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ABSTRACT

In a previous study based on the shallow-water equations, it was shown that nonlinear normal mode initialization
(NMI) can be implemented without knowing the normal modes of a model; this implicit form of nonlinear
NML is particularly useful in models for which computing the horizontal normal modes is impracticable. The
present paper extends the technique to the muitilevel Canadian Operational Finite-Element Regional Model.
This paper shows that the method yields well-balanced initial conditions and consistent vertical velocity fields.
Forecasts from these initial conditions using a semi-Lagrangian time-integration scheme with relatively large
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time steps are free from unrealistic high-frequency oscillations.

1. Introduction

In a previous paper { Temperton 1988) an implicit
form of nonlinear normal mode initialization (nonlin-
ear NMI) was introduced. This procedure was designed
for use in models whose normal modes cannot readily
be found; for example, if the underlying linear equa-
tions are nonseparable. The success of the implicit
nonlinear NMI technique was demonstrated in an ap-
plication to a barotropic version of the Canadian Op-
erational Finite-Element Regional Model. It has also
been applied to a barotropic global spectral model
{Temperton 1989), enabling a direct comparison to
be made between the implicit scheme and the conven-
tional nonlinear NMI procedure of Machenhauer
(1977). For a mean depth of 5.6 km, it was shown
that the two methods give essentially identical results,
apart from small differences at the very largest hori-
zontal scales.

This paper describes the application of an implicit
nonlinear NMI scheme to the full muitilevel version
of the Canadian Finite-Element Regional Model
(Staniforth and Daley 1979). Previously, the initial-
1zation for this model had been performed in a hemi-
spheric spectral model with the same vertical discre-
tization, after which the fields were horizontally inter-
polated to the grid of the regional model. This
procedure, which required a rather delicate matching
of the two models, was described by Verner and Benoit
(1984). The idea of implicit nonlinear NMI was de-
veloped in order to provide a more direct {and more
elegant) approach to initializing the regional model.
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The “vertical mode™ initialization (VMI) scheme
of Bourke and McGregor (1983) is closely related to
implicit NMI, but with a less complete treatment of
the beta terms in the underlying linearization. Recently,
McGregor and Bourke (1988) have compared the ap-
plication of VMI in a limited-area model with a pro-
cedure analogous to that of Verner and Benoit (1984)
in which initialized fields were interpolated from a
hemispheric spectral model. They demonstrated that
the two approaches gave similar results with some ad-
vantage for the more direct (VMI) procedure.

Temperton and Roch (1988) presented some results
from a preliminary version of the multilevel implicit
NMI procedure, which used vertical normal modes
“borrowed” from another model (Béland and Beau-
doin 1985) with a slightly different vertical discreti-
zation scheme. Since that time, the vertical discreti-
zation used in the operational regional model has itself
undergone some changes in conjunction with the in-
troduction of a semi-Lagrangian time-integration
scheme (Tanguay et al. 1989). The opportunity was
thus taken to make the vertical normal modes used in
the initialization consistent with the new vertical dis-
cretization used in the model.

Section 2 of this paper describes the model, the dis-
cretization, and the vertical normal modes. The im-
plicit nonlinear NMI scheme is described in section 3,
and section 4 presents results. Section 5 includes the
discussion and summary.

2. Discretization and vertical normal modes

The governing equations of the regional model are
the hydrostatic primitive equations on a polar stereo-
graphic projection. The horizontal discretization is by
bilinear finite elements using a variable mesh focused
on the region of interest (Staniforth and Mitchell
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1978). The vertical discretization is also by linear finite
elements (Staniforth and Daley 1977), but as previ-
ously mentioned, there have been some recent changes
in the details of the vertical formulation. The vertical
coordinate is ¢ = p/p, (p is pressure, p, is surface pres-
sure). In the current operational configuration, there
are 19 levels ranging from the model top at a; = 0.05
to the surface at o5 = 1 (note that ¢ = ¢, and ¢ = 1
are both full model levels where all the prognostic vari-
ables are carried). The vertical boundary conditions
arec=0ato=o¢;andato = 1.

