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ABSTRACT

A large number of predictions from a regional numerical weather prediction model known as the Mesoscale
Atmospheric Simulation System (MASS 2.0) are verified against routinely collected observations to determine
the model’s predictive skill and its most important systematic errors at the synoptic scale. The model’s forecast
fields are smoothed to obtain synoptic-scale fields that can be compared objectively with the observations. A
total of 23 (28) separate 12 h (24 h) forecasts of atmospheric flow patterns over the United States are evaluated
from real-time simulations made during the period 2 April-2 July 1982. The model’s performance is compared
to that of the National Meteorological Center’s operational Limited-area Fine Mesh (LFM) model for this
period: Temporal variations in normalized forecast skill statistics are synthesized with the mean spatial distribution
of daily model forecast errors in order to determine synoptic-scale systematic errors.

The mesoscale model produces synoptic-scale forecasts at an overall level of performance equivalent to that
of the LFM model. Lower tropospheric mass fields are, for the most part, predicted significantly better by the
MASS 2.0 model, but it is outperformed by the LFM at and above 500 mb. The greatest improvement made
by the mesoscale model is a 73% reduction of cold bias in LFM forecasts of the 1000-500 mb thickness field,
primarily over the western United States. The LFM bias is the combined result of model overforecasts of surface
anticyclone intensity and underforecasts of surface cyclone intensity and nearby 500 mb geopotential heights.

The poorer forecasts by the MASS 2.0 model in the middle and upper troposphere resuit primarily from a
systematic mass loss which occurs only under a certain synoptic flow pattern termed the mass loss regime.
Problems with specification of the lateral boundary conditions and, to a lesser extent, erroneous computation
of the map factor seemed to contribute most to the systematic mass loss. This error is very significant, since
MASS 2.0 performance either equaled or surpassed that of the LFM model in forecasts of virtually every
meteorological field studied when mass loss regime days were excluded from the sample.

Two other important systematic errors in MASS model forecasts are investigated. Underforecasts of moisture
over the Gulf Coast states are found to be due in large part to a negative bias in the moisture initialization.
Also, overforecasts of surface cyclone intensity and 1000-500 mb thickness values over the Plains states are
traced to excessive latent heating resulting from the absence of a cumulus parameterization scheme in the model.
Awareness of these synoptic-scale forecast errors enables more effective use to be made of the (unfiltered)

mesoscale forecast fields, which are evaluated in the companion paper by Koch.

1. Introduction

Most reported studies of the capabilities of mesoscale
models to predict atmospheric flow patterns have either
relied upon detailed comparisons of model forecast
fields with observed verification data on a case study
basis, or have shown how a model can simulate gen-
erally known aspects of a specific mesoscale phenom-
enon. Rarely have comprehensive studies of mesoscale
model performance been conducted upon a large sam-
ple of model forecasts. An exception to this is the study
by Anthes and Keyser (1979), which presented forecast
skill scores for the Pennsylvania State University me-
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soscale model based on a 32-case sample. However,
they did not study the regional variation in forecast
errors to better elucidate the sources for the systematic
error component. Anthes (1983) discusses two other
limitations of most verification studies of mesoscale
models. First, most such studies have not reported skill
scores such as S, (Teweles and Wobus, 1954). Second,
many of those studies which have reported forecast
skills scores have inappropriately obtained them by
comparing unfiltered mesoscale forecast fields to syn-
optic-scale verification data.

This study documents the synoptic-scale perfor-
mance characteristics of a mesoscale forecast model
using a sample of model forecasts sufficiently large that
statistically significant skill scores can be determined.
An appropriate degree of smoothing is performed upon
the model output so that meaningful comparisons with
the synoptic-scale verification data can be made. Fur-
thermore, the most influential systematic forecast errors
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are determined by considering time tendencies in the
skill statistics along with the spatial distributions of
mean forecast errors. The probable sources for these
systematic errors are also investigated.

Two conditions must be met if truly systematic fore-
cast errors are to be distinguished from smoothed fields
oftemporally varying nonsystematic errors. First, a suf-
ficient number of statistically independent model sim-
ulations must be averaged together. Forecast samples
should be taken at various stages in the development
of baroclinic wave systems in an attempt to obtain sta-
tistically independent samples. The present study is
based on a large number of samples drawn at intervals
ranging from 1 to 14 days depicting a wide variety of
spring and early summer cases over the continental
United States. Despite this technique of variable in-
terval sampling, some nonrandomness remains in the
sample due to the fact that atmospheric circulation
systems typically display a high degree of coherence
for periods of at least a few days. With this one qual-
ification, the sample size in this study of 23 (28) cases
of 12 h (24 h) model forecasts is sufficiently large for
its statistical properties to approach that of the normal
Gaussian distribution. These important points will be
discussed at greater length in Section 3b and the Ap-
pendix.

Second, since models are continually being up-
graded, it is necessary to “freeze” a model in its de-
velopment during the course of the evaluation exper-
iment. The model being evaluated in this study is ver-
sion 2.0 of the Mesoscale Atmospheric Simulation
System (MASS 2.0). No other versions enter into the
sample here. The general structure of MASS 2.0 is de-
scribed by Kaplan et al. (1982). Recent versions of
MASS developed since the completion of this evalu-
ation study are discussed by Wong ef al. (1983). This
model has been under development since 1976 at the
Systems and Applied Sciences Corporation, with sup-
port from NASA/GSFC. Therefore, the verification of
MASS 2.0 by the NASA/GSFC evaluation team was
done independently of the group of scientists that de-
veloped the model.

