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ABSTRACT

A method of retrieving the basic vertical structure of water vapor profiles from satellite-observed radiances
is presented. The statistical tools of empirical orthogonal function analysis and clustering were used to define .
classes of vertical structure of water vapor. As a result, any water vapor sounding can be assigned to one of four
vertical structure classes. Each class was shown to be identified with certain types of weather features. Multiple
regression was used to retrieve approximate total precipitable water by use of brightness temperatures simulated
for the Defense Meteorological Satellite Program SSH-2 infrared sounder, resulting in explained variances of
about 80%. In addition, discriminant analysis was then applied to retrieve the vertical structure class of each
water vapor profile, giving percentages of correct discrimination near 60%. Selection from among the SSH-2
spectral channels was used to optimize both the total water regression and the structure class discrimination.
Also, it was shown that separation of soundings by total water content generally improves discrimination skill
by a few percent. The results suggest that this retrieval approach should be particularly useful for application

to subjective weather forecasting.

1. Introduction

Meteorologists and atmospheric modelers are inter-
ested in water vapor profiles primarily because they
must evaluate the potential for cloudiness and precip-
itation. For their work, the most important aspects of
profiles are the total precipitable water and the general
shape of the profile. Thin layers of relatively high or
low humidity are important in some situations, but are
generally of secondary concern.

Research on retrieval of water vapor profiles from
satellite data has shown that, under cloud-free condi-
tions, total precipitable water can be retrieved with
substantial accuracy (about 80% explained variance).
Useful information about the basic profile structure is
also available (Smith and Howell, 1971; Moyer et al.,
1978; Gruber and Watkins, 1979; Hayden et al., 1981;
Chesters et al., 1982; Hillger, 1984; Rosenberg et al.,
1983). However, fine details of the water vapor vertical
structure cannot be retrieved. The limitations on re-
trieval are rooted in radiation physics, which dictates
that the current state-of-the-art sounders have very
broad weighting functions in their water vapor-sensing
channels (Wark et al., 1974). Profile detail will elude
retrieval as long as sounder weighting functions are
broad relative to the depth of the troposphere
(Twomey, 1966).
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In light of these considerations, we developed a
quick-solution retrieval method based on the premise
that water vapor retrieval skill is limited to the basic
features of the profile, and if accurately determined,
they describe the bulk of the meteorologically impor-
tant information in the profile.

Most of the studies noted here involved retrieving
water vapor parameters at several specific levels. An
alternate approach is to directly retrieve information
on the overall atmospheric structure. This approach
has been applied to temperature sounding (Prabhakara
et al., 1979; Uddstrom and Wark, 1985; Thompson et
al., 1985), and we applied it to water vapor sounding.

Development of our water vapor retrieval procedure
involved specifying what structures to look for in the
vertical distribution of water vapor, and devising a
method to recognize those structures by means of sat-
ellite-based measurements. The specification of water
vapor structures was accomplished through empirical
orthogonal function (EOF) analysis, clustering and
classification. To accomplish the structure recognition,
we used multiple regression to retrieve a parameter
that approximates total precipitable water, and then
discriminant analysis to retrieve water vapor vertical
structure.

2. Data

Radiosonde observations (RAOBs) of temperature
and water vapor concentration were the primary data
base, and were used 1) to simulate satellite sounder
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brightness temperatures (equivalent blackbody tem-
peratures), 2) to determine characteristic vertical
structures of water vapor profiles, and 3) together with
the simulated brightness temperatures, to derive coef-
ficients for statistical profile retrieval. We considered
360 RAOBs from the tropics (30°N-30°S) in all sea-
sons (set TR), and 251 from midlatitudes (30°N-60°N)
during the summer half-year (1 May-31 October) (set
MLS). The RAOBs were launched from about 30
oceanic sites. The study was limited to oceanic sound-
ings to avoid the complication of varying surface ele-
vation, and because satellite-based sounding over
oceans promises a great improvement relative to the
sparse conventional sounding network.

