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ABSTRACT

An Expert system for Shipboard Obscuration Prediction (AESOP), an artificial intelligence approach to
forecasting maritime visibility obscurations, has been designed, developed, and tested. The problem-solving
model for AESOP, running within an IBM-PC environment, is rule-based, uses backward chaining, and has
meta-rules; a user, in a consultation session, answers questions about certain atmospheric parameters. The
current version, AESOP 2.0, has 232 rules and has been designed in terms of nowcasts (0-1 h) and forecasts
(1-6 h). An extensive explanation feature allows the user to understand the reasoning process behind a particular
forecast. AESOP has been evaluated against 83 test cases, in which clear, hazy, or foggy conditions are predicted.
The overall performance of AESOP is 75% correct. This value indicates considerable forecast skill when compared
to 47% for persistence and 41% for random chance. When the distinction between clear and haze is ignored,
the expert system correctly forecasts 84% of the “Fog/No fog” situations.

1. Historical perspective

The restriction of visibility has serious ramifications
for transportation in the air or on land. Automobiles,
and most other land vehicles, can move safely only as
far as their drivers can see. Aircraft can be safely di-
rected by ground-based radar along prescribed air cor-
ridors. However, except for certain sophisticated in-
strument systems that allow for “hands-off ” landings,
a pilot still must be able to see the runway before
landing.

In the case of ships at sea, a visibility reduction poses
Jjust as serious an obstruction to movement as it does
over land or in the air. In military operations, ship
movement often occurs simultaneously with aircraft
flights, as is the case with aircraft carriers. For this rea-
son, and because ship operations can be moved from
one location to another to take advantage of more fa-
vorable weather conditions, the accurate prediction of
maritime visibility has been, and continues to be, an
important problem for the Navy.

In the 1960s and the early 1970s, the U.S. military
services considered the approach of eliminating or
modifying fog. Both field experiments and numerical
studies were used to investigate every conceivable
method of eliminating existing fog. The most success
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was achieved in modifying supercooled fogs (those fogs
with temperatures below 0°C) through conversion of
the supercooled water into ice crystals (e.g., see Wein-
stein and Hicks 1976). For warm fogs, dissipation
techniques included hygroscopic seeding ( Weinstein
and Silverman 1973), electric fields/charged drop
seeding (Tag 1976, 1977), helicopter downwash
(Johnson et al. 1975), and heating (Kunkel et al. 1974;
Tag 1979a,b). Only the use of heat, in the form of
burner lines along side of an aircraft runway, could be
counted on consistently (Kunkel 1979); such systems
have been in use in France (Fabre 1971).

Following this limited success in modifying fog, the
Navy refocused its efforts and chose to emphasize un-
derstanding the physical processes leading to fog for-
mation. In the 1970s and early 1980s, considerable in
situ research was conducted, primarily off the West
Coast of the United States, in an attempt to understand
fog formation (e.g., see Mack et al. 1974, 1975, 1977,
1978; Mack and Katz 1976; Pilie et al. 1978, 1979;
Rogers et al. 1979, 1981). At the same time, devel-
opments in numerical modeling of the planetary
boundary layer (PBL) were setting the stage for a
quantitative approach to fog prediction. Development
of the higher order closure (HOC) method for simu-
lating turbulence (Mellor and Yamada 1974 ) opened
up new pathways to understanding PBL dynamics. In
parallel, more accurate and efficient methods of han-
dling long- and shortwave radiation contributed to in-
creasingly successful PBL simulations involving fog and
clouds.

The rapid progress made in numerical modeling
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during the 1970s was addressed by the Navy in 1983
by comparing the fog forecasting capabilities of several
synoptic/statistical forecast models, and several nu-
merical PBL models, ranging from mixed-layer, to K-
theory, to the state-of-the-art HOC models (see Mack
et al. 1983). These models were tested against six mar-
itime datasets (involving fog and stratus, for forecast
periods ranging from several hours to one day) that
were well documented and considered to be reliable.
While each of the numerical models had its own ad-
vantages and disadvantages, the HOC model from the
Naval Environmental Prediction Research Facility
(NEPRF) (see Burk and Thompson 1982 for addi-
tional model descrlptlon) provided the best forecasts
overall.

At the same time that the above study was being
completed, plans were being made to develop a ship-
board, environmental diagnosis/forecast system called
the Tactical Environmental Support System (TESS).
Among the several purposes of TESS was the concept
of bringing automation and advanced analysis capa-
bilities to the Navy shipboard oceanographer/meteo-
rologist, primarily on aircraft carriers and other large
ships. Based on the above model comparison study,
the NEPRF HOC model, renamed as the Navy Over-
Water Local Atmospheric Prediction System (NOW-
LAPS), was chosen to be run onboard ship as a part
of TESS (see Tag et al. 1990). Aside from its role in
predicting PBL temperature and moisture profiles, a
primary purpose of NOWLAPS is to.predict fog and
stratus.

One of the synoptic/statistical models evaluated in_

Mack et al. (1983) was a decision tree approach de-
veloped from the extensive studies conducted on the
U.S. West Coast. The major advantage of using a de-
cision tree was that it included the synoptic influences
on fog formation in a physically meaningful structure.
In a report by the Naval Research Advisory Committee
(1985), the application of artificial intelligence (Al)
techniques was recommended for select, appropriate
problems. In particular, expert systems ( ES) were sug-
gested for problems requiring expertise in a well-defined
domain. The decision tree results suggested that the
forecasting of obscurations' would be an appropriate
problem in which to apply ES techniques. The goal is
to develop a system that provides a maritime obscur-
ation forecast that follows a reasoning process similar
to that of expert, human forecasters. In a similar en-
deavor, the Air Force (Stunder et al. 1987) has devel-
oped an ES for forecasting fog at three airbases and
concluded that the concept was worthwhile. In a more
ambitious effort, Jasperson and Venne (1987) devel-
oped an ES in which surface and upper air data ob-
served at a single station are used to make a single-

! In this paper, the term “obscuration” refers to three meteorological
phenomena at sea: fog, sea spray, and haze.
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station forecast. In many respects, forecasting obscur-
ations at sea i1s a more focused problem that should
prove more amenable to ES applications.