This necessity to benchmark the model’s perfor-
mance level is demonstrated by the fact that papers
discussing mesoscale processes revealed by the MASS
model have already appeared in the scientific literature
(Kaplan ez al., 1982; Uccellini et al., 1983; Wong et
al., 1983; Zack et al., 1983; Kaplan ¢t al., 1984). Other
motivations for the present evaluation study include
the awareness that understanding of systematic forecast
errors at the synoptic scale 1) enables more effective
use to be made of the mesoscale forecast fields; 2) assists
in selecting cases for satellite data assimilations and
other model sensitivity studies planned with the MASS
model; and 3) is invaluable for making future model
improvements.

The synoptic scale performance characteristics of
MASS 2.0 are determined by comparing the filtered
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12-24 h model forecasts to same-case forecasts made
by the National Meteorological Center’s synoptic-scale
Limited Fine Mesh (LFM) model (Gerrity, 1977,
Newell and Deaven, 1981). Characteristics of the
MASS 2.0 system are contrasted with those of the LFM
in Section 2. The analysis methodology used to deter-
mine statistical skill scores and systematic errors is de-
scribed in Section 3. The overall relative performance
of the two models in this sample is documented in
Section 4. Important systematic errors uncovered by
the various methods used in this study are presented
in Section 5, along with discussions of likely sources
for these errors. A more detailed account of the sys-
tematic error results can be found in Koch et al. (1983).

2. Comparison of the MASS 2.0 and LFM model sys-
tems

A complete description of the MASS 2.0 model is
given in Kaplan et al. (1982). MASS 2.0 utilizes the
high computation speed of the CDC CYBER 203 vec-
tor processor to produce a 24 h simulation in 30 min
CPU time. The most important model characteristics
are summarized here and contrasted with those of the
LFM. Both models use the hydrostatic primitive equa-
tions. Generally speaking, the major differences be-
tween the models are that MASS 2.0 utilizes finite dif-
ference approximations of a higher order of accuracy,
a finer mesoscale mesh with grid nesting capabilities,
higher vertical resolution, significant level rawinsonde
data, and a planetary boundary layer (PBL) parame-
terization based on similarity theory, but lacks a cu-
mulus parameterization scheme such as the one used
in the LFM model. A more detailed discussion of the
model systems follows.

a. Numerical aspects

A summary of the comparisons between the models
is given in Table 1. MASS 2.0 has 14 sigma-p levels
(double the vertical resolution of the LFM), and uses
a grid spacing of 52 km true at 90° north latitude on
a polar stereographic projection (roughly one-quarter
of the LFM horizontal grid spacing). The MASS 2.0
model domain comprises a 142 X 106 matrix covering
the entire area depicted in Fig. 1. A subset of this area
covering mainly the data-rich United States, as depicted
by the interior rectangle in the figure, is used here for
forecast intercomparisons with the LFM model. MASS
2.0 uses sixth and second order accurate finite differ-
ence formulae to approximate the horizontal and ver-
tical derivatives, respectively. A diffusion filter is used
to remove noise at scales of twice the grid spacing. The
Euler-backward technique (Matsuno, 1966) is used for
temporal integration.

Model simulations were conducted for this evalua-
tion study at NASA/Langley Research Center. The
initial data for all simulations were obtained via tele-
phone link to the Bureau of Reclamation data base in
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TABLE 1. Comparisons between the MASS 2.0 and LFM model systems.

Aspect

LFM

MASS 2.0

Model numerics

7 sigma-p levels
190 km (53 X 45)
4th order
Smoothed leapfrog

Coordinate system
Grid (array) sizes
Accuracy of horizontal differencing
Time integration method
Model initialization

Data base

Matrix)
Hydrostatic-superadiabatic checks
Wind initialization

Lateral boundary conditions

" Post-processing
filtering

Physical parameterizations

Convective precipitation

Radiative heat transfer

Mandatory pressure data (LFM Initial Data

Dry convective adjustment
Sum of forecast divergent and analyzed initial
rotational wind components

Time-dependent tendencies obtained from
previous global spectral 12 h forecast using
boundary zone “sponge”

Sigma-to-pressure interpolation, and spatial

Conditional instability is reduced where
convective precipitation is forecast

Surface energy budget. Cloud effects

14 sigma-p levels

52 km (142 X 106) at 90°N
6th order

Euler-backward

Mandatory (LFM) and significant level
pressure data

Dry convective adjustment

Static initialization to remove external gravity
waves

Time-dependent tendencies obtained from
current LFM 12-24 h forecast using
boundary zone “sponge”

Sigma-to-pressure interpolation, filter to LFM
scale and cubic spline from 52 km to 190
km grid for objective evaluation

Precipitation may form, but no cumulus
parameterization scheme is included

Essentially same as LFM

dependent on mean relative humidity

Planetary boundary layer (PBL)

formulae

One fixed layer depth (50 mb)
Bulk parameterization and surface drag

Explicit prediction of variable depth PBL
Generalized similarity theory with treatment
of free convection