The RAOBs were extensively screened for com-

pleteness and consistency. Also, for radiative transfer
calculations, the RAOBs were extrapolated from the
highest reported level up to 0.1 kPa by filling in values
from the standard atmospheres supplied in LOW-
TRAN 5 (Kneizys et al., 1980).. .
" Brightness temperatures were simulated for the De-
fense Meteorological Satellite Program (DMSP) Special
Sensor H-2 (SSH-2) infrared sounder. Simulation was
necessary because no real SSH-2 data were available
during our investigation. The SSH-2 is designed to
measure radiances in 16 spectral bands, as given in
Table 1; weighting functions for the H,O channels are
in Fig. 1. The information content of the SSH-1 H,O
channels (which are very similar to those of SSH-2)
was reported by Valovcin (1980).

Radiation was computed for cloud-free conditions,
since the retrieval of water vapor concentration from
infrared sounder data is severely limited by clouds.
LOWTRAN 5 (Kneizys et al., 1980) radiative transfer
software was used to compute brightness temperatures
based on the SSH-2 spectral responses. The lower
boundary was assigned a temperature equal to that of

TABLE 1. SSH-2 channel characteristics
(Barnes Engineering, 1978a,b).

Central Primary
wavenumber Halfwidth absorbing
Band (cm™) (cm™) constituent
El 668.5 . 3.0 CO,
E2 677.0 12.5 CO,
E3 695.0 12.5 CO,
E4 708.0 12.5 CO,
ES 731.0 12.5 CO,
E6 747.0 12.5 CO,
E7 797.0 12.5 H,0
E8 898.0 12.5 window
F8 353.0 14.0 H,0
F2 397.0 12.5 H,0
F6 408.0 14.0 H,O0
F3 420.0 220 H,O
F4 - 4410 20.0 H,0
F5 497.0 17.0 H,0
Fl 535.0 15.0 H,0
w 2700.0 275.0 window
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FIG. 1. Weighting functions d7/d Inp for the DMSP SSH-2 water
vapor channels, as computed from a tropical model sounding [after
Rosenberg et al. (1983)]. .

the lowest atmospheric level and an emittance of 1.0.
Noise was added to the brightness temperatures from
a normal distribution of random numbers. The am-
plitude of noise was specified by doubling the Noise
Equivalent Spectral Radiances (NESR) measured by
Barnes Engineering (1978b). NESRs are estimates of
the standard deviation of instrument error. Simulations
based on LOWTRAN 5 could not reflect the details of
the SSH-2 spectral responses due to insufficient spectral
resolution (20 cm™!). Therefore, retrieval coefficients
based on these simulations would have to be recom-
puted with real SSH-2/RAOB pairs of soundings before
they could be applied in the field.

3. Determination of vertical structure classes
a. Decomposition of mixing ratio profiles

Empirical orthogonal function (EOF) analysis was
used to evaluate the vertical structure of water vapor
profiles. Precedents for an EOF approach include Ko-
prova and Malkevich (1965), who used EOFs to char-
acterize atmospheric temperature and moisture struc-
ture. The works of Jalickee and Ropelewski (1979),
Uddstrom and Wark (1985) and Thompson et al.
(1985) are related to ours in that they used similar
means to classify temperature soundings according to
vertical structure for satellite-based retrievals. We used
an EOF-type approach because it is an efficient way to
depict the coherent features in vector observations such
as RAOBs.

For each RAOB set (TR and MLS), EOFs (eigen-
vectors) were computed from the mixing ratio covari-
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ance matrix (Kendall, 1975). Each mixing ratio profile
vector g was transformed into a principal component
vector ¢ following the relationship
q =g, + Ec, 1
where q,, is the mean profile for the set, and E is a
matrix with each column composed of one eigenvector.
The vectors were of length six, with each element cor-
responding to one of the RAOB mandatory reporting
levels (30, 40, 50, 70, 85, and 100 kPa) for water vapor.
Both q and ¢ are specific to a single RAOB, while q,,
and E are constant over a dataset.
The three-eigenvector approximation to (1) is
q~ qn t+ e + ex; + escs, (2)
and is accurate to 98% for both TR and MLS datasets.
The first principal component alone explains 79% and
77% of the mixing ratio variance for sets TR and MLS,
respectively. The first three eigenvectors of set TR are
plotted in Fig. 2 (those of set MLS were similar).
From the characteristics of e; (monotonic, no change
in sign) and the proportion of variance explained by
¢, we concluded that ¢; can be interpreted as the
“overall wetness” of a profile, relative to the mean.
Vectors e, and e; have vertical structure, with ¢, and
¢; giving the magnitudes of the primary structure-re-

lated components. Accordingly, (2) can be rewritten
as

qQ=~qn+4q,t+q, 3)
where

q, = e;c; (overall wetness part),

C))