The following will index the model levels by k, where
1 < k < N (here N = 19). For any variable v, v will
denote the column vector

vz(vI’UZ; A '3UN)T

at a given horizontal position. The horizontal coordi-
nates (on the stereographic projection ) will be denoted
by x and y.

As in Temperton (1988), the vorticity equation at
each level may be written

2 @0 = -7+ 00 (2.1)

where ¢ is the streamfunction and X is the velocity
potential. The linear operators V2, & are defined by
9? 9?

+-— ’
x?  9y?

d i} d d

— —_— + —_— —

dx (fGX) ay (fay)

where f is the Coriolis parameter. The nonlinear terms
are grouped together in (Q,)c. In order to permit the
introduction of an implicit NMI scheme, a small term

By, on the right-hand side of (2.1), where the linear
operator B is defined by

3 0 9 i}
B=—|\f—)——I|f—
s sl
has been included with the nonlinear terms.
The divergence equation takes the form

2 —

F =

2 (V%) = e+ B — PP+ (0 (22)

where P is an auxiliary variable given by

Py = ¢+ RT* Inp;, (2.3)
¢ is the geopotential, R the gas constant, and T* a
reference temperature (assumed independent of model
level).
The thermodynamic equation is
a7, kIT™*
—a—k—( : ) We = (Qr)k
it s

(2.4)
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where « = R/c, (¢, = specific heat of dry air), and W
is an auxiliary vanable related to the vertical velocity;
thus in matrix /vector notation, (2.4) may be written

oT

i KW = Q. (2.5)
The hydrostatic equation
% _ _RT
do o

is vertically discretized as
Oir1 — @ = (—1/2)R(Tisy + Ti) In(opei/ 0k),

I<sk<sN-1, (2.6)

with gy = @, the geopotential height of the orography.
This aspect of the discretization departs from the stan-
dard Galerkin procedure used in the original version
of the model by Staniforth and Daley (1979). Since
¢ is constant with time, (2.6) leads to an equation of
the form
A aT
—=G— 2.7
ot ot (27)
where G is upper triangular with all entries zero on the
last row. Combining (2.5) and (2.7) gives
9
— — GKW = Q,,.
ot Q.
The auxiliary variable W is related to the horizontal
divergence D by D = —3W/ds. The associated vertical
discretization is

(1/2)(Dy + Dyyt) = —(Wieer — W)/ (0ks1 — 01),

(2.8)

I<k<sN-1, (29)
with values of W at ¢, and oy related by
W, = oWy (2.10)
In vector form,
W =-MD (2.11)

where the matrix M can be deduced from (2.9) and
(2.10). Hence (2.8) becomes

[
ot

The (vertically integrated ) tendency equation for the
surface pressure is

+ GKMD = Q,,. (2.12)

]

a—t (Inps) — Wi = Qapy- (2.13)
Using (2.11), this can be written

]

6_t (lnps) + ﬂTD = Q(lnp_,) (214)
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where 77 is the last row of M. Now, in vector form
(2.3) becomes

P = ¢ + RT*e Inp, (2.15)

where e is a column vector (1, 1, . .., 1)7. Combining
(2.12), (2.14), and (2.15) results in an equation of
the form

apP
—+CD=Qp (2.16)
ot
where the matrix C is defined by
C = GKM + RT*eq”. (2.17)

Finally, the divergence is related to the velocity poten-
tial through D = m?V2X where m is the map scale factor
for the stereographic projection. Hence (2.16) becomes
ap )
— = —m*CV’X + Qp.
or Q-
To determine the vertical normal modes, the vorticity
and divergence equations (2.1) and (2.2) are rewritten
in vector form:

(2.18)

; ‘
S (V) = —FX +Q, (2.19)

d
5 (VX)) = FY + BX — VP + Qy. (2.20)
The vertical normal modes are then given by the de-
compoaosition
C = EQE™! (2.21)

where the columns of E are the eigenvectors of C, and
@ is a diagonal matrix,

o= diag(q’l, (1’29 T, q)N)

Each column of E represents a vertical normal mode
of the system (2.18)-(2.20), and is associated with an
equivalent geopotential depth ®,.