The purpose of this paper is to present the rationale
and method that has gone into the development of the
Navy ES for forecasting obscurations at sea. In the fol-
lowing sections the expert system approach is first de-
scribed; in the process, the distinction between a de-
cision tree and an ES is made. Next, the ES is discussed
from the standpoint of its form, its knowledge base, its
rulés, and the manner in which the knowledge and
rules are integrated. Finally, an analysis of the ES per-
formance on test cases is presented, followed by the
conclusions of this study.

2. Expert system approach

The field of artificial intelligence includes a number
of techniques for solving problems that involve rea-
soning about data and reaching conclusions. Expert
systems have emerged as one of the applications of Al
technology to real-world problems. Expert systems are
Al computer programs that perform inference pro-
cesses based on a collection of expertise and a set of
known facts about the situation at hand. They are a
class of computer hardware and software which solve
problems by using deductive reasoning rather than the
defined procedures of traditional computer products.
Such systems are pdrticularly applicable to problems
such as weather forecasting in which decisions must
be made based on large amounts of data in a relatively
short time.

With the traditional algorithmic approach, the so-
lution to a problem is fixed and only the input data
changes; however, ESs have no defined procedure. In-
stead of calculating an answer, the system uses its
knowledge about the subject to define a procedure that
determines the answer. This procedure may be based
on both formal knowledge and heuristics, and the
problem-solving procedure may differ for various sets
of input data. A

It is important to make a distinction between ESs -
and decision trees. A decision tree (e.g., the classifi-
cation tree methodology of Peak and Elsberry 1987)
acts as a filter into which unknown cases are entered
to be deflected one way or another by various tests.
Eventually the cases are sifted into categories that have
previously been assigned to some conclusion. Expert
systems are more powerful than decision trees. Expert
systems include symbolic representation of knowledge
and symbolic inference processes. Heuristics (rules of
thumb) may also be included. This ability to reason
about well-known relationships, and yet also to make
educated guesses when necessary, allows ESs to solve
problems even when data are missing. Expert systems
may contain explanations or justifications for conclu-
sions reached. Contrary to decision trees, ESs can rea-
son based on hypothesized or assumed conditions, and
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can back up to follow new lines of reasoning when
earlier ones fail.

The application of Al technology to meteorological
problems has only recently been reported in the liter-
ature. Campbell and Olson (1987) combined an Al
radar image processing package with an ES to interpret
wind shear hazard areas. Elio et al. (1987) developed
an ES to predict convective storms. Their system in-
cludes heuristics to assist in the interpretation of a sta-
tistical model, and also has an Al interpreter of surface
aviation reports. McArthur et al. (1987) approached
weather pattern interpretation from a “scenario”
viewpoint in which the current situation is matched
with similar situations from past experience. In
ARCHER, Moninger (1988) developed a frame-based
expert system for identifying meteorological phenom-
ena from Doppler radar. Finally, Reiss and Hofmann
(1988) developed TEACHMET, an expert system to
teach students the basics of weather forecasting. A
number of additional meteorology-related Al projects
still in progress have been reported in two AIRIES (Ar-
tificial Intelligence Research In Environmental Sci-
ence) workshops (Moninger et al. 1987).

The TESS requirement is to have the obscuration
expert system predict fog, haze and blowing spray for
any maritime location between 70°N and 70°S. Visi-
bility obscuration due to precipitation is not a desig-
nated function of the system. The ES is intended to be
run onboard Navy ships using data available from local
measurements, TESS data fields and satellite images.

Use of an ES for the prediction of such obscuration
phenomena has several advantages. The prediction of
obscuration events such as fog and haze is a very dif-
ficult problem requiring the interpretation of many
types of data. Since fog may form by several processes
(Pilie et al. 1979), there is no predefined algorithm for
its prediction. Thus, the ES approach is useful because
an ES can be made to include expertise on how to
approach the forecast problem based on the situation
at hand. The expertise to forecast maritime fog is a
rare commodity. Since Navy forecasters tend to serve
relatively short duty tours at sea, they may not have
the time to develop an expert level of skill. By encoding
available forecast knowledge into an ES, rare expertise
can be disseminated to the fleet.

The ES developed in this project has been named
AESOP (A4n Expert system for Shipboard Obscuration
Prediction). The main source of expertise for this study
was a series of research reports from the Calspan Cor-
poration detailing the results of maritime fog studies
during 1972-83. In addition, one of the participants
in these studies, C. W. Rogers, has acted as a consultant
expert to provide input in the development of the AE-
SOP rule base.

3. The AESOP system

A human expert uses a complicated reasoning pro-
cess to forecast maritime obscurations. Typically one
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must follow multiple lines of reasoning using many
different types of data. AESOP has been designed to
evaluate forecast situations in a fashion similar to that
of expert human forecasters. -

The problem-solving paradigm for AESOP is a con-
sultation session in which the user of the program, a
Navy meteorologist, answers questions about various
atmospheric parameters such as temperature, dew-
point, sea surface temperature, etc. Once AESOP has
acquired enough information about the current con-
dition of the atmosphere, it applies the expertise con-
tained in its knowledge base to draw conclusions about
the future condition of the atmosphere with regard to
visibility obscuration.

The knowledge and expertise in AESOP are stored
as a series of IFF-THEN rules. These rules contain the
basic knowledge concerning the relationships of facts
about the problem domain. These rules are the major
component of the ES, and they form the basis for the
formal reasoning process that the system uses to solve
problems. There are three types of rules: those which
describe facts about the domain, those which describe
relationships between facts, and those which describe
heuristics that determine the reasoning process.