Pressure (kPa)

100+— T —
-08 -04 0.0 0.4 0.8

EIGENVECTOR MAGNITUDE

FI1G. 2. The first three eigenvectors of the mixing ratio
covariance matrix for dataset TR.
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FIG. 3. A TR mixing ratio profile decomposed into its (a) mean,
(b) overall wetness, and (c) vertical structure components.

and
q; = e,c; + e3¢z (structure part).

®)

Figure 3 shows one sample profile decomposed via (3).
Looking towards retrieval of profile structures from
satellite data, we choose to do further analysis on the
structure parts of the soundings in our datasets.

b. Clustering and classification

Objective clustering (Kendall, 1975) was applied
separately to the TR and MLS sets to determine classes
of vertical structure. Our application of clustering
(Vonder Haar et al., 1983) was designed to result in
four classes. RAOBs with relatively high values of ¢,
and high values of ¢; were put into one class, those
with high ¢, and low ¢; formed another class, and so
on (see Fig. 4). The high/low boundaries in ¢,, ¢; space
were drawn half-way between the “optimal” cluster
centers, where optimal means that, given the Euclidean
distance between each RAOB and its assigned cluster
center, the ensemble sum of all distances is a minimum.
We added the constraint that the boundaries be parallel
to the ¢, and c¢; axes (Vonder Haar et al., 1983). Each
cluster center (the circles in Fig. 4) can be interpreted
as being characteristic of the vertical structure class
(VSC) defined by the surrounding classification
boundaries (¢, and ¢;). The boundaries can be used to
identify which VSC any RAOB belongs to.

We found it useful to distinguish between soundings
whose values of ¢, and ¢; put them close to the clas-
sification boundaries and those that were more clearly
associated with a particular VSC. A borderline region
was defined as the area within ¢, + ¢,/2 and ¢; * o3/
2, where o, and o3 are the standard deviations of ¢,
and c;, respectively (Fig. 4). Soundings outside that

~area were denoted as “distinctive.”

When the coordinates of the cluster centers (c3,
c3, etc., in Fig. 4) are input to (5) the results are vertical
structure vectors that are characteristic of the VSCs;
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FIG. 4. A schematic illustration of clustering and classification for
TR mixing ratio soundings. The circles indicate cluster centers, with
the enclosed number identifying the associated VSC. The c3, ¢z,
¢t and c3 represent the coordinates of the cluster centers in ¢,, ¢;
space. The classification boundaries are designated ¢, and &;. The
shaded area represents the domain of borderline soundings, with dis-
tinctive soundings residing in the unshaded areas.

qa = exc; + ey, (62)
Qo = ex; + exc3, (6b)
Qg = e + escy, (6¢)
g = €07 + es(3. (6d)

The four TR VSC-characteristic vectors are given in
Fig. 5, while those for set MLS are not shown because
they were very similar to the TR four. The near-sym-
metry of q,, with q,s and q,, with q,3 about the pressure
axis in Fig. 5 reflects the near-symmetry of their cor-
responding cluster centers about the origin in Fig. 4.

The ultimate goal of our retrieval scheme was to
determine a given profile’s VSC directly from satellite
data, without knowing the profile’s values of ¢, and ¢
in advance. However, the usefulness of such an exercise
depends on whether the four VSCs account for the
bulk of the structure information relevant to attendant
meteorological conditions.

¢. Meteorological interpretation: A case study

Statistical tools determined the VSCs, but meteo-
rological application is why they are needed. A case
study was used to verify that VSC differences are as-
sociated with distinctly different atmospheric condi-
tions.