Defining the vertical transforms

P=€"'P, y=Ey, X=Ex (222)

and similarly for the nonlinear terms, premultiplying
(2.18)-(2.20) by E™! yields a set of equations for each
vertical mode /:

9P . .

-5’ = —m*dV X, + (Op) (2.23)
a .- . .
Ey (V) = —=FX; + (Qu) (2.24)

a - - - . R
5; (V2X[) = FY+ Bx; — V2P1 + (O (2.25)

For each vertical mode, the set (2.23)-(2.25) has ex-
actly the same form as the system of equations used
to derive the implicit nonlinear NMI scheme for the
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barotropic version of the regional finite-element model
(Temperton 1988, section 5).

Notice here the choice to compute the vertical nor-
mal modes appropriate to the variables P, ¢, and X
(here ¢ and X could be replaced by vorticity and di-
vergence, or by the components of the horizontal wind
field). For a similar finite-element discretization in the
vertical, Daley (1979) found a vertical structure equa-
tion in terms of the variable ¥ and determined the
normal modes of the discretized form of this equation.
These vertical modes are different from those found
here, but for a given underlying discretization the two
sets of modes would be related through a similarity
transformation.

For the purposes of the initialization scheme to be
described in the following section, the vertical normal
modes were determined using a reference temperature
T* = 300 K, the same as used in the model’s semi-
implicit time integration scheme. The equivalent
depths A, = &,/ g (g = acceleration due to gravity) are
given in Table 1. Comparison with Table 1 of Verner
and Benoit (1984 ) shows very close agreement for the
first eight modes, in spite of the different number and
positioning of levels and the changed vertical discre-
tization. The vertical structure of the first six modes is
shown in Fig. 1. These appear different from the cor-
responding modes presented by Daley (1979) or Verner
and Benoit (1984), since as mentioned above they are
appropriate for different variables; instead, they resem-
ble the vertical modes presented by Temperton and
Williamson (1981).

3. Initialization scheme

Using the vertical normal modes derived in the pre-
vious section, an implicit nonlinear NMI scheme for
the multilevel regional finite-element model can be

TABLE 1. Equivalent depths.

~

Equivalent depth A, (m)

I 11172.04
2 1592.10
3 484.45
4 205.79
5 106.15
6 58.23
7 33.90
8 20.37
9 12.62
10 7.86
11 491
12 3.03
13 1.84
14 1.07
15 0.59
16 0.30
17 0.12
18 0.03
19 0.00
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FI1G. 1. The first six vertical modes of the model.

constructed. The generalization of the barotropic ini-
tialization algorithm of Temperton ( 1988) is analogous
to that for conventional NMI in other models (e.g.,
Williamson and Temperton 1981) with a few technical
differences resulting from the different vertical ar-
rangement of the variables.

Each iteration of the scheme begins with a forward
time step of the model to compute the tendencies:
oT

o’

The vertical transform (2.22) and the definition (2.15)
of P are then used to compute

8wy 8 (v 9
5 V¥, 5 V0, 5 (Inps).

ok
at

for as many vertical modes / as required. As in Tem-
perton ( 1984), if the matrix E™'G and the column vec-
tor RT*E!e are precomputed, the explicit integration
of the hydrostatic equation (2.6) can be avoided.

For each vertical mode to be initialized, the tenden-
cies (3.1) are supplied to the initialization algorithm
given in section 5 of Temperton (1988), with the ver-
tical normal mode coefficients ¥;, X;, P, replacing the
-original barotropic model variables ¢, X, ¢, respectively.
For each vertical mode [ there are several elliptic
boundary value problems to be solved; the mean geo-
potential ®, which appears in the elliptic operators in
the barotropic case, is replaced by the appropriate
equivalent geopotential depth ®,. Thus the changes
AU,;, AV, and AP, are obtained for each vertical mode
(U and V are the wind images).