Denver, Colorado. This data set is the LFM Initial Data
Matrix created at Suitland, Maryland on an operational
basis, consisting of mandatory level rawinsonde and
remotely sensed sounding data, but modified to include
additional significant level rawinsonde data. A Cress-
man (1959) objective analysis technique is applied to
the combined data to produce map analyses on pressure
surfaces spaced at 25 mb intervals. Next, the composite
data set is vertically interpolated to the 14 sigma sur-
faces in the model. A static initialization, as discussed
immediately below, is then applied. Finally, cubic
splines are used to horizontally interpolate the data
from the 190 km LFM mesh to the 52 km mesoscale
mesh. The LFM terrain configuration is interpolated
onto this mesoscale grid (partially shown in Fig. 13c);
this differs from the high resolution terrain data base
mentioned in Kaplan et al. (1982).

The static initialization technique used is a varia-
tional scheme that constrains the vertically integrated
mass divergence to be zero in a least-squares sense (Sa-
saki, 1958). In effect, the external gravity wave mode
is suppressed, at least initially. Remaining imbalances
between the mass and momentum fields can generate
inertial gravity waves during model integration, al-

though they are strongly damped by the Matsuno
scheme after several hours of model integration. The
nonlinear normal mode initialization scheme men-
tioned in Kaplan et al. (1982) was not utilized here.
Proper specification of the initial divergent wind com-
ponent in limited domain models remains a complex
and controversial problem (Tarbell et al., 1981).

The MASS 2.0 horizontal domain is nested within
that of the larger scale LFM model. A common
“sponge” zone is employed near the lateral boundaries
of MASS 2.0, in that its variable tendency values
are weighted with those of the LFM as a function of
distance from the boundaries. The current LFM fore-
cast (i.e., the one initialized at the same time as MASS
2.0) is used to determine these tendency values; at times
between the initial, 12 h, and 24 h LFM forecasts, a
linear interpolation in time is used to calculate these
values.

The LFM Data Matrix is the sole source for objective
verification of both models. Consequently, fields fore-
cast upon the 52 km mesh had to be smoothed prior
to computing the forecast skill scores at the synoptic
scale. This postprocessing operation consisted of the
following three steps: 1) vertical interpolation from

8QDXWKHQWLFDWHG _

'RZQORDGHG



OCTOBER 1985

KOCH ET AL.

1717

FIG. 1. Domain of integration used in the MASS 2.0 model, and smaller region of actual forecast verification.
Grid size shown is 52 km true at 90°N on a polar stereographic projection.

sigma to pressure surfaces; 2) application of 20 passes
of a 5-point Shuman low-pass filter (Haltiner, 1971, p.
272) to the mesoscale fields to eliminate all but 4% of
the amplitude of the 2Ax wave (where Ax is the LFM
grid size); and 3) use of a cubic spline algorithm to
interpolate the smoothed grid point values on the 52
km mesh up to the 190 km mesh for verification with
the observed data.

b. Parameterization of physical processes

Both models contain explicit prediction equations
for water in the form of vapor only, which when con-
densed is either evaporated or forced to precipitate im-
mediately. Excess mixing ratio is regarded as liquid
water whenever the relative humidity in a given layer
exceeds 95 (75)% in the MASS 2.0 (LFM) model. The
quantitative precipitation forecast by MASS 2.0 re-
sulting from the lifting of moist air is equal to that part
of the condensed moisture from the model’s lowest ten
layers that reaches the ground following any evapo-
ration. Latent heating and evaporation associated with
such “large scale” precipitation processes are handled
similarly by both models.

Of the two models, only the LFM has a convective '

parameterization scheme. The LFM model defines
precipitation as convective whenever precipitable water
locally increases in a conditionally unstable layer where
relative humidity exceeds 75%. The conditional insta-

bility of the atmosphere is reduced under such con-
ditions by producing diabatic heating or cooling effects
resulting from phase changes; also, the model redis-
tributes momentum vertically at such points. In con-
trast, only grid scale-resolvable supersaturation can
contribute to precipitation formation in the MASS 2.0
model, which is to say that “convective” and “large
scale” precipitation are handled identically. Thus, la-
tent heating generated by condensing moisture within
a layer contributes to warming only that layer. The
vertical distribution of heating is not specified in the
MASS 2.0 model, although more recent versions of the
model have included various cumulus parameteriza-
tion schemes. '

The two models treat radiative heat transfer in a
similar fashion. A surface energy budget approach
common to many mesoscale models (Anthes and
Warner, 1978) is used by both models to forecast
ground temperature. No evaporation of soil moisture
was permitted in version 2.0 of MASS, although a more
recent versionincludesasoil moisture budget; the conse-
quence of its inclusion in one case is demonstrated by
Zack et al. (1983).

