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ABSTRACT

In a previous paper, the authors discussed the numerical properties of the MacCormack scheme, a finite-
difference technique widely used in aerospace simulations. Here the authors report results of its application to
the simulation, in two dimensions, of the development of a fully compressible buoyant bubble. The model uses
the fully compressible Navier—Stokes equations applied to an inviscid, adiabatic atmosphere. It uses a nonstag-
gered grid. Both lateral and top boundary conditions are open and essentially reflection-free. The model produced
reasonable solutions with no explicit numerical filtering. In regions with locally steep gradients, the MacCormack
scheme produces numerical oscillations that locally distort the solution but do not lead to numerical unstability.

These results are compared with those of Drocgemeier and of Carpenter et al., who show results using a
filtered staggered leapfrog scheme. The fields computed by both schemes are very similar, with those from the
filtered leapfrog being smoother. The major difference is that the speed of propagation of the significant flow
features is slower with the leapfrog scheme. The advantage of the MacCormack scheme is that it is numerically
stable with no tuned filtering and gives its best results at Courant numbers four times larger than can be used
with a leapfrog scheme. In long-term integrations in the presence of very steep gradients, numerically induced
oscillations would require some degree of explicit filtering to control these numerical oscillations and improve
the quality of the solution. The use of a second-order Fickian filter with thé MacCormack scheme weakens the
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gradients.

1. Introduction

Of the large number of finite-difference numerical
schemes suitable for use in linear or quasi-linear dif-
ferential equations, only a few are accurate enough (at
least second-order in both space and time) to be used
for solving the nonlinear momentum equations of fluid
dynamics.

The leapfrog scheme (second-order centered in
time) is probably the most widely used scheme in me-
teorological studies for solving nonlinear differential
equations. Besides the small time step required by the
leapfrog scheme, models using the leapfrog scheme re-
quire a special device at the top boundary (normal-
mode gravity-wave radiation condition or a sponge
layer) and some kind of radiative lateral boundary con-
ditions. They also require a time filter and a small
amount of explicit numerical diffusion, and exhibit
some phase speed error (e.g., Droegemeier 1985; Droe-
gemeier and Wilhemson 1987; Klemp and Lilly 1978;
Tripoli 1992). As a result, one or more parameters in
the model must be tuned to the problem to be studied,
making this scheme unsuitable for operational pur-
poses. Furthermore, the Asselin—Robert time filter
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commonly used with the leapfrog scheme is not sec-
ond-order accurate in time (Durran 1991), making the
overall accuracy of the leapfrog scheme less than sec-
ond order in time.

In this paper we applied the MacCormack scheme
(MacCormack 1972) to a 2D nonlinear study. The
MacCormack scheme might be considered a good al-
ternative to the leapfrog scheme in operational models
because of its simplicity, numerical robustness, and
lack of problem-dependent parameters associated with
the use of numerical filters and treatment of boundary
conditions. In a study reported separately (Mendez-Nu-
nez and Carroll 1993, hereafter referred to as paper 1),
we analyzed the numerical properties of the Mac-
Cormack scheme applied to the solution of 1D nonlin-
ear equations. A detailed comparison with the leapfrog
and Smolarkiewicz schemes was presented using the
nonlinear advection equation and the Euler equations
for a variety of conditions at different Courant num-
bers. In the solution of 1D nonlinear equations, the
leapfrog scheme (hereafter LS) is nonlinearly unstable,
introduces phase errors, and produces better results
with small Courant numbers. The MacCormack
scheme (hereafter MS) is nonlinearly stable, produces
modest amounts of numerical dispersion and diffusion,
has no phase-speed error, and works best at Courant
numbers close to 1. The Smolarkiewcz scheme applied
to nonlinear equations exhibits the least amount of nu-
merical diffusion but more numerical dispersion than
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the MacCormack scheme. For stability, the Smolar-
kiewcz scheme requires Courant numbers equal to or
smaller than 0.5.