The changes to the model wind fields are then de-
termined via the vertical transforms

AU = EAU, AV = EAV.

) . 0 -
Py V), % (V2xy), (3.1)

Obtaining the changes AT and A(Inp;) is slightly more
subtle; the vertical transform

AP = EAP (3.2)

does not yield sufficient information. In models where
the lowest level at which the prognostic variables are
carried is not at the surface, there is a problem in sep-
arating AP into contributions A¢ and A(Inp;). Tem-
perton and Williamson (1981 ) discussed this problem
as it appeared in the ECMWF model, and suggested a
solution. In the case of the present model the problem
manifests itself differently, but there is an analogous
solution. First, since

Py =@+ RT* Inp;
and Ap; = 0, (3.2) implies

RT*A(Inp,) = £7AP (3.3)

where £7 is the last row of E. There is thus no ambiguity
in defining A(Inp,). Using (2.15) and (3.2),

A¢ = AP — RT*eA(Inpy)
can be obtained. The hydrostatic equation (2.6) implies
GAT = Ag; (3.4)

the problem is that G is singular (its last row is zero),
so that (3.4) cannot be solved for AT.

We thus proceed as follows. The vertical normal
modes are solutions of the equations in section 2 with
the nonlinear terms set to zero. Thus, (2.5) together
with (2.11) implies that the normal mode solutions
satisfy

aT

— = —KMD,

y (3.5)
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while (2.16) together with (2.21) implies that they sat-
isfy
o _ —E®E'D.
at
Arguing as in Temperton and Williamson (1981), (3.5)
and (3.6) together with (3.2) imply

AT = KME® ' AP. (3.7)

The problem remains that the diagonal matrix @ is
not invertible, since the last equivalent depth is zero.
Thus, the last column of the matrix KME®™! is un-

(3.6)
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defined. However, this does not matter since we are
not initializing the last vertical mode, and hence the
last component of AP is zero. To make the notation
rigorous, (3.7) could be rewritten as

AT = KM 3 (AP ®)Z,

=1

(3.8)

where Z, are the columns of E, and the first m vertical
modes are being initialized. It can be shown that if
A(In p;y) is computed via (3.3) and AT via (3.8), and
the resulting

(125 x 101)

<4

3
FAN
P
%
AN

PITI=V

55 70 85 105 115 120 125

A=1.108

FiG. 2. The horizontal domain of the model showing the nonuniform grid. The numerals 1, 2, 3 indicate the position
of grid points for which time traces of surface pressure are shown in Fig. 5.
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AP = GAT + RT*eA(Inp;)

is computed, then Eq. (3.2) is satisfied as required.
The apparent ambiguity in defining AT has in effect
been resolved by only allowing contributions from
those vertical modes that are being initialized.

We have thus found the increments AU, AV, AT at
each model level, and A(lnp;). The model variables
can now be incremented, and the procedure may be
iterated.

4. Results

The implicit normal mode initialization procedure
described in section 3 has been implemented in the
current operational version of the Canadian Finite-
Element Regional Model. The semi-implicit semi-La-
grangian integration scheme used in this model was
presented by Tanguay et al. (1989), while the param-
eterization of physical processes was described by Be-
noit et al. (1989). The horizontal domain and variable
grid are shown in Fig. 2; over the central part of the
grid, the horizontal resolution is 100 km. The lateral
boundary is a solid wall tangent to the equator.

Initial conditions for the model are provided by in-
terpolation from analyses defined on a hemispheric
"Gaussian grid, followed by a smoothing operation near
the boundaries. The initialization scheme is run adi-
abatically, i.e., with all the physical processes turned
off. In the first set of results to be presented here, the
initial fields were taken from an archived FGGE anal-
ysis for 0000 UTC 21 December 1978.