One critical difference between the physical param-
eterizations used in the two models is the way the PBL
is treated. The LFM model resolves the PBL with only
two levels, and fixes its depth at 50 mb. Simple bulk
parameterizations are employed, wherein the surface
stress is estimated from drag laws. The MASS 2.0 model
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employs a variable depth PBL that is much better
resolved in the vertical (¢ = 1.0, 0.96, 0.89, 0.82, 0.75,
0.68 in MASS 2.0 vs. ¢ = 1.0, 0.95,0.72 in the LFM).
Planetary boundary layer physics in the MASS model
are parameterized by use of a generalized similarity
theory treatment of heat, moisture, and momentum
fluxes (Deardorff, 1972). The effects of thermal strati-
fication and coupling of the surface layer to the PBL
are also taken into account (Kaplan ef al., 1982). The
value of such an integrated parameterization approach
has been stressed by Driedonks and Tennekes (1981).

3. Methodology

In this section, criteria for model case selection are
described, the forecast skill statistics are defined, and
three approaches for determining the systematic com-
ponent of model forecast errors are discussed.

a. Case requirements

The forecast sample is composed of cases drawn
from the period 2 April to 2 July 1982. During this
period, MASS 24 h simulations were attempted every
weekday except Fridays since the verification data for
Friday runs could only be collected for twelve hour
periods. All runs were initialized with 1200 GMT data
bases. A case was considered totally successful only if
all of the following requirements were met:

1) The 1200 GMT LFM Initial Data Matrix and
auxiliary data base were successfully acquired from the
Bureau of Reclamation telephone data link.

2) The 12 h and 24 h LFM forecasts and verification
data were similarly acquired.

3) The MASS simulation was successfully run for
a 24 h period and all derived variable fields were plot-
ted. .
4) Inspection of the initial state of the primary me-
teorological fields by the NASA/GLAS evaluation team
showed no major data omissions, bias, or inconsisten-
cies.

The first two criteria created the most frequent
problems, because the telephone data link proved
rather unreliable. Consequently, although every at-
tempt was made to acquire a sample of 30 cases during
this period, in actuality 28 verifications of 24 h forecasts
and only 23 verifications of 12 h forecasts were con-
ducted.

b. Objective statistical evaluation procedures

A statistical evaluation was performed upon many
of the filtered forecast ficlds. The statistics, averaged
over the interior domain in Fig. 1, are:

1) root-mean-square error (RMSE), a measure of
average model forecast error;
2) -the BIAS statistic, obtained by taking the differ-
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ence between the field means of the forecast and ob-
served variables; '

3) the S, (S1) score (Teweles and Wobus, 1954), a
measure of errors in horizontal gradients; and

4) a modified version of the spatial correlation ma-
trix scheme (CORR), to account for spatial offset biases
(Tarbell et al., 1981).

The first three statistics have been frequently used
in model evaluations (Anthes, 1983). The RMSE mea-
sures the average error, but supplies no information as
to what portion of the error is systematic and what
portion is random. The BIAS statistic also includes the
effects of both systematic and nonsystematic error
components. Techniques for isolating the systematic
forecast errors in the two models are described in the
Section 3c.

The S1 statistic measures that part of the total error
related to errors in forecast horizontal gradients. It can
be shown that the calculated value of S1 is sensitive to
the choice of the grid spacing whenever the forecast
gradient is uniform (F, = const, F,, = 0) and the ob-
served gradient is nonuniform, or vice versa. In par-
ticular, the most intense parts of the nonuniform gra-
dients will be underestimated if any grid points are
skipped in the S1 formulation (as in Newell and
Deaven, 1981 and Anthes and Keyser, 1979). This re- .
sults in a calculated S1 score smaller than the true S1
score. The problem remains even though the same for-
mulation is utilized in evaluating the performance of
two different models either having the same grid or
being compatibly filtered, because the models will not
produce identically uniform gradients throughout the
entire model domain. Thus, skipping grid points in
calculating the S1 score might unfairly shed better light
on one or the other model. In order to avoid these
problems in interpretation, the S1 scores to be discussed
here are computed using a second-order accurate, cen-
tered finite difference approximation to the horizontal
derivative of each variable. As previously discussed,
the MASS 2.0 forecast fields were previously filtered
to the scale resolvable by the analysis grid to allow for
a valid comparison between the S1 scores of the LFM
and MASS models. v

A less conventional measure of forecast skill is pro-
vided by the CORR statistic, which is the maximum
absolute value in the spatial correlation matrix obtained
by shifting the observed and forecast fields at various
displacements relative to each other. The mean of the
initial state across the statistical domain (Fig. 1) is sub-
tracted here prior to computing the CORR value to
remove large forecast persistence effects. Next, the
forecast and observed field mean values are subtracted
to better highlight spatial maxima in the correlation
matrix, and thus make differences between the two
models more evident. The CORR value gives credit
for correct forecasts of the shape and intensity of a field
in cases where conventional statistics would show poor
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performance because of small phase shift errors in the
forecast fields. Anthes (1983) gives an argument for
how this difference might be especially important for
mesoscale models, which predict more intense, smaller
scale phenomena than do larger scale models.

Relative forecast performance levels are established
in terms of percentage differences between the two
models computed from each of the four statistics dis-
cussed above using:

2 IS, p) — Sudi, YN
%DIFF(p) = ——*
MAX[S.(i, p), Sudi, p)/N

(D

M=z

[

i=]

where S;(i, p) and Sp(i, p) are the LFM and MASS
model statistic (RMSE, S1, BIAS, or CORR) for a given
forecast day (i) and field (p) within the N (23 or 28)
case sample. The fields considered are (p =1, ..., 8)
1000-500 mb thickness, surface-500 mb mean relative
humidity, 850 mb wind speed, 300 mb wind speed,
sea level pressure, and the geopotential fields at 300,
500, and 850 mb.