AESOP is implemented in the Prolog language on
an IBM-compatible personal computer. The current
version, AESOP 2.0, has 232 rules. AESOP has been
designed to reason in terms of nowcasts and forecasts.
The AESOP nowcasts are for the 0-1 h time frame,
while the AESOP forecasts apply to the 1-6 h time
frame. This approach is used to differentiate between
situations where a change in the atmospheric obscur-
ation condition is imminent, and those where the con-
dition change requires more time to occur. AESOP
also includes a complete maritime fog climatology. The
climatology values automatically accompany an AE-
SOP fog forecast. Alternately, the user can request dig-
itized, monthly climatology data for any maritime lo-
cation between 70°N and 70°S.

Since one of the goals of AESOP is to disseminate
rare expertise, the predictions are accompanied by a
synopsis of the physical reasoning used in arriving at
the prediction. AESOP also includes an extensive ex-
planation feature. The user is able to step through the
reasoning process, during which AESOP reveals the
logic by which its conclusions were made and also the
reasons that alternative conclusions were not made.
Thus, it effectively tells the user why a certain obscur-
ation is expected, why other obscurations are not ex-
pected, and what data were used to make these con-
clusions.

The major components of the AESOP expert system
(Fig. 1) include the Knowledge Base (containing both
the Working Memory and the Rule Base), the Fact
Acquisition System, the Explanatory Interface, the In-
ference Engine and the User Interface. The User In-
terface makes communication between the user and
AESOP possible. The Fact Acquisition System system-
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FIG. 1. Major components of the AESOP expert system.
Arrows indicate data flow.

atically makes inquiries to the user concerning atmo-
spheric parameters (€.g., temperature, wind speed, etc.)
and records this information as facts in the Working
Memory. The Inference Engine applies rules of logic
to infer new facts from the existing facts. The Rule
Base contains the static knowledge previously obtained
from the expert sources in the form of rules. The
Working Memory contains the facts that describe what
is known about a particular problem. When the pro-
gram starts, the Working Memory is empty. The dy-
namic knowledge obtained from the user via the Fact
Acquisition System is stored in the Working Memory.
As intermediate conclusions are made via the Inference
Engine, the system stores this new knowledge in the
Working Memory. Finally, the Explanatory Interface
allows the user to step through the many logical paths
used by AESOP to arrive at its forecasts. In the follow-
ing sections, the major components will be discussed
in detail.

a. Inference engine

An ES contains a set of internal knowledge that
must be applied in some way to find the solution to
its specified goal. In AESOP, the ultimate goal is to
determine a forecast by reasoning about the data known
in the current forecast situation. For a system to reason,
it must be able to infer new facts from what it has
already been told. In ESs, basic rules of inference are
. used. The most common, “modus ponens” (Hayes-
Roth et al. 1983), is a rule of logic that asserts that if
A implies B and A is true, then B is true. An example
of modus ponens might be “If the Enterprise is a carrier,
and a carrier is a ship, then the Enterprise is a ship.”
The IF-THEN rules of AESOP use modus ponens.
The necessary facts in the IF portion of a rule are the
antecedents, and the fact inferred in the THEN portion
is the consequent.
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In the Prolog language, facts are represented in
predicate form, and rules involving facts automatically
invoke modus ponens. This powerful feature was one
of the reasons for choosing Prolog as the implemen-
tation language for AESOP. Thus, the inference feature
of the Inference Engine is part of the Prolog system
itself. )

The Inference Engihe attempits to satisfy one or more
goals. These goals are the conclusions which are de-
termined to be true or false via the system’s reasoning
process. The goal conclusions of an ES are typically
reached by achieving a series of subgoals. These
subgoals themselves have subgoals that ultimately de-
pend on the data input to the system. The set of the
possible steps leading from the initial conditions to the
goals is called the “search space” (Fig. 2). Problem-
solving is carried out by searching through the space
of possible solutions for those that satisfy a goal. Unless
the search space is extremely small, this search could
take a very long time to accomplish unless some hi-
erarchical methods are used to reduce the number of
potential paths. The use of heuristics is a good way to
reduce the search space.

In the AESOP obscuration prediction problem, the
goals are evaluations of the expected likelihood of the
various types of obscuration that may occur. The initial
conditions are the data that define the atmosphere at
the time the forecast is being made, such as tempera-
ture, dewpoint and inversion height. An example of a
subgoal is the determination of the extent of radiational
cooling. Inputs to this subgoal include the time of day
and the amount of upper cloudiness. The evaluation
of this subgoal becomes an important input to certain
types of fog formation.

The Inference Engine must also control the order in
which rules are invoked. There are two primary control
strategies for searching, called forward chaining and
backward chaining. In backward chaining, a goal is
hypothesized. The system works backward from this
goal by trying to prove it from inferred facts or from
knowledge supplied by the user during the consultation.
This process may require assuming subgoals and trying

DATA SUBGOALS GOALS

FI1G. 2. Graphic representation of a small search space. Nodes (cir-
cles) represent goals and subgoals that are part of the solution process.
Links (lines) represent pathways between data, subgoals and goals.
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to prove them as well. The procedure works backward
until the data confirms or disproves the goal. If the
data disproves the goal, the next goal is assumed and
the process continues until one of the goals is proven
true.

In forward chaining, the data are used first. As new
data is received, all of the rules are scanned to see
whether the antecedents include that fact. The ante-
cedents that do are “marked” so that they are known
to be satisfied. Once all of the antecedents of a rule are
satisfied, the rule succeeds and its consequent is added
to the Working Memory. The cycle repeats until a goal
1s reached.

