 M_2 P_3^3}{(2a_1 - b_1)^2} \right) + \frac{2a_1 + b_1 M_2 P_3^3}{(2a_1 - b_1) b_1} + \frac{a_1 P_3^3}{b_1^2}.$$
\[E = \frac{-a_1 P_0 K_1}{b_1^2}, \]
\[A_4 = \frac{2 a_1 M_4 P_3^2}{b_1 (2 a_1 - b_1)}, \]
\[B_4 = \frac{(2 a_1 + b_1) M_4 P_3}{b_1 (2 a_1 - b_1)}, \]
\[C_4 = \left[\frac{M_4 P_2^2}{(2 a_1 - b_1)} + \frac{P_3 (P_3 M_4 + k_4)}{b_1} \right], \]
\[D_4 = \frac{2 M_4 P_2}{(2 a_1 - b_1)} + \frac{(M_4 P_3 + k_4)}{b_1}, \]
\[E_4 = \frac{k_4 P_0}{b_1}, \]
\[M_1 = \frac{4 R a \tilde{T}}{f_0 (P_2 - P_3) T_0} \frac{(2 \pi)^3}{L} \ln \left(\frac{P_0}{P_2} \right), \]
\[M_2 = \frac{4 R a \tilde{T}}{f_0 (P_2 - P_3) T_0} \frac{(2 \pi)^3}{L}, \]
\[M_4 = \frac{e}{\gamma T_0 (P_2 - P_3)} \left(\frac{2 \pi}{L} \right) \left(\frac{\partial f}{\partial y} \right)_0, \]
\[a_1 = \frac{f_0 \eta_0}{R T_0 \gamma}, \]
\[b_1 = 2 \left(\frac{2 \pi}{L} \right)^2, \]
\[q_1 = \frac{1}{2} + \frac{1}{2} [1 + 4 (b_1 / a_1)]^{1/2}. \]

The term \(a \) is a measure of the mean planetary-scale temperature gradient, while \(\tilde{T} \) is the perturbed part of the temperature field. Other symbols include \(R \) (the gas constant), \(T_0 \) (the mean tropospheric temperature), \(\eta_0 \) (the domain-averaged absolute vorticity), and \(f_0 \) (the Coriolis parameter).

The static stability parameter \(\gamma \) is defined as

\[\gamma = \left(\frac{d \ln T}{d \ln P} \right)_{adi} - \frac{\partial \ln T}{\partial \ln P}, \]

where \((d \ln T / d \ln P)_{adi} \) is the ratio of the gas constant to the specific heat at constant pressure (the dry-adiabatic lapse rate) for dry processes, and is the moist-adiabatic lapse rate for saturated processes, while \(\partial \ln T / \partial \ln P \) is the domain-averaged lapse rate.

REFERENCES