The significance of sample mean differences is de-
termined using a two-tailed Student’s t statistic to test
the null hypothesis that there is zero difference between
the population means of the difference statistics from
the two models. In other words, this test is performed
to see whether, in an average sense, the differences be-
tween the LFM and MASS 2.0 model performances
in the sample are statistically significant. Since we are
comparing forecasts from two models that are initial-
ized similarly, the two forecasts are not truly indepen-
dent of each other. Therefore, the form of the Student’s
t statistic appropriate to this study is that for “paired
observations” (Romano, 1977):

D(p)

(P = — =,
D= S oV

@

where N is the number of paired differences comprised
of those days when statistics were obtained for both
models;

N N
D(p) = 2 [Su(i, p) — Su(i, D)I/N = 2, D, p)/N
i=1

i=1

3

is the mean of the paired difference statistics for a given
field, and

i=1 i=1

NN-1)

N N
N X [DG, p)) - [Z D(i, p)Py 12
Sa(p) ={ }
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N
S DG, DY %
N i=1 =
- < (7 1){ T [D(p)]z} > @)

is the sample standard error of D(p).

This ¢ statistic is appropriate as a test of the null
hypothesis only if the population variances are un-
known but equal, and if the number of independent
pair samples D(i, p) is large enough that the sampling
distribution of D(p) is approximately normal in form.
The number of degrees of freedom for this test statistic
is v = N — 1, assuming independence of the sample
members. A high (99%) probability level is used in this
study as the threshold value for assigning statistical sig-
nificance to the model differences D(p) to allow for
any deleterious effects of dependency in the forecast
sample. These matters are explored further later.

¢. Procedures for determining systematic model fore-
cast errors

A conventional approach for separating systematic
from nonsystematic forecast errors is to compute the
average difference between the predicted field and the
verification field over an ensemble of cases and to con-
tour the difference fields (e.g., Baumhefner and Dow-
ney, 1978; Silberberg and Bosart, 1982). A sufficient
number of cases must be considered before any sig-
nificance can be attached to the results, for otherwise
the “difference maps” may also contain smoothed fields
of temporally varying nonsystematic errors. It will be
shown that consistent results from the various proce-
dures comprising our approach increase confidence in
our findings. The general approach used here to iden-
tify the most significant systematic errors considers dif-
ference map analyses together with time series of nor-
malized skill statistics.

1) NORMALIZED AND MASS-AVERAGED DIFFER-
ENCE STATISTICS

The first procedure involves manipulation of the skill
scores defined earlier. A “normalized difference statis-
tic” was first calculated:

D¥(i, p) = [St(, p) — Sudi, D)V/S(p), (5
where S(p) is defined as
N
S(p) = Z [Stl, p) + Sadi, p))/2N. (6)

i=]

Thus, DX(i, p) is the difference statistic normalized by
the average of the particular statistic over the N case
days. This normalization was done only on the RMSE
and BIAS statistics, since the S1 and CORR statistics
are already dimensionless. Next, an average of the sep-
arate DX(i, p) values for the geopotential fields at 300,
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500, and 850 mb and the sea level pressure field was
calculated for each case day to obtain the normalized
and mass-averaged difference statistic D(i). Finally, the
D(i) values were plotted as a time series in order to
search for marked transitions in MASS 2.0 model per-
formance relative to that of the LFM model. It will be
shown later how examination of these time series led
to isolation of a significant systematic forecast error.

2) EVALUATOR SYSTEMATIC ERROR ANALYSIS

The second procedure is one whereby the NASA/
GLAS model evaluation team partitioned the daily dif-
ference field maps (obtained from the smoothed model
output) into forecast amplitude and phase errors. In
this procedure, centers of “significant” error, defined
as those values that exceeded the approximate mean
12 h forecast RMSE (e.g., 20 m for 500 mb geopotential
fields), were first identified. Next, significant phase er-
rors in the model forecasts were defined as any dis-
placement between the observed and forecast feature
which exceeded 300 km (~2Ax). The term “phase er-
ror” used here does not connote any wavelength de-
pendent error; rather, it strictly refers to a vector dis-
placement error in forecast location of a feature. The
task of determining phase errors was fairly straightfor-
ward for displaced centers with closed contours. Dis-
placements in ridge and trough locations were deter-
mined with less certainty by shifting a plastic overlay
with several contours of the observed feature over the
forecast field in such a way that the axes of the observed
and forecast features coincided. Since incorrectly pre-
dicted tilts in ridges and troughs resulted in a variation
in the phase error along the axis of the feature, only
the maximum error was noted.