10%- 10%-
1014_ n= (a) 1014_ n= (b)
1013- N \ 1013_
< 0% _ < 104
21] m
10" = \ 10"
10", 10"
10° ! L | 10° 1 ! 1 1 | |
1 2 3 1 2 3 4 5 6

Vertical mode
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First, the convergence of the initialization scheme
is examined. As shown for example by Williamson and
Temperton (1981), convergence problems may be en-
countered in conventional nonlinear NMI if too many
vertical modes are initialized, and in practice normal
mode initialization schemes are only applied for the
first few vertical modes. In order to permit the devel-
opment of an implicit NMI scheme, the underlying
linear equations have to be slightly modified (the “beta”
term in the vorticity equation is grouped with the non-
linear terms). Since this modification becomes more
significant with decreasing equivalent depth, it is im-
portant to verify that the convergence of the initializa-
tion scheme for the first few internal vertical modes
has not been adversely affected.

Williamson and Temperton (1981) examined the
convergence of nonlinear NMI in terms of the param-
eter BAL, defined (for each vertical mode) as the sum
of the squares of the tendencies of the fast mode coef-
ficients. Since the initialization scheme is trying to re-
duce BAL to zero, its behavior as a function of the
iteration number is a useful measure of convergence.
As shown in Temperton (1988), BAL can also be
computed during implicit NMI, though the individual
fast mode tendencies are of course unknown.

The behavior of BAL for the multilevel finite-ele-
ment regional model (starting from the FGGE analysis
previously mentioned) is shown in Fig. 3 for two ex-
periments, in which the number of vertical modes being
initialized was respectively 3 and 6. The forward time
steps, used to evaluate the tendencies of the model

Vertical mode

FiG. 3. The value of BAL for each vertical mode, after n iterations of implicit NMI. (a) Three vertical modes initialized;
(b) six vertical modes initialized.
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FIG. 4. Temperature changes due to initialization. (a) At ¢ = 0.05; (b)at ¢ = 1.
Contour interval is 0.1 deg.
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variables for each iteration, were performed with the
Eulerian (semi-implicit ) version of the model dynamics
and a time step of 120 s. It is clear that, in the case
with three vertical modes being initialized, no conver-
gence problems were encountered. When six vertical
modes are initialized, the values for the shallower
modes 4-6 begin to diverge on the third iteration. The
behavior illustrated in Fig. 3 is similar to that seen
during conventional nonlinear NMI. For operational
implementation it was decided to run the initialization
for three iterations and with three vertical modes; all
subsequent results were obtained using this combina-
tion.

Another question requiring attention is the magni-
tude of the temperature changes (A7) produced by the
initialization using (3.8). Although this is the only
completely consistent way of obtaining AT, Daley
(1979) reported that an analogous approach (in a
model with a similar finite-element vertical discreti-
zation) yielded unacceptably large temperature
changes; this led him to propose an alternative ap-
proach in which a variational integral was minimized.
However, no such problems have been found with the
scheme described here. Figure 4 shows the temperature
changes over an area that includes the central (high-
resolution) region of the model domain, both at the

1020 T T T
1018

1016

ol 1

™ T T T T T T T

1012

PRESSURE (hPa)
-
2
o

PO TS [N VO SO U S NI D'

1006 [
1004
1002 F
a)
-1 I |
1000 0 12 24 36 48
TIME (hours)
1015 T T T
1013
1011
1009

PRESSURE (hPa)
1)
o
o

T T T T T T T IRT T T T

j (TS IRUS BT SN S S N I S

1003
1001
999
997
995 C) - - L
0 12 24 36 48

TIME (hours)

MONTHLY WEATHER REVIEW

VOLUME 119

model top (¢ = 0.05) and at the surface (¢ = 1). In
both cases the changes are spatially coherent and cer-
tainly acceptably small (less than 0.5 deg everywhere).

These results confirm that the behavior of the im-
plicit NMI scheme in this model is, as hoped, very
similar to that of conventional NMI schemes in other
multilevel models. It remains to be verified that the
effect on the subsequent forecast is indeed to remove
unwanted high-frequency oscillations. The fields ob-
tained after three iterations, with three vertical modes
initialized, were used as initial conditions for a 48-h
forecast using the full model including a somewhat im-
proved version of the physics package described by Be-
noit et al. (1989). This integration was compared with
a similar forecast run directly from the uninitialized
fields. Both forecasts used the semi-Lagrangian semi-
implicit integration scheme of Tanguay et al. (1989),
with a time step of 1200 s (the corresponding time step
for an Eulerian version of the model at this resolution
is 400 s).