To analyze the numerical properties of the MS, we
extend the comparisons for the MS and the LS in paper
1 to a 2D nonlinear problem. To have a fair comparison
of computational efficiency between the two schemes,
the models should be of the same type—that is, hy-
drostatic, anelastic, or compressible. The LS has been
used with hydrostatic, anelastic, and time-split models,
and there is not an obvious reason that the MS could
not be used in those kinds of models. However, all the
models, except compressible ones, require some kind
of extra computational device (e.g., a Poisson solver
for anelastic models) that would distract us from the
goals of presenting the MS and comparing it to the LS.
Consequently, we have chosen compressible models
for this analysis, even though the time step for fully
compressible models is much smaller than for the other
kinds of models. In the future, time splitting will be
introduced in the model to increase the time step and
to make the model more practical.

To examine model performance, we will focus on
three issues: first, the time step needed by each scheme
and how much numerical dispersion and diffusion are
generated at different Courant numbers (hereafter
CFL); second, the amount of partial reflection experi-
enced by the fastest propagating waves in the domain
at open boundaries and how boundary conditions are
handled by each scheme; third, the amount of explicit
numerical diffusion and the influence of a second-order
filter used with each of the schemes.

The problem selected for the comparisons is the evo-
lution of a 2D warm ‘‘bubble’’ in an atmosphere ini-
tially at rest. While there are no data from physical
experiments useful for model verification, this problem
has been studied numerically by others using different
numerical techniques (Droegemeier 1985, hereafter
D8S; Carpenter et al. 1990, hereafter C90; Fox 1972;
Lilly 1962, 1964; Ogura 1962; Orville 1965; Pearson
1980). Comprehensive reviews are presented in D85
and C90. This at least allows comparison among nu-
merical techniques.

2. Model description
a. Physical model

The governing equations for an inviscid, adiabatic,
fully compressible, dry atmospheric flow in a 2D, Car-
tesian coordinate are

6R Cp/Cy
a2 o
and
oV OE OF
% Tox e )
where
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V = (p, pu, pw, p0)

E = (up, upu + P,upw, upb)
F = (wp, wpu, wow + P, wpf)
H= (0,0, —pg,0),

where the variables have their usual meaning in the
meteorological literature. This form is completely con-
servative and unchanged for any transformation of co-
ordinates (Viviand 1974). This system of equations
differs from D85 only in that the thermodynamic pres-
sure P is explicitly used instead of the Exner function.

The modeled atmosphere is not contained in any
physical domain except for a geometrically rigid lower
boundary where the vertical velocity is zero. Sound
waves should propagate along this boundary producing
no change in potential temperature. The top and lateral
boundaries are artificial in the sense that they bound
the computational domain but not the fluid. Either open
or periodic boundaries could be used. We chose open
boundaries located far enough from the central axis of
the thermal that the thermal can develop its internal
circulation before impinging on the boundaries.

The velocities, density, and pressure at the bounda-
ries can either be explicitly given or computed from the
differential equations. Whether given or computed, the
values of those quantities at the boundaries must be
such that the sound waves propagate through the open
boundaries with minimal or no reflection. We have cho-
sen to obtain their values from the equations, as de--
scribed herein.

b. Numerical procedure

The set of finite-difference equations corresponding
to (2) were obtained in a straightforward manner using
the second-order MacCormack scheme described in pa-
per 1:

predictor
At At
V:k,k = ;',k - E—c (E7+1,k - E?,k) - A_Z (F?,k - :‘l,k——l)
At
+ -2— (HI + HY o)) (33)
corrector

1 At
Vil = 2 [ A V- K; (Ex*k - E:‘—u)

At At
= (Fien —Fi) + = (Ml + H) |, (3b)
Az 2
where the superscript refers to time discretization, and
the subscripts refer to discretization in the x and z di-
rections, respectively. In (3), forward differences are

used in the prediction step in the x direction, whereas
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TABLE 1. Fickian diffusion coefficient, time steps, and domain sizes
- used for low-resolution numerical experiments.