The shape of the search space determines whether
backward or forward chaining is best. In terms of speed
and efficiency of the system, backward chaining works
well when the number of final goals is small compared
to the amount of input data. If the number of possible
conclusions is large and the amount of input data is
relatively small, forward chaining is more appropriate.
The obscuration prediction ES uses a large variety of
data to attempt the prediction of a limited number of
obscuration types. Thus, backward chaining is used in
AESOP,

The Prolog language is designed to use backward
chaining to try to verify previously specified goals. In
AESOP, these goals are specified based on the current
state of the atmosphere with regard to visibility-ob-
scuring phenomena. AESOP diagnoses three mutually
exclusive atmospheric states: 1) Fog is present; 2) Haze
is present; and 3) No Obscuration is present. The initial
state of the atmosphere is one of these three, and the
forecast future state will also be one of these three pos-
sibilities (Table 1). The connections between the pres-
ent and future states are various meteorological pro-
cesses. These connections have been designated as the

following state-change operators: 1) Fog will form, 2)’

Fog will dissipate, 3) Fog will persist, 4) Haze will form,
5) Haze will dissipate, 6) Haze will persist, and 7) The
atmosphere will stay clear. AESOP is designed to an-
alyze the likelihood of these state changes based on
observed meteorological parameters.

For any given initial state, only three of these state-

TABLE 1. Current and future atmospheric obscuration states. The
three possible future states and the corresponding state-change op-
erators are indicated for each initial state.

Current state Possible future states

State-change operators

No Obscuration No Obscuration It will stay clear

Haze Haze will form
Fog Fog will form
Haze No Obscuration Haze will dissipate
Haze Haze will persist
Fog Fog will form
Fog No Obscuration Fog will dissipate

Haze will form
Fog will persist

Haze
Fog
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change operators may apply (Table 1). The AESOP
Inference Engine uses the current obscuration and a
set of lists similar to Table 1 to determine which three
state changes to test. These three state changes are then
designated as the goals of the ES. This initial limitation
of the number of goals accomplishes a heuristic re-
duction of the search space. In AESOP, the search space
is reduced by “meta-rules’; that is, rules that determine
the way that other rules are invoked.

It is important to note that although the states are
mutually exclusive (e.g., the atmosphere cannot be
clear and foggy at the same time), the state changes
are not exclusive. For example, an atmosphere that is
initially foggy may later be hazy. The physical process
is that the fog has thinned to haze conditions. In the
expert system logic, however, the state changes “Fog
will dissipate” and “Haze will form” both occurred.
Thus, the AESOP Inference Engine is designed to test
for all of the remaining goals rather than stopping once
a single goal succeeds.

As AESOP evaluates each potential goal state, a
probability of its occurrence is assigned. In general, the
goal state with the highest probability is chosen to be
the AESOP forecast. Since fog is the most severe type
of visibility obscuration, however, whenever the prob-
ability of its occurrence is greater than 50%, AESOP
selects fog as its forecast even if the probability of haze
is larger. The process of assigning the probability values
will be discussed in section 3c.

b. Knowledge base

The AESOP knowledge base includes both the for-
mal, computer-usable version of the knowledge un-
covered in the knowledge acquisition phase of this
project and a dynamic representation of facts about
the case at hand. In AESOP, the form of the static
knowledge is an extensive set of rules, while the dy-
namic knowledge is a set of facts in the Working
Memory.

Methods by which knowledge can be represented is
one of the key issues in artificial intelligence. By defi-
nition, a knowledge representation is a set of syntactic
and semantic conventions that make it possible to de-
scribe things. “Semantic nets” (Winston 1984) rep-
resent a knowledge domain by a graphic collection of
nodes and links similar to Fig. 2, where the nodes rep-
resent objects or concepts and the links represent re-
lationships between the objects or concepts.

Knowledge in AESOP is represented by rules. A set
of rules may be represented graphically in an inference
net, which is a special semantic network using only the
modus-ponens relation. Thus, the AESOP rule base
may be presented in graphic form. This type of pre-
sentation makes it easier to follow the logical progres-
sion from the data to those conclusions (goals) that
are based on the data. A single inference net of the
AESOP rule base would be too large to present here.
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Therefore, only the net for the fog formation forecasting
rules will be presented.

The inference net depicting the rules that determine
the likelihood of forecast (1-6 h) fog formation is pre-
sented in Fig. 3. The nodes (boxes) in Fig. 3 represent
goals and subgoals. Dashed links are defined here as
“OR-links” because the goal to which they lead suc-
ceeds when any one of the OR-links proceeds from’a
true subgoal. All of the solid AND-links must proceed
from true subgoals before the subgoal to which they
lead succeeds. This inference net depicts the rule

IF Fog forms by the Taylor process OR
Fog forms by the stratus-lowering process OR
There is advection of existing fog

THEN “Fog will form™ is forecast.

Similarly, the rule

IF The marine layer is primed for fog AND

The marine layer is cooled from below to
dewpoint AND

Fog will form

MONTHLY WEATHER REVIEW

VOLUME 117

The predominant flow is from warmer to
colder water ‘
THEN Fog forms by the Taylor process

is also depicted. Thus, the inference net in Fig. 3 reveals
the fog formation rules and their interdependence.

The major subgoals in Fig. 3 are the different for-
mation processes for Taylor and stratus-lowering fog,
and for advection of existing fog. AESOP attempts to
verify the goal “Fog will form” by chaining backward
through the subgoals “Fog forms by the Taylor pro-
cess,” “Fog forms by the stratus-lowering process” and
“There is advection of existing fog.” Each of these
subgoals must itself be verified by determining, the truth
of the subgoals upon which it depends. The search for
a solution proceeds down the net until there are no
further branches. At this point, the last subgoal must
be verified by the appropriate data values (not shown)
previously input by the user via the Fact Acquisition
System.