To obtain a synoptic field of oceanic soundings, we
resorted to northwestern Pacific RAOBs. Soundings
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that fell into the four distinctive classifications of VSC
are shown in Fig. 6, and were assigned identification
numbers consistent with numbering given in Figs. 4
and 5. Different VSC boundaries were applied south
(TR) and north (MLS) of 30°N, but the impact of the
difference was small. For meteorological interpretation
we also considered daily weather maps (Japan Mete-
orological Agency, 1982) and composites of imagery
from National Oceanic and Atmospheric Administra-
tion (NOAA) polar-orbiting satellites (NOAA/EDIS,
1982).

Figure 6 gives an overview of the study case. Spatial
consistency and variability are both present, as would
be expected in summer, when synoptic-scale circula-
tions are weak and mesoscale circulations give rise to
local variations in atmospheric structure. A sample
RAOB from each of the four VSCs is shown in skew
T-logp format in Fig. 7. The corresponding sounding
sites are marked on Fig. 6.

Example 1 (Fig. 7a) was taken in a region of subsi-
dence under a subtropical high pressure ridge, with
warm water at the surface. The temperature profile has
an elevated, highly stable layer, and the water vapor
profile is correspondingly moist near the surface and
dry aloft. Example 2 (Fig. 7b) includes a shallow layer
of humid air near the surface, with rapid drying up to
70 kPa and a temperature profile that has high potential
instability. This sounding site was on the northeast side

Pressure (k Pa)

-2 (o} 2
Mixing Ratio (g/kg)

FIG. 5. The mixing ratio profiles associated with the four VSCs.
Each one was derived from cluster center coordinates using (5), and
is labeled according to the numbering system of Fig. 4.
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FIG. 6. A plot of VSC identification numbers for radiosonde soundings of mixing ratio, with the
numbering system of Figs. 4 and 5. Only the “distinctive” soundings are shown. Surface frontal
positions and centers of high (H) and low (L) pressure features are shown for reference; sea level
pressure is contoured at 8§ mb increments. The boxes indicate soundings plotted in Fig. 7.

of the subtropical ridge. Example 3 (Fig. 7c) came from
the rear of an extratropical cyclone where dry polar air
was overriding a stratocumulus cloud layer. The dew
point temperature varied little between the surface and
85 kPa. Example 4 (Fig. 7d) was taken just in advance
of a warm front and exhibits abundant moisture deep
into the troposphere.

Not all of the VSC assignments shown in Fig. 6
closely conformed to the meteorological interpretations
of the four highlighted examples. However, the ex-
amples were representative of the meteorological pro-
cesses that give rise to particular sounding structures,
and show that some meteorological inferences can be
drawn from knowing the VSC at a site. The results
indicate that the VSC is a useful parameter to seek to.
retrieve from satellite data.

4. Retrieval

To approximate a water vapor profile, q, from sat-
ellite data we must retrieve both q,, and g, (see Eq. 3).
We chose to retrieve q,, by way of ¢, (Eq. 4) through
linear regression on satellite brightness temperatures.
Regression was used because c;, the overall wetness
principal component, is closely related to the approx-
imate total precipitable water, U (Vonder Haar et al.,

1983), and U has been retrieved by regression with
high success (e.g., Rosenberg et al., 1983). To retrieve
q; we chose not to use regression applied to ¢, and ¢;
(Eq. 5) (as in Smith and Woolf, 1976), but instead chose
to concentrate the information content of the bright-
ness temperatures into estimating which VSC a given
sounding belonged to. The VSC was retrieved by dis-
crimination on brightness temperatures. Discrimina-
tion is similar to classification except that it relies solely
on indirect information (Kendall, 1975).

a. Retrieval of overall wetness

Linear regression coefficients were derived by means
of the “All Possible Subsets” routine of BMDP (Dixon,
1981). The TR and MLS sets were treated separately,
using both RAOBs and simulated brightness temper-
atures from each set for training and testing the regres-
sions. We used Mallow’s C, criterion (Dixon, 1981) to
determine which combination of the 16 SSH-2 chan-
nels would be most likely to perform best at retrieving
¢, from an independent dataset, and the adjusted-R>
parameter to estimate that performance in terms of
explained variance.