The amplitude error was then determined as the er-
Tor remaining after subtracting out the phase error. A
more appropriate term would be “magnitude error”
in the general case where an error does not occur at
the observed field extrema. However, “amplitude er-
ror” is appropriate in this study, since geopotential,
thickness, and relative humidity errors were classified
according to whether the error occurred closer to an
observed maximum (ridge) or to an observed minimum
(trough). Note that negative amplitude errors will al-
ways refer to a forecast feature having a lower value
than the observed feature. Accordingly, a negative am-
plitude error for a trough means that the trough forecast
was too intense. '

Individual amplitude and phase errors were recorded
by state and regrouped into eight geographical regions
of similar size covering the continental United States
and adjoining coastal waters. Finally, the average error
over the course of the entire experiment was computed
within each region. Average amplitude errors were
considered significant or meaningful only for a region
in which at least 67% of the error observations were of
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the same sign and there were at least 6 total observa-
tions. Average directional phase errors were considered
significant or meaningful if 67% of at least six obser-
vations deviated by less than +45° in direction from
that of the mode. This procedure, henceforth termed
the “evaluator systematic error analysis,” was applied
to forecast fields of mean relative humidity, 500 mb
geopotential, 1000-500 mb thickness, and 500 mb ab-
solute vorticity.

3) ERROR HISTO-MAP ANALYSES

Systematic forecast errors in the smoothed fields of
sea level pressure, S00 mb geopotential, and 1000-500
mb thickness were additionally subjected to a third
procedure similar-to the method first developed by
Leary (1971) and later adapted by Silberberg and Bosart
(1982) to a study of systematic LFM model forecast
errors. Individual errors in these fields were tabulated
in 500 km X 500 km boxes in which the surface cyclone
or anticyclone center was observed at verification time.
The time average of all such errors within each box
was then entered at the center of the box. Groups of
nine boxes then supplied information to a 1500 km
X 1500 km larger box, with some overlap allowed to
provide inter-box continuity (Fig. 2). Within each of
the eight large boxes (corresponding roughly to the eight
regions used in the subjective procedure discussed
above), the amplitude and phase (displacement) errors
were tabulated in histogram form. The total number
of observed cyclone and anticyclone centers not fore-
cast and forecast centers not observed within each large
box were also computed. These displays will be referred
to as error ‘‘histo-maps”, and should be thought .of as
a more objective means of determining the regional
variations in systematic model forecast errors than the
evaluator systematic error analysis method.

4. Overall statistical comparisons between the models

A comparison between the MASS 2.0 and LFM
model forecast skills is shown in Table 2, which gives
the average RMSE and S1 skill scores for 24 h forecasts
of smoothed sea level pressure and 500 mb geopoten-
tial. The only difference in performance levels between
the two models that is statistically significant at the
99% probability level [from (2)] is the slightly better
S1 score for 500 mb geopotential forecasts by the LFM
model. The other scores indicate that circulation pat-
terns large enough in size to be resolved by the LFM
model are predicted with about the same levels of skill
by both models.

Another perspective on the relative abilities of the
two models to properly forecast the sea level pressure
fields can be gained from Table 3, which shows the
total number of sea level cyclone and anticyclone cen-
ters missed in the model forecasts according to the error
histo-maps. Both models underforecast the occurrence
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RG. 2. Distribution of eight large (double-bordered) boxes and smaller (S00 km X 500 km) component boxes used in construction
of an error “histo-map.” Each large box is composed of nine smaller boxes in which the raw data is entered. Data from alternate
small boxes (e.g., highlighted box) supplies information to surrounding large boxes (e.g., #1, 2, 3, 4) to provide for spatial continuity.

of observed cyclone centers much more often than they
overforecast them. The MASS model also displayed a
preference for underforecasting the occurrence of an-
ticyclone centers. In contrast, the occurrence of anti-
cyclone centers was overforecast twice as often as un-
derforecast by the LFM model. It is also of interest to
note that most of these various model characteristics
were most prominent at the 12 h verification period.
Additional information about the relative forecast
performances of the two models is provided by the
height variation of the percentage differences in the
forecast skill scores computed from (1) and subjected
to the ¢ statistic test [(2)-(4)]. These results are shown
in Fig. 3 for both 12 h and 24 h verification periods.
In general, the MASS model outperformed the LFM
model in forecasts of the lower-tropospheric mass fields.
However, the LFM model was clearly superior in fore-

TABLE 2. Average 24 h LFM and MASS 2.0 model

forecast skill statistics.
Average RMSE Average St
MASS MASS
Field 20 LFM 2.0 LFM
Sea level pressure
(mb) 32 3.0 439 43.6
500 mb geopotential
(gpm) 28.5 25.2 25.5 239

casts of upper-tropospheric mass and momentum
fields. The largest difference anywhere is a 73% reduc-
tion made by the mesoscale model over the LFM in
bias score errors in the 1000-500 mb thickness (mass)
field made by the mesoscale model over the LFM (to
be discussed below). In this case, the LFM model ex-
hibited a strong negative (cold) bias. Notice also that
nearly twice as many significant differences occurred
at the 12 h period than at the 24 h period, a result
which is qualitatively in agreement with that obtained

from Table 3. This would seem to indicate that the

two models exhibited increasingly similar levels of per-
formance at the synoptic scale with longer forecast in-
tervals. Unfortunately, skill scores at 36 h and 48 h
could not be computed to test this tentative conclusion.