For Taylor fog formation (Fig. 3), the marine layer

S —{ Fog forms by the Taylor process

The marine layer is

The predominant flow

|
|
|
|
|
: The marine layer
|
|
|
|
|

|

|

|

|

|

|

[ is primed for fog cooled from below is from warmer to

: to d int colder water

!

|

|

I e ] Fog torms by the stratus-lowering process

|

|

| There is a The vertical temperature structure

| stratus deck is conducive to stratus-lowering There is cooling

| of the stratus top

| /\
: The inversion is The marine layer

I Type 2 or Type 3 is shallow enough Radiation from the Insolation on the
| stratus is large stratus is small
|

1

b “IThere is advection of existing fog |

o ~ 7

- e ——

There is advection
of frontal fog

There is advection
of coastal fog

There is advection of fog. -

N

around a subtropical high

/

There is There is
coastal fog offshore flow This forecast The area is
area is in the under the
western North | [western north
Atlantic or side of a sub-
There is strong Winds are Pacific tropical high
nocturnal nearly calm
cooling

FIG. 3. Semantic network depicting the AESOP rules for the forecast goal “Fog will form.”
Dashed lines are OR-links and solid lines are AND-links. Nodes that have no link leading to
them are verified based on user-input data in the Working Memory. Backward chaining progresses
from top to bottom whereas inferences are made from the bottom to the top.
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first must be “primed” for fog. That is, there already
must be a high relative humidity in the marine layer.
If the air is initially too dry, then too much cooling is
required to lower the air to dewpoint. The next subgoal
requires such a cooling mechanism. Finally, the air
flow must be from warmer to colder water so that there
is a cooling rather than a warming trend.

The second major fog formation mechanism is stra-
tus-lowering (Fig. 3). There first must be a stratus deck
at the top of the marine layer. The vertical temperature
structure must be conducive to stratus-lowering. That
is, the inversion classification (Rogers 1988) must be
“Type 2” (a nonlapsed marine layer capped by an in-
version aloft) or “Type 3” (a lapsed, capped marine
layer). As long as the inversion is at or below 400 m,
the marine layer is shallow enough for stratus to lower
all the way to the surface. The mechanism for low-
ering the stratus base (Fig. 3) is radiative cooling of
the stratus top with subsequent mixing downward (Pilie
et al. 1979).

Finally, there may be situations where existing fog
advects over the forecast location (Fig. 3). The three
cases addressed here are frontal fog, coastal radiation
fog and fog related to subtropical highs. The advection
of frontal fog simply depends on the approach of a
front that has fog associated with it. The coastal radia-
tion fog rules require the formation and offshore ad-
vection of nocturnal radiation fog in coastal regions.
The subtropical high fog rules are heuristics included
to handle some observed cases in the Northern Hemi-
sphere.

Similar inference nets (not shown) may be con-
structed from the AESOP rules for fog dissipation, and
those for haze formation and dissipation. Forecasting
the persistence of initially clear conditions is a special
problem that the next section addresses.

¢. Probability factors

An important topic in expert system development
is the problem of dealing with uncertainty. There is no
one method for accomplishing this objective. Many
systems are designed such that facts and rules include
a numerical value to indicate some level of probability,
confidence or weight. Such methods are controversial
because the assigned values are often subjective and
they apply to nonindependent events.

In this study, the initial estimation of probability
values is made by the rules that make the first inferences
based on user-input data. For example, one of the in-
ferences AESOP makes is whether there is radiation
from the top of a stratus deck (Fig. 3). If skies are
clear, the subgoal is declared true with a probability
factor of 100. If there is partial cloud cover, however,
the probability estimate is less than 100, and if the
upper cloud cover is overcast, the subgoal is false and
the probability equals 0. These probability estimates
are based on statistical studies when available or from
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estimates based on an expert’s judgment. It has been
found that the system performance is not very sensitive
to small changes in the initial probability values. Re-
gardless of the probability values used, the system tends
to support or oppose strongly its goals. Such insensi-
tivity to fine tuning of the probability factors was also
noted in the work of Campbell and Olson (1987).
As indicated by the inference nets, subgoals may
depend on two or more subsequent subgoals. Since
each has its own probability, there must be a way to
estimate a subgoal’s probability based on some com-
bination of the probabilities of its contributing subgoals.
Suppose arbitrary subgoals B and C are true with prob-
abilities P(B) and P(C), and we have the rule

IF Band C
THEN A.

We need to determine P(A). Since B and C are nec-
essary conditions for A (in an.inference net they would
have AND-links), the smallest of the two probabilities
is assigned to A. This situation is similar to the weakest
link in a chain; even when, for example, P(B) = 100,
as long as P(C) is small then P(A) must be corre-
spondingly small.

Now what happens when there is more than one
way to satisfy A? Suppose the rule is

IF BORC
THEN A.

If only one of the two subgoals is true, then A is true
with the same probability as that subgoal. But suppose
more than one subgoal is true (an analogy in AESOP
is when conditions support more than one of the three
fog formation processes)? The probability of A should
be larger than the individual probabilities because there
is more supportive evidence.

One cannot simply add the individual probabilities
(the total might exceed 1.0). Here, the method of
Buchanan and Shortliffe (1984) is used:

P(A) = P(B) + P(C)*(1 — P(B)). (1)
It should be emphasized that there is no statistical basis
for insisting on this way of handling confidence factors.

"However, this formulation has proven successful in

many applications. The above definition can be ex-
panded to handle any number of contributing proba-
bilities.

Now we can address the problem of forecasting the
persistence of clear conditions. The occurrences of fog
and haze are not independent events. Rather, they are
varying degrees of the same physical process—the con-
densation of moisture on atmospheric particles. Be-
cause they are not mutually exclusive, there may be a
high probability associated with both phenomena in a
given case, i.e., P(Fog) + P(Haze) is not equal to 100.
This interdependence is the same combination problem
which is solved by using Eq. (1). The combination of
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the probabilities of fog and of haze gives the probability
that there will be an obscuration of some sort. Thus,
the probability of No Obscuration is 1 minus the com-
bination of the Fog and Haze probabilities.

d. Explanatory interface

The explanatory interface in many ESs is little more
than a procedure to list rules that were used to reach
a goal. The AESOP explanation feature is expanded
to include explanatory text that reveals the motivations
behind the different lines of reasoning, the physical
causes and effects underlying the obscuration forecasts,
the data values used and why the data are important.
Another major difference in AESOP’s explanation fea-
ture is that it reveals not only the lines of reasoning
that succeed but also those that fail. The advantage in
this approach is that a user may be just as interested
in why AESOP did not forecast an obscuration that he
may have thought to be likely, as he is interested in
why AESOP did forecast an event he thought would
not happen.