Case K =K, At Domain
number Figure m*s™) ®) ~ (km?)
1 - 1-4 0 0.90 40 X 15
2 — 0 0.90 80 x 15
3 5 0 .0.25 40 X 15
4a 6 300 0.25 40 X 15
4b 7 3000 0.25 40 x 15
5a — 300 0.90 40 x 15
5b — 3000 0.90 40 X 15

backward differences are used in the z direction and
conversely in the corrector step. To eliminate the bias
due to this one-sided differencing, the forward and
backward differencing is sequentially alternated be-
tween the two spatial derivatives as well as between
predictor and corrector steps at each successive time
step. This scheme is second-order-accurate in time and
space (see paper 1). ‘

Since only the vertical velocity at the lower bound-"
ary is explicitly known (i.e., identically zero), the re-
maining quantities on this and the other boundaries
need to be computed by using special techniques to
maintain the second-order accuracy of -the Mac-
Cormack scheme. Since the MacCormack scheme is a
two-step scheme, two sets of boundary conditions are
needed for each time step. Fairweather et al. (1967)
showed that if the exact boundary condition at either
the beginning or the end of the time step is used for the
intermediate value, an increase in the truncation error
with respect to time appears for points adjacent to a
boundary. Peyret and Taylor (1983) found that com-
puting intermediate values at the boundaries for the
predictor step does not degrade the accuracy of the nu-
merical solutions.

HEIGHT (Km)

0 5 10 15 20 % 30 35 10
DISTANCE (Km)

10 v

HEIGHT (Km)

0 5 16 15 20 2 30 35 10
: DISTANCE (Km)
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One-sided differences in the normal direction to the
boundary are used for all quantities, keeping the
scheme unaitered in the direction parallel to the bound-
ary. For example, for forward differencing in the x di-
rection at the left boundary (i = 1) the scheme proceeds
as follows:

predictor
Vii= Vi £ (B3 - B
- Ao (FL = L) + 51 (HEL + HE,)
corrector
Vidt== [Vu + Vi — 2 (Fik,k+1 ~ Fiy)

At
+ > (HYer + Hi",k)] )

In other words, we assume all gradients are zero be-
yond each boundary as in this case where Ef; — ES X
= 0 in the corrector step.

At the end of each time step the vertical velocity at
the lower boundary is explicitly set to zero. The density
and thermodynamic energy at the lower boundary are
computed with the same procedure as in the lateral
boundaries—that is, one-sided differences in the nor-

-mal direction—but keeping the scheme unaltered in

the direction along the boundary.

3. Low-resolution numerical experiments

A number of numerical experiments were conducted
as listed in Table 1. For all but one case, the low-res-
olution domain was 40 km wide by 15 km deep, with
a spatial grid size of 500 m in each direction. The at-

HEIGHT (Km)

25 30 35 40

o, 5 10 15 20
DISTANCE {Km)

FiG. 1. Contour plots of the perturbation pressure (i.e., de-
parture from the initial hydrostatic pressure) in pascals at (a)
45, (b) 60, and (c) 120 s for case 1. Solid contours are positive
values and dashed contours are negative values. Contours
from 80 to —110 Pa, and the contour interval is 10.0 Pa; that
is, [minimum contour, maximum contour; contour interval]
= [—110.0, 80.0; 10.0].