Figure 5 shows the evolution of surface pressure at
three selected points whose positions are indicated in
Fig. 2. Point 1 is close to the corner of the domain,
point 2 is close to the Rocky Mountains, while point
3 is over the ocean close to the edge of the high-reso-
lution central area and not far from Greenland. At all

T7 17T 7T1TT

o’
PR TS TONYIN SR N IR NOVE SO B |

880 ! 1 \
12 24 36

TIME (hours)

o
S
2]

F1G. 5. Time traces of surface pressure at selected grid points: (a)
point 1; (b) point 2; (¢) point 3. The locations of these points are
indicated in Fig. 2. Solid line: no initialization. Dashed line: after
three iterations of implicit nonlinear NMI.
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FIG. 6. Mean sea level pressure, 1200 UTC 4 January 1989, (a) before initialization;

(b) after initialization. Contour interval is 4 hPa.
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b)

FIG. 7. Vertical velocity w at 700 hPa, 1200 UTC 4 January 1989, (a) before initialization
(contour interval—4 ub s7'); (b) after initialization (contour interval—2 ub s7').

three points the uninitialized forecast shows consid-
erable high-frequency oscillations, with a peak-to-
trough amplitude of as much as 10 hPa at point 1. In
the initialized forecast the oscillations are almost com-
pletely absent, even at the selected points where diffi-

culties might have been expected because of lateral
boundaries or orographic forcing.

Thus, the impact of the implicit NMI scheme on
the subsequent forecast is shown to be just as beneficial
as that of conventional NMI. It is worth noting that
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no special effort had to be made to take into account
the fact that the forecast model uses a semi-Lagrangian
scheme with relatively large time steps; an “Eulerian”
initialization is quite sufficient.

In multilevel models an additional benefit of non-
linear NMI is the generation of consistent fields of ver-
tical motion in the initial conditions. To demonstrate
the power of the implicit NMI scheme in this respect,
an example from 1200 UTC on 4 January 1989 is given
here. At this time, an explosively developing depression
was situated in the western Atlantic. Figure 6 shows
the sea level pressure over the area of interest, before
and after initialization; the changes are generally of the
order of 1 hPa, an acceptable degree of adjustment.
Figure 7 shows the corresponding fields of vertical ve-
locity w at 700 hPa. Before initialization, this field is
very disorganized and generally too intense. (The di-
vergent component of the analyzed wind is kept in
order to retain any useful information captured by the
analysis scheme, particularly in the boundary layer.)
After the initialization, and despite the neglect of dia-
batic effects, the vertical velocity field is much more
coherent and synoptically reasonable; note in particular
the pattern associated with the explosively deepening
depression.

5. Summary and discussion

This paper has shown that the implicit nonlinear
NMI scheme of Temperton (1988) can be extended
to a multilevel model, thus enabling the benefits of
NMI to be obtained in an operational regional model
for which it is impracticable to compute the horizontal
normal modes. The device of using another model to
perform the initialization (Verner and Benoit 1984)
becomes unnecessary, yielding a useful simplification
of the operational forecast suite. The results presented
here demonstrate that, in a multilevel model, the use
of implicit nonlinear NMI provides balanced initial
conditions including consistent vertical velocity fields,
leading to a forecast uncontaminated by spurious high-
frequency oscillations. It is of particular interest that
these benefits are fully maintained when the forecast
model uses a semi-Lagrangian time integration scheme.

A final step in validating the application of implicit
nonlinear NMI in a multilevel model will be to perform
a clean comparison between implicit and conventional
NMI using a spectral model in which both approaches
can be applied (Temperton 1989). A study along these

CLIVE TEMPERTON AND MICHEL ROCH

677

lines is currently in progress and will form the subject
of a future paper.
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