AESOP does this complete evaluation by testing ev-
ery possible line of reasoning to the fullest, regardless
of the success or failure to meet the logical requirements
of each rule. In most ESs, a particular chain of reason-
ing (e.g., a path from the data to a goal on an inference
net) is tested only to the point where one of the subgoals
fails. At this point, the system backtracks and tries a
different path until eventually a complete path is found.
AESOP, however, was designed to record its paths
continually in the Working Memory, keeping track of
the success or failure of the data to meet the require-
ments of each subgoal. Thus, the AESOP Inference
Engine attempts to satisfy al/ of the paths between the
data and the goals. Even when a subgoal fails, the re-
mainder of the path is still tested. The difference is that
the path record in the Working Memory is flagged as
not satisfying the subgoal. The explanatory text that is
generated by successful subgoals is different from that
generated when a subgoal fails. Thus, a complete ex-
planation of all lines of reasoning is available.

One disadvantage of this approach is that it may
take a long time to traverse all of the branches of a
large rule base; however, the AESOP rule base is not
excessively large, plus the search space has been further
reduced by the use of the meta-rules.

The Explanatory Interface is a routine that steps
through the path records in the Working Memory. The
path records are stored in tree form with nodes con-
taining a’description of the subgoal, the explanatory
text, and pointers to the node’s parent and successor
nodes. The Explanatory Interface displays this infor-
mation and allows the user to traverse the tree to dis-
cover the cause and effect of each subgoal.

The current form of explanation provides the most
detailed window on the reasoning process available in
ES technology. AESOP also includes an explanation
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summary to reveal a simple overview of the reasoning
behind the forecast choice. This less detailed general
explanation accompanies the initial AESOP forecast.
The user can still optionally choose to delve into the
detailed explanation when the more complete line of
reasoning is desired.

4. System performance

A complete AESOP forecast takes approximately 2
min of real time to execute. Most of that time is spent
responding to the queries of the Fact Acquisition Sys-
tem. An example of an AESOP forecast display is pre-
sented in Fig. 4. In this case, fog is forecast to occur
with a probability of 90%. From the summary expla-
nation of the reasoning process, the user can determine
that the fog is expected to form via the stratus-lowering
process. The forecasts for all three potential obscura-
tions are listed next for comparison. Finally, an options
list gives the user several choices of what to do next.
First, he may want to see the 0-1 h nowcast. The second
option is to traverse the complete explanation tree so
that the reasoning behind any of the expected or un-
expected processes is revealed. AESOP also includes a
feature by which one or more of the data values pre-
viously input by the user can be modified and a new
forecast generated. This feature enhances the role of
the system as a training tool because the user can com-
pare what happens under slightly different conditions.
Finally, the user can run a completely new case or exist
from the forecast mode altogether. .

a. Test runs

In this section, the AESOP forecast skill is evaluated
for 83 maritime obscuration situations. The test data
are taken from various weather ships stationed in the
North Atlantic Ocean during the summers of 1972-
73. The approximate locations of these weather ship
data are presented in Table 2. These data were chosen

Py

wereee AESOP FORECAST (1-6 hours)

Forecastfor Evening: Fog. Prob: 80%

There is a solid stratus deck. The inversion is Type 3. The marine layer is shaliow
enough for fog. Thus, the vertical temperati is condugcive to Stratus-
lowering fog. Radiation from the stratus top is large. There is no insolation because
itis nighttime. Therefore the marine layer will cool. Thus, the marine layer is expected
to cool to dewpoint. Thus, stratus-lowering fog is expected to develop.

These are the fi for each p | ob
Fog. Prob: 90% (Climatological fog probability: 5%)
No Obscuration.  Prob: 9%
Haze. Prob: 100%
Would you like me to
1) Display the nowcast
2) Follow the forecast chain of reasoning
3) Modity parameters for this case & rerun
4) Run anew case

5) Exit from AESOP forecast

FIG. 4. Example of an AESOP forecast display.
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TABLE 2. Approximate locations of the weather ship data sources
for the AESOP test cases.

Latitude Longitude
Ship (°N) (°W)
4YA 62 32
4YB 57 . 51
4YC 52 37
4YD 44 42
4YE 35 48
4Y1 59 19
4Y] 52 19
4YK 45 16
4YM 66 2

from an ongoing, simultaneous study of North Atlantic
fog events (Rogers 1988). In this study, these cases are
being examined from a synoptic standpoint by the pri-
mary source of expertise for AESOP at CALSPAN
Corp. Since the same cases are being studied by the
knowledge engineer and the expert, it was felt that mu-
tual interaction would be enhanced.

Those cases selected were purposely biased to include
hazy and foggy conditions and do not represent a ran-
dom sample. The purpose of these test runs is not to
provide a measure of the expected operational skill,
but rather to demonstrate how the expert system func-
tions on a set of challenging situations.

The 83 cases may be classified by three possible ini-

tial obscuration states: clear, haze and fog. There are’

17 initially clear cases, while 22 are initially haze and
44 are initially fog. The definition used for fog in this
study is as follows: if fog is reported (WMO codes 40-
49), or if light fog is reported (WMO code 10) and
visibility is at or below 4 km, then fog is assumed.
When drizzle is reported (WMO codes 50-59), the
presence of fog cannot be determined because the ship
reports include only the highest WMO code. In this
study, drizzle is not considered a sufficient cause for
very low visibilities. Thus, when drizzle is reported with
visibility at or below 2 km, fog is assumed to be present.
The definition for haze is chosen to be those cases for
which the above fog test does not apply, and visibility
is at or below 18 km.