8QODXWKHQWLFDWHG _

'RZQORDGHG



May 1994

il

DISTANCE (Km)

HEIGHT (Km)

MENDEZ-NUNEZ AND CARROLL

987

is

HEIGHT (Km)

DISTANCE (Km)

HEIGHT (Kam)

DISTANCE (Ka}

DISTANCE (Km)

FiG. 2. Contour plots (solid contours are positive, dashed negative values) of the (a) perturbation potential temperature from the initial
potential temperature (K) [0.0, 7.0; 1.0], (b) perturbation pressure from the hydrostatic initial pressure (mb) {-190.0, 100.0; 10.0], (¢)
horizontal velocity (m s~') [ -10.0, 10.0; 2.0], and (d) vertical velocity (m s ') [ 8.0, 22.0; 2.0] at 6 min for case 1. Only the central 30

grid cells in the 80 X 30 domain are shown.

mosphere is initially at rest with a hydrostatic pressure
distribution. The environmental potential temperature
field is either neutral or stably stratified. The thermal
perturbation is represented as a departure from the ini-
tial potential temperature field. The temperature excess
distribution in the bubble is that used in D85:

Af = AG, cosz(zr—zé) for 8 =1, (4)

where Afd, = 6.6 K and 3 is a shape profile defined by

(5)

2 2

X — X zZ— Z

2 t4 <
6=( X )+( zZ ),

where the subscripts ¢ and r refer to the center po-
sition and the radial dimension of the bubble, re-
spectively, and x, = z, = 2.5 km, 2z, = 2.75 km, and
x. is located in the middle of the horizontal domain.
Open lateral and top boundaries were used. No ex-
plicit numerical diffusion of any kind was added to
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HEIGHT (Kn}

17.5

OISTANCE (Kn}

HEIGHT (Km)

DISTANCE (Kn)

the scheme except when specifically stated for a par-
ticular experiment. :

In the first set of experiments the environment has a
constant potential temperature of 300 K. Initially, the
flow is at rest and in exact hydrostatic equilibrium (cf.
the appendix). .

The sudden appearance of the bubble produces
sound waves that are characterized by expansion and
compression waves in the perturbation pressure or den-
sity fields. In a fully compressible model, these sound
waves are the fastest propagating waves in the domain.
In most published models the fastest propagating waves
suffer partial or total reflection at open boundaries, re-
quiring special numerical devices at the boundaries.

MONTHLY WEATHER REVIEW
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5

HEIGHT * (Km)

12.5
DISTANCE (Km)

FiG. 3. Contour plots of the (a) perturbation potential tem-
perature [—1.0, 8.0; 1.01, (b) horizontal velocity [—12.0,
12.0; 2.0], and (c) vertical velocity [~10.0, 24.0; 2.0] at 8
min for case 1. Only the central 30 grid cells in the 80 X 30
domain are shown.

These devices take care of the reflection of the fastest
and all the other propagating waves in the domain.

Figure 1 shows the perturbation pressure at 45, 60,
and 120 s for case 1 (see Table 1). The first wave
(dashed lines, negative perturbation pressure) is an ex-
pansion since at ¢ = 0 the pressure under the thermal
is smaller than the hydrostatic pressure of the environ-
ment. The creation of the bubble produces fast propa-
gating waves (sound waves ). The speed of propagation
of these waves in the model is between 320 and 350
ms~L

At 1 min into the integration (see Fig. 1b) the max-
imum perturbation pressure corresponding to the first
shock wave has just reached the lateral boundaries. By

8QDXWKHQWLFDWHG _

'RZQORDGHG



May 1994

MENDEZ-NUNEZ AND CARROLL

989

HEIGHT {Km)

HEIGHT (Km)

12.5 7.8 25 z.s
DISTANCE {Km)

1w

HEIGHT (Km)

DISTANCE (Km)

75 and 90 s (mot shown) these waves have passed
through the boundary leaving several small relative
maxima and minima in the perturbation pressure near
the boundaries. When the width of the domain is dou-
bled (case 2), the sound wave propagation is exactly
the same, right through the region where the boundaries
of the smaller domain had been, except that the small
maxima and minima seen at 75 and 90 s are absent.
By 2 min (see Fig. 1c) the perturbation pressure
fields in the domain were essentially identical to case
2 except at the closest grid near the lateral boundaries.
The tiny differences between the fields have no signif-
icant impact on the dynamics of the developing ther-
mal. The results shown in Fig. 1 and the fact that en-