For the TR set a regression equation including
brightness temperatures from seven channels produced
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FIG. 7. Radiosonde profiles of temperature and dew-point temperature for 12 GMT, 11 July 1982 at the locations
indicated by squares on Fig. 6. Plots a~d were classified as VSCs 1-4, respectively. The dashed curves represent pseu-

doadiabats.

an adjusted-R? of 81%. For the MLS data the results
were eight channels and 80%, respectively.

b. Retrieval of VSC

The “Stepwise Discriminant Analysis” routine of
BMDP (Dixon, 1981) was used to compute discrimi-
nation coefficients for retrieving the VSC (classes 1-4)
from SSH-2 brightness temperatures. As in the regres-
sion step, sets TR and MLS were treated separately.
We used forward and then backward stepping to de-
termine which combination of SSH-2 channels was
likely to most reliably retrieve the VSC from an in-
dependent dataset, using the “leaving-one-out” (LOO)
method (Lachenbruch, 1975) as the measure of poten-
tial success. This method provides an estimate of the
proportion of independent set soundings that will be
correctly classified through discrimination.

Before performing discrimination, we divided each
dataset into “wet,” “medium” and “dry” subsets ac-
cording to the soundings’ “overall wetness.” This was
done for the following reason. The position and shape
of water vapor channel weighting functions are a strong
function of the total water vapor content of the viewed
atmosphere, as demonstrated by Hayden et al. (1981).
The particular response of SSH-2 channels to changes
in U will affect how well they detect changes in VSC.
For example, in a dry atmosphere, channel F5 (Fig. 1)
may be very useful for retrieving the water vapor struc-
ture of the lower troposphere, but in a very wet at-
mosphere that channel may be irrelevant to that pur-
pose, or redundant to other channels. This sensitivity
problem suggests that channel selection may be en-
hanced by deriving separate discrimination coefficients
for wet, medium and dry atmospheres. We subdivided
our datasets objectively, based on each sounding’s
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overall wetness parameter, ¢; (Vonder Haar et al,,
1983).

Discrimination results for the TR and MLS sets are
summarized in Table 2. Results were computed for
each set treated as a whole, and for its dry, medium
and wet subsets. An average over the three subsets is
also shown, and allows for comparison of results for
the full set either treated as a whole or as a triplet of
subsets. To assess discrimination skill we considered
percentages of correct discrimination for dependent
data and for independent data (LOO estimate). Also,
we considered results for the distinctive sounding seg-
ment of the dependent data to determine how much
improvement would result from neglecting borderline
cases. It should be noted that with four VSCs, random
(no-skill) discrimination would produce percentages of
about 25%, versus 100% for perfect discrimination.

The distinctive soundings were assigned to the cor-
rect VSC slightly more reliably than the full range of
soundings were (Table 2). This result indicates that
borderline soundings are relatively difficult to discrim-
inate. Conversely, discrimination performs best on rel-
atively distinctive soundings. Also, with respect to the
full range of soundings, the subsets (dry, medium, wet)
produced higher correct discrimination rates than the
whole sets. The same was not true for the distinctive
soundings alone. This indicates that the tenuous VSC
discrimination of borderline soundings was hindered
by large variations in overall wetness within a dataset.

¢. Overview of the retrieval method

Figure 3 showed how a sounding can be decomposed
using EOF analysis. Figure 8 illustrates how our re-
trieval method can reconstruct this sounding in ap-
proximate form. The tropical sounding shown was se-
lected because its retrieval error is typical for the TR

TABLE 2. Retrieval of vertical structure class.

Number of Discrimination %
soundings correct
Set Subset Full Dtv® Dep® Ind® DD¢

TR — 360 153 55 53 66
TR Dry 107 46 72 66 74
TR Medium 145 67 67 61 64
TR Wet 108 40 57 53 65
TR Average 360 153 65 60 67
MLS — 251 75 55 50 65
MLS Dry 95 19 54 46 74
MLS Medium 101 35 58 55 54
MLS Wet 55 21 73 58 62
MLS Average 251 75 60 52 61

& Distinctive soundings

b Dependent data

¢ Independent data (LOQO estimate)

4 Dependent data, distinctive soundings only

LIPTON, HILLGER AND VONDER HAAR
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FIG. 8. An example of a water vapor profile retrieval, demonstrating
the two-step process. The dotted curve is derived from c; via (4) and
(3). The dashed curve results from adding the effects of VSC 4 using
(3). The carets indicate retrieved quantities. The solid curve is the
true profile.

set. First, ¢; was retrieved by regression and used to
determine q,, from (4). The value of ¢, also determined
that the sounding belonged to the wet subset. Next,
the VSC was retrieved using the TR-wet discrimination
equations. The result was VSC 4, directly determining
that q. was the appropriate structure component to
include in the final retrieval product (Fig. 8).