AESOP is designed to forecast obscuration condi-
tions in the 0-6 h range. The ship data are available
in 6 h intervals. Since atmospheric soundings are nec-
essary for AESOP, the initial forecast times used are
0000 and 1200 UTC, when soundings are made. Thus,
the 6 h forecasts are verified at 0600 and 1800 UTC.
Of the 83 cases, 16 are clear at +6 h, 25 are hazy and
42 have fog. A list of the date, initial time and observing
ship for each test case is presented in Table 3. The +6
h forecasts are evaluated here. Evaluation of the 0-1
h nowecasts is not possible because the ship report data
are available only for 6 h intervals.

Contingency tables (e.g., Table 4) are used to com-
pare the +6 h forecasts to the actual obscuration state.
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The columns represent the actual +6 h obscuration
states while the rows are the AESOP +6 h forecasts. If
the cases were all correctly forecast, only the diagonal
values (bold numbers) would be nonzero. Since the
extent of obscuration severity ranges from fog to haze
to clear in Table 4, the incorrect forecasts above the
diagonal indicate overforecasts because a more severe
visibility obstruction is forecast than actually occurs.
Similarly, those cases below the diagonal are under-
forecasts.

Twenty-two cases had haze initial conditions ( Table
4). Of the 17 initially hazy cases that develop fog (Table
4), 15 are correctly forecast (88% correct). One case
is incorrectly forecast to remain hazy. The remaining
incorrect forecast has haze conditions becoming clear
when fog actually occurs. Haze persists in only four
cases (Table 4), of which all are correctly forecast. Only
one case is clear at +6 h and AESOP incorrectly fore-
casts the persistence of the haze. When the forecast is
for fog to form from haze initial conditions, AESOP
is correct in all 15 cases. Of the six haze persistence
forecasts, 67% are correct, and none of the clear fore-
casts (only one case) is correct. Overall, AESOP cor-
rectly forecasts 19 of the 22 initially hazy cases, or 86%
correct. The majority of the fog formation forecasts are
correct, and AESOP does quite well with the haze per-
sistence cases. Two cases are underforecast (i.e., below
the diagonal ) and only one is overforecast (above the
diagonal). If simple persistence had been used, only
four cases ( 18% ) would have been correct. The AESOP
performance on these cases is excellent.

The contingency table for the 17 cases with clear
initial conditions (Table 35) indicates that fog is not
observed at +6 h. AESOP forecasts four of the seven
cases (57%) of haze formation from clear initial con-
ditions. Two cases are incorrectly forecast to be fog,
while the remaining case is forecast to remain clear.
The last category includes those initially clear cases
that remain clear (Table 5). AESOP performs well on
these cases, making the correct forecast in eight of the
ten cases (80% correct), with an incorrect forecast for
haze and one for fog. When AESOP predicts fog from
initially clear conditions (Table 5), none of the three
forecasts is correct. Of the five haze forecasts, four are
correct (80%) and eight (89%) of the nine clear fore-
casts are correct. Only one case is underforecast and
four are overforecast. When the initial condition is
clear, the overall performance of AESOP is 12 correct
forecasts (71%) of the 17 cases. If persistence had been
used, only ten cases (59%) would have been correct.
Thus, AESOP has limited skill for these initially clear
situations.

Forty-four cases had fog initial conditions (Table
6). Of the 25 cases when fog persisted, 24 (96% ) were
correctly forecast. The only fog case incorrectly forecast
to dissipate is for haze. Of the cases for which fog ac-
tually does dissipate leaving haze conditions, six cases
are correct (43%). Five of the incorrect forecasts are
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TABLE 3. Date-time group (DTG) and ship identification letter (in parentheses)
for test cases with clear (C), haze (H) or fog (F) initial conditions.
Case DTG (Ship) Case DTG (Ship) Case DTG (Ship)
C-1 72060100 (D) H-1 72060100 ©) F-1 72061112 ©)
C-2 72060200 ©) H-2 72060900 (C) F-2 72061112 (D)
C-3 72060200 (D) H-3 72061100 (D) F-3 72062312 ©)
C-4 72060812 ) H4 72061112 %) F-4 72062312 )
C-5 72060812 (K) H-5 72070212 (B) F-5 72070212 ©)
C-6 72060900 (E) H-6 72070212 )] F-6 72070312 (B)
C-7 72060912 (E) H-7 72070300 (A) E-7 72070312 (J)
C-8 72062312 (D) H-8 72071512 ) F-8 72071612 4]
C9 72071912 (A) H-9 72071712 (K) F-9 72071712 ()
C-10 72071912 (D) H-10 72071812 ©) F-10 72071812 [49)
C-11 72072000 D) H-11 72071900 ) F-11 72071900 )
C-12 72081212 (D) H-12 73070700 © F-12 72071912 (1))
C-13 73070300 M) H-13 73071100 )] F-13 72072000 (&)}
C-14 73071000 (K) H-14 73071200 (B) - F-14 72072312 ©
C-15 73071100 (B) H-15 73071712 J) F-15 72072312 (K)
C-16 73072800 (A) H-16 73071800 4))] F-16 72072400 (K)
C-17 73072912 (K) H-17 73072412 (K) F-17 72081212 ((®)
H-18 73072500 | (X) F-18 73070212 M)
H-19 73072600 (0)] F-19 73070312 (B)
H-20 73072712 (D F-20 73070412 ©)
H-21 73073100 (A) F-21 73070712 (B)
H-22 73080112 ) F-22 73070712 ' ©)
) F-23 73071000 (B)
F-24 73071000 D
F-25 73071000 [0))
F-26 73071012 18]
F-27 73071012 %)
F-28 73071100 O
F-29 73071200 ()
F-30 73071200 Q)]
F-31 73071800 ()]
F-32 73071812 )
F-33 73071812 (@)
F-34 73072512 (K)
F-35 73072612 )
F-36 73072712 Q)]
F-37 73072800 (¢))
F-38 73073012 (C)
F-39 73073012 (I)
F-40 73073100 ©)
F-41 73073100 Q)]
F-42 73073112 (A)
F-43 73073112 (1)
F-44 73073112 )