5. Nature and probable cause of major systematic
forecast errors

Four important systematic errors, three of which
were exhibited by the MASS 2.0 model and one of
which was exhibited by the LFM model, were isolated
for further study. These errors are ones which either a)
had a major impact on the synoptic-scale forecast per-
formance of one of the models and could be docu-
mented by use of at least two of the approaches dis-
cussed in Section 3c, or b) had special significance for
application of the MASS 2.0 mesoscale fields to the
problem of forecasting the preconvective environment.
It will be seen that errors EOQ and E1 below fall under
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TABLE 3. Number of significant* sea level pressure centers missed in 12 h and 24 h forecasts by the MASS 2.0 and LFM models.

Pressure centers

Anticyclones

Cyclones
Model Error{ 12h 24 h Total i12h 24 h Total
LFM NOC 1 4 5 7 7 14
MASS 2.0 NOC 1 5 6 6 0 6
LFM NFC 13 10 23 2 5 7
MASS 2.0 NFC 8 9 17 7 4 11

* Significance determined by presence of at least one closed isobar (2 mb intervals).

+ NOC = forecast center not observed (overforecast occurrence).

NFC = observed center not forecast (underforecast occurrence).

category “a”, error E2 falls under category “b”, and
error E3 (although perhaps not one of the most major
errors at the synoptic scale) falls under both categories.
Three of these errors (EO, E1, and E3) are composite
errors resulting from the synthesis of seemingly related
individual errors in forecasts of several of the meteo-
rological fields; the composite approach enables much
easier identification of the underlying probable source
for the individual errors.

a. Cold thickness bias and related problems over the
western states in LFM forecasts (E0)

It has previously been shown (Fig. 3) that the MASS
2.0 model produced a very significant improvement
over the 1000-500 mb thickness fields predicted by the
LFM model, which were strongly biased on the cold
side. The regional variation of forecast thickness errors
determined from the “‘evaluator systematic error anal-
ysis” (see Table 4) shows that the LFM cold bias was
a dominant feature only over the western half of the
United States.

The relationship of forecast errors in the 1000-500
mb thickness field to those in its component fields
(geopotential heights on the 500 mb and, approxi-
mately, sea level pressure surfaces') was obtained from
the “error histo-maps.” As an example, the error histo-
map for 12 h anticyclone forecasts is presented in Fig.
4; note that this is the time period for which the LFM
thickness errors are most pronounced and widespread
(Fig. 3 and Table 4). It is evident that the LFM model
systematically overforecast anticyclone intensity over
the western half of the United States. Furthermore, the
number of anticyclone centers was much more fre-
quently overforecast than underforecast in the same
region (NOC/NFC = 7/2). These findings further clar-
ify the meaning of Table 3.

! The procedures used to extrapolate surface pressures below the
ground to sea level or 1000 mb may differ slightly between the models,
and are naturally approximate due to their fictitiousness.

The summary of findings from the error histo-map
study appears in Table 5. Overforecast surface anti-
cyclone amplitudes and associated negative thickness
biases occurred in the LFM forecasts over the western
half of the United States at both verification times.
Systematic errors in LFM forecasts of surface cyclone
amplitudes were much less prominent. However, this
is not to say that significant errors in LFM cyclone
forecasts were not made, since 23 cyclones were simply
not even predicted to occur by this model (Table 3).
The explanation for this fact is that the LFM model
failed to predict the occurrence of a large number of
weak cyclones, primarily over the mountainous western
states where the model’s overprediction of both the
number and intensity of anticyclones had the effect of
inhibiting cyclone formation. Table 5 also shows that
the LFM model characteristically underforecast thick-
ness values surrounding observed surface cyclones over
the western half of the United States, just as it did with
regard to anticyclones. The average error value for as-
sociated thickness troughs is considerably larger, in fact,
than that for thickness ridges in this region (Table 4).
Silberberg and Bosart (1982) also found that LFM 24
h thickness forecasts were negatively biased near ob-
served cyclone centers over the western states. The
cause for the biased forecasts is different from that in
the anticyclone case, however; instead of overpredicted
surface pressure being the source, it is underpredicted
500 mb geopotential height values.

The MASS 2.0 model did not display any of these
systematic errors over the western United States (un-
derforecast thickness values, overforecast surface an-
ticyclone intensity, underforecast 500 mb geopotential
heights over surface cyclones, overpredicted occur-
rences of anticyclone centers, and (to a lesser extent)
underpredicted cyclone appearances). In fact, the only
systematic error in these various fields over the western
half of the United States which could be found was a
tendency to “dig” vorticity maxima too far southward
over the southwestern and southern plains states. These
remarkable improvements over the Rocky Mountain
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—) 12 H FORECAST SIGNIFICANCE BASED ON STUDENT'S
— 24 H FORECAST T-TEST STATISTIC WITH P> 0.99