The dotted and dashed curves in Fig. 8 do not differ
greatly, but the final result is advantageous in that the
discrimination has identified the class of vertical struc-
ture present. This information alone could be useful
in subjective weather analysis (see section 3c). Also,
discrimination has reduced the error of the retrieved
profile. For example, for the 360- TR soundings, re-
trieval of ¢, explained 57.9% of the vertically averaged
variance of mixing ratio, whereas subsequent discrim-
ination of vertical structure increased the explained
variance to 63.5%.

To give reference to these numbers we applied a
slightly modified version of the Smith and Woolf (1976)
retrieval method to our TR data, allowing for objective
comparison. The Smith and Woolf method produced
an averaged explained variance of 69.1%. Apparently,
our method is not advantageous as measured by the
accuracy of the final retrieved profile. However, the .
subjective value of identifying the VSC of a profile is
not amenable to comparison.

The retrieval scheme reported here incorporates the
physics of the retrieval problem in two new ways. First,
the inherently poor vertical resolution of water vapor
soundings, due to broad weighting functions, is rec-
ognized by limiting the possible outcome of the re-
trieval to four vertical structure classes. Second, the
shifting of weighting functions with overall water con-
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tent is compensated for by dividing the retrieval pro-
cedure into two steps. That is, soundings are separated
by approximate total water content before vertical
structure information is retrieved. By including these
physical considerations in an otherwise statistical re-
trieval scheme, water vapor profiles may be estimated
in a computationally efficient way.

5. Conclusion

A statistically based procedure for retrieving water
vapor profiles from satellite data has been developed
through two stages of investigation. First, water vapor
profiles from a set of oceanic radiosonde observations

were decomposed by means of empirical orthogonal

function (EOF) analysis, and their components were
used to define four classes of vertical water vapor struc-
ture that were most characteristic of the sounding sets.
A case study indicated that the vertical structure class
of a sounding could be used in evaluating meteorolog-
ical conditions at the sounding site. Second, a retrieval
procedure was designed to determine both the overall
wetness and the vertical structure classification of any
particular profile from satellite brightness temperatures.

The retrieval method was applied to tropical and
midlatitude summer radiosonde soundings, in com-
bination with simulated DMSP SSH-2 sounding data.
The overall wetness parameter, ¢,, was retrieved with
explained variances of about 80% by regression. Dis-
crimination was used to retrieve vertical structure class,
with expected rates of correct discrimination in the
range of about 50-60% for four-class discrimination
on independent data. Rates were slightly higher where
evaluation was limited to soundings that exhibited
especially distinct vertical structure. These percentages
should be compared with reference values of 25% for
no skill and 100% for complete skill, and should be
considered in light of the difficulty of the water vapor
retrieval problem. The skill of our method was in-
creased by the separation of soundings into wet, me-
dium and dry subsets, according to ¢, before the dis-
crimination step.

The primary conclusions of this study were as fol-
lows. ' :

1) The statistical tools of EOF analysis, clustering
and classification can be used to identify classes of water
vapor profile vertical structure that differ in a meteo-
rologically significant way.

2) Infrared spectral radiances from satellites can be
used to recognize water vapor structure classes as they
occur in the atmosphere.

For application to weather analysis, it would be use-
ful to plot the results of satellite soundings on maps
similar to Fig. 6. It would also be useful to overlay
contours of the total precipitable water estimated from
¢, retrieval. For a case in which real satellite soundings
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were used, one would expect to have erroneous clas-
sifications in the retrieval fields because of discrimi-
nation errors. However, the density. of measurement
would be much greater than for the oceanic radiosonde
network, thus allowing for reasonable meteorological
interpretation, except in regions where clouds prevent
retrievals. This retrieval approach could also be applied
at the mesoscale over land, where the radiosonde den-
sity is insufficient for mesoscale analysis.
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