for fog to persist, and three are for clear conditions to
prevail. Of the five cases that transition from fog to
clear conditions (Table 6), AESOP correctly forecasts
only one case. The four remaining cases are forecast
to be hazy. When AESOP predicts fog persistence, 77%
of the forecasts are correct (Table 6). Of the cases for
which haze is predicted, 67% are correct, as are 25%
of the clear forecasts from fog initial conditions. The
overall performance of AESOP on initially foggy cases
is 70% correct, compared to 57% (25 correct) for simple
persistence.

b. Overall AESOP performance

The contingency table for all 83 test cases is presented
in Table 7. AESOP is most successful (93% correct) at

predicting +6 h fog conditions, followed by haze con-
ditions (56% correct) and clear conditions (56% cor-
rect).? When AESOP predicts fog, it is correct 80% of
the time. Of the haze predictions, 70% are correct, and
64% of the clear forecasts are correct. There is a slight
tendency for AESOP to overforecast (14 cases) rather
than to underforecast (7 cases). AESOP correctly fore-
casts 62 of the 83 cases, or 75% (Table 7). The average
random forecast using the marginal probabilities in
Table 7 would result in only 34 correct forecasts (41%).

2 Note that, because the test sample is intentionally biased to include
more fog and haze cases than are climatologically expected, the clear
condition forecast accuracy is much lower than would be achieved
if the test cases had been chosen randomly.
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TABLE 4. Contingency table for AESOP 6 h forecasts (rows) vs +6
h actual obscuration states (columns) for cases with haze initial con-
ditions. Bold numbers on diagonal indicate the number of correct
forecasts.

. JAMES E. PEAK AND PAUL M. TAG

+6 h actual state

Fog Haze Clear Total % correct
+6 h forecast Fog 15 0 0 15 100
state Haze 1 4 1 6 67
Clear 1 0 0 1 0
Total 17 4 1 22
% correct 88 100 0 86

If persistence were used as a forecast, the initially hazy
cases (Table 4) would have four correct forecasts, the
clear cases (Table 5) would have ten correct and the
fog cases (Table 6) would result in 25 correct. Thus, a
persistence forecast for these cases is only slightly better
than random chance with 39 correct (47%). The per-
formance of AESOP is much better than both persis-
tence and randomness for these cases.

¢. Monte Carlo significance test

A measure of the significance of the AESOP perfor-
mance can be made by using a Monte Carlo simulation.
Using the probabilities of the occurrence of the three
possible states in Table 7, a random number generator
selects one of the three possible obscuration states: fog,
haze and clear. Next, a random forecast of this state is
selected. The process is repeated 83 times, keeping
count of the times the random forecast matches the
random obscuration state. This process is a simulation
of the AESOP forecasts for a test sample of the same
size, except that it is known that the number of correct
“forecasts™ is achieved purely by chance. The goal is
to determine whether the 62 correct AESOP forecasts
out of 83 represents skill or could have occurred by
chance. The random experiment is now repeated a large
number of times so that the distribution of the number
of correct random forecasts is generated. In this ex-
periment, a total of 50 000 repetitions is arbitrarily
chosen to be sufficiently large.

TABLE 5. As in Table 4 except for clear initial conditions.
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TABLE 6. As in Table 4 except for fog initial conditions.

+6 h actual state

Fog Haze Clear Total % correct
+6 h forecast Fog 24 ) 2 31 77
state Haze 1 6 2 9 67
Clear 0 3 1 4 25
Total 25 14 5 44
% correct 96 43 20 70

Of the 50 000 sets of 83 random trials, performance
equivalent to AESOP (62 correct) is never achieved.
A total of 52 correct is achieved in one case and 51
correct occurs five times. Since none of the random
trials is better than the performance level achieved by
AESOP, the Monte Carlo test indicates a very high
probability that AESOP’s performance represents
forecast skill. Thus, the 75% correct seen here is vir-
tually assured of being due to forecast skill.

d. Fog/No fog results

In all of these statistics, the three obscuration states
have been treated as being of equal importance. It may
be argued, however, that the failure to predict fog is
more important than the failure to predict haze since
the visibility obstruction in fog is more severe. To eval-
uate only the skill in fog prediction, the haze and clear
states are combined as a “No fog” state (Table 8). The
fog statistics are identical to those in Table 7, but AE-
SOP correctly forecasts 76% of the “No fog™ situations.
When “No fog” is forecast, AESOP is correct 91% of
the time. The overall performance here is 70 correct
out of 83 cases (84%). Persistence of “Fog”/“No fog”
situations would result in 47 correct forecasts (57%),
and random selection would result in approximately
50% correct. LCDR Scott Sandgathe (personal com-
munication ), formerly a forecaster on the U.S.S. Car!
Vinson, has estimated that the operational “Fog/No
fog” predictions are about 55% correct. Even though
these results do not represent an operational test, the
results are encouraging evidence that AESOP should
provide valuable guidance for operational forecasters.

TABLE 7. As in Table 4 except for all cases.

+6 h actual state

+6 h actual state

Fog Haze Clear Total % correct Fog Haze Clear Total % correct
+6 h forecast Fog 0 2 1 3 0 +6 h forecast Fog 39 7 3 49 80
state Haze 0 4 1 5 80 state Haze 2 14 4 20 70
Clear 0 1 8 9 89 Clear 1 4 9 14 64
Total 0 7 10 17 Total 42 25 16 83
% correct — 57 80 71 % correct 93 56 56 75
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