DISTANCE (Km}

FIG. 4. Same as Fig. 3 but at 9 min: §: {-2.0, 9.0; —1.0],
u: [—14.0, 14.0; 2.0}, and w: [ -8.0, 24.0; 2.0].

larging (doubling) the horizontal and/or vertical do-
main resulted in no change in the physical phenomena
of interest show that the numerical treatment of the
boundary conditions required by the MS is essentially
reflection free. Furthermore, the potential temperature
in the domain, away from the thermal, is at most
0.0001 K different from the initial field, implying that
the propagation of the sound waves throughout the do-
main was essentially isentropic.

As time passes, several important things happen si-
multaneously. First, since the strength of the buoyant
acceleration is a maximum at the center of the bubble,
it rises the fastest, steepening the gradients of temper-
ature in the upper part of the bubble. Associated with
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TABLE 2. Maximum and minimum values of dependent variables in the domain at the times shown for cases 1 and 3.

At T gmax omin P, max mm Umax Umin Wmax Wmin

) (min) X) X (Pa) (Pa) (ms™) (ms™) (ms™ (ms™)
0.90 6 6.9 -0.2 103.0 ~190.0 10.4 —-10.5 23.6 ~8.1
0.90 7 8.2 -0.2 110.0 —~209.0 12.2 -123 242 ~9.2
0.90 8 8.7 -0.5 104.0 ~228.0 13.6 -13.6 25.8 ~99
0.90 9 9.1 -1.8 99.0 -238.0 14.6 -14.7 26.8 —10.8
0.90 10 9.1 -2.2 80.0 ~236.0 14.7 -14.8 26.8 —-11.1
0.25 6 8.0 -0.2 107.0 ~218.0 12.6 -12.6 240 -9.0
0.25 7 9.3 -0.2 115.0 ~245.0 14.1 -14.1 26.7 -10.0
0.25 8 8.4 =22 109.0 ~252.0 15.5 -155 28.2 -10.5
0.25 9 10.2 -2.9 93.0 —250.0 15.7 —-15.7 320 -11.3
0.25 10 10.9 -3.3 66.0 —253.0 15.7 —15.7 33.0 -11.7

the maximum in thermal buoyancy there is a maximum
vertical velocity. To conserve mass, this maximum up-
draft is accompanied by a strong horizontal conver-
gence of mass below and divergence above this max-
imum in vertical velocity. The combination of the up-
draft and the horizontal convergence—divergence
results in two primary vortices, one on each side of the
symmetry axis. As a result of these vortices the sur-
rounding air (cooler than the air in the thermal) is en-
trained into the lower part of the bubble. This entrain-
ment of cool air produces a weakening of the temper-
ature gradients in the lower part of the warm bubble.
If the integration is carried on-long enough, the maxi-
mum buoyancy in the thermal moves away from the
center axis, evolving into two maxima, one at each side
of the symmetry axis.

At about 6 min model time (see Fig. 2), the maxi-
mum buoyancy at the top of the thermal has just moved
away from the central axis, evolving into two maxima,
one at each side of the symmetry axis. Steepening of
the gradient of potential temperature in the upper part
of the bubble is present, as well as the weakening of
the gradients in the lower part of the bubble due to the
entrainment of cooler air from the environment. The
maximum perturbation potential temperature is 6.8 K
warmer than the environment, instead of the initial
6.6 K. In light of the 1D experiments in paper 1, this
is due to the numerical dispersion inherent in the
MacCormack scheme. This value occurs just below the
region where the gradients of potential temperature are
the steepest. The accuracy of the computations is
slightly decreased in the regions where these oscilla-
tions occur. The two positive maxima in the perturba-
tion pressure field coincide with the two maxima of
potential temperature. The velocity fields (see Figs.
2¢,d) show the same general characteristics as the po-
tential temperature and perturbation pressure fields.
Doubling the vertical domain (not shown) produced
essentially no change in any of these quantities.