MASS 2.0 FORECAST MASS 2.0 FORECAST SAMPLE

FIELD STAT | SIGNIFICANTLY WORSE | SIGNIFICANTLY BETTER SIZE
THAN LFM FORECAST | THAN LFM FORECAST | 12H 24H
RMSE |- - 23 28
300 MB s1 - 23 28
WINDSPEED |CORR|- - 23 28
BIAS |- — 22 25
RMSE |- (o] - 23 28
300 MB S$1 | -{ 23 28
GEOPOTENTIAL |[CORR{— —- 23 28
BIAS O— - 22 25
RMSE |- D — 23 28
500 MB S1 R — 23 28
GEOPOTENTIAL |CORR |- D - 23 28
BIAS |- ® -4 22 25
RMSE - ® - 23 27
850 MB s1 |- ® — 23 27
WINDSPEED |CORR |~ 4 o 1
BIAS |- % - 2 25
RMSE [~ —H 23 28
850 MB s1 | O - 23 28
GEOPOTENTIAL [CORR |- ® - 23 28
BIAS |- ® —H 22 25
RMSE | ® - 23 28
MSL S1 ® - 23 28
PRESSURE |CORR|— ® - 22 26
BIAS |- ). at —H 22 25
RMSE |- —O - 23 28
1000-500 MB s1 + —H 23 28
THICKNESS |CORR |- - 23 28
BIAS |~ y—+—0O— 22 25
RMSE — —~ 23 28
MEAN RELATIVE| S1 - 23 28
HUMIDITY  |CORR}— - 23 28
BIAS } - 22 25

-80 -60 -40 -20

0 +20 +40 +60 +80%

PERCENT DIFFERENCE

FIG. 3. Percentage differences in forecast skill scores between MASS 2.0 and LFM
models at the synoptic scale based upon entire case sample. Percentage differences are
shown only if they are significant at the 99% level, according to (2).

states were made by the mesoscale model despite its
use of essentially the same terrain data base as that
used in the LFM model.

A reasonable explanation for these improvements is
that increased vertical and horizontal resolution, sig-
nificant level rawinsonde data in the model initializa-
tion, and a more sophisticated PBL. parameterization
scheme all contributed to the better forecasts. The rel-
ative importance of these attributes has been explored
in MASS model sensitivity tests conducted on an East
Coast cyclone case (Uccellini et al., 1983), whereby it
was found that these same model attributes contributed
to a better forecast of the cyclone. Because of this sim-
ilarity and the interesting fact that these two geograph-
ical regions are ones where diabatic heat fluxes near

the surface are frequently strong, there is some support
for our conjecture that the particular characteristics of
the MASS 2.0 model are important for properly han-
dling the influence of these physics upon the lower-
tropospheric mass fields. The relative importance of
each of these factors, as well as other possibilities, can
only be firmly established after extensive sensitivity tests
are made, which is beyond the scope of the present
paper.

b. Systematic mass loss: A possible boundary condition

error (E1)

One of three important systematic errors displayed
by the mesoscale model is the loss in total atmospheric
mass over the north central and northeastern states. It
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TABLE 4. Regional variations in average model amplitude and phase errors (in parentheses) in 1000-500 mb thickness field forecasts.
Mean thickness errors smaller than 30 m were not considered. Results are based on evaluator systematic error analysis. (E) refers to an

eastward phase error.

Forecast . Region*

period Observed

(hrs) Model feature NwW Y NP SP NC SC NE SE
12 LFM ridges —44 -57 —44 ~40 -37
24 LFM ridges —47 -39
12 MASS 2.0 ridges -35
24 MASS 2.0 ridges +57 +40
12 LFM troughs -73 —69 -43 -37
24 LFM troughs -85 —71 (E)
12 MASS 2.0 troughs

.24 MASS 2.0 troughs

. * Regions are: Northwest (NW), northém plains (NP), north central (NC), northeast (NE), etc.

can easily be seen that, in this region, the model showed
a tendency to underforecast anticyclone amplitude and
to erroneously forecast anticyclone locations south and
east of their observed positions (Fig. 4, Table 5). Fur-
thermore, results from the error histo-map analyses
revealed that forecasts of 500 mb geopotential heights
near surface anticyclones in that region also suffered
from a strong negative bias. This finding is in essential
agreement with that from the evaluator systematic error
analyses (not shown) that 500 mb geopotential ridges
were underpredicted across the north central and
northeastern states. It is not surprising that the com-
bined underforecast of surface pressure and 500 mb
geopotential height values produced no net systematic
error in the 1000-500 mb thickness field.

A possible cause for the systematic loss in mass

MASS 2.0

MASS 2.0

throughout a deep part of the troposphere over only
the north central and northeastern regions was isolated
from the time series analysis of the “normalized and
mass-averaged difference statistics” D(i) defined in
Section 3¢(1). It will be shown that transitions in model
relative performance demonstrated by these time series
were extremely helpful in identifying model sensitivity
to features in the synoptic flow pattern.

Although four time series could be shown to dem-
onstrate these transitions, only the two most mutually
consistent ones will be displayed here. The average
percentage of agreement in sign between all pairs of
the four D statistics is shown in Fig. 5. It can be con-
cluded from these calculations that the signs of the
various statistics did not always agree with one another,
particularly in the case of CORR. Atlas et al. (1982)

MASS 2.0 MASS 2.0
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FIG. 4. Error histo-map for 12 h anticyclone forecasts. Within each large box (see Fig. 2), histogram plots
of amplitude and phase errors and total number of “observed, but no forecast centers” (NFC) and “forecast,
but no observed centers” (NOC) are shown. Error interval on amplitude (phase) error histogram is 2 mb
(45°). Maximum event frequency on amplitude (phase) error histogram is 8 (4). Each wedge on phase
histogram represents a forecast displacement error which exceeds 300 km. Positive amplitude errors are

overforecasts.
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