Because of the displacement of the maximum buoy-
ancy to the sides of the symmetry axis, the top of the
bubble starts moving slower as is apparent after about

8 min (see Fig. 3). Numerical dispersion produced
maximum potential temperature perturbation (8.5 K)
at two grid points, one at each side of the vertical axis
of symmetry. Similarly, two grid points have minima
of —0.484 K. |

After 9 min (see Fig. 4) the simulation shows a po-
tential temperature field with an artificial minimum
(—1.8 K) at each side of the symmetry axis and right
below the bubble and spread over a few grid cells. The
artificial maxima (8.17 K) at each side of the symmetry
axis are still located at only two grid points. The velocity
fields do not show secondary circulation (see Figs.
4b,c), although the gradients in the horizontal velocity
field refiect the existence of the artificial minimum.

Case 3 (see Table 1) was run with a time step of
0.25 s, with the results summarized in terms of maxi-
mum and minimum perturbation values in Table 2. The
results through 6 min of simulation time are essentially
the same as for case 1. Beyond 6 min, the accumulated
differences in dispersion and diffusion become more
apparent, partly because more time steps are needed to
get the same point in time and partly because the MS
technique has less error at larger CFLs.

By 9 min, the simulation using A¢ = 0.25 s (see Fig.
5) shows secondary maxima and minima in horizontal
velocity fields, and the other fields have become un-
acceptably noisy. At this low CFL the accuracy of this
unfiltered simulation is only marginally acceptable.

The change in Courant number does not drastically
change either the overall velocity or the perturbation
pressure field but certainly affects local details. The
maxima and minima shown in Table 2 are directly re-
lated to the overshoot and undershoot due to the nu-
merical dispersion of the MS. From this table it is ob-
vious that increasing the CFL decreases the extreme val-
ues—that is, decreases the amount .of numerical
dispersion. Looking at Figs. 4 and 5 one can see that the
gradients in the 0.25-s simulation are weaker than in the
0.9-s simulation. Thus, increasing the CFL produces a
decrease in the numerical diffusion in the model. Note
that the positions of the bubble obtained in each of the
simulations differed by less than one grid point. There-
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fore, the phase speed of the thermal is not significantly

altered by the artificial oscillations in the velocity fields.

In cases 4 and 5, a spatial second-order Fickian dif-

fusion term to the right-hand side of each prognostic

equation { except to the continuity equation) was added,
of the form

P 9%
Foxt T 9

It was applied only to interior grid points and only to
perturbation quantities (except to density). This filter
was used also by D85 to control nonlinear instabilities
in his LS model. The results after 10 min of simulation

OISTANCE (Km)

FiG. 5. Same as Fig. 4 but with a time step of 0.25 s (case
3): 6: [-3.0, 9.0; —1.0], u: [—14.0, 14.0; 2.0], and w:
[-10.0, 24.0; 2.0].

for case 4 are shown in Figs. 6 and 7. Extreme values
are listed in Table 3.

As expected, a general weakening of the gradients
(see Figs. 5, 6, and 7) and a decrease of the extreme
values (compare Tables 2 and 3) results. For k, = &,
=300 m*s™" and ¢ = 0.25 s (case 4a), the extreme
values decreased with respect to those in case 3 but
overall are still larger than the extreme values in case
1. Therefore, increasing the time step from 0.25 (case
3) to 0.9 s (case 1) improved the solution more than
adding a second-order explicit filter (case 4). Adding
ak, =k, = 300 m®s~! in the simulation with a 0.9-s
time step (case 5) resulted in a slight decrease in the
extreme values and a slight weakening of the gradients
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with respect to case 1. Increasing the diffusion coeffi-
cient to 3000 m* s™! poticeably reduced the extreme
values, but at the expense of an important weakening
of the gradients in all the fields. Furthermore, with the
large diffusion coefficient the bubble position is below
that for no explicit filtering and for £, = k., = 300
m? s~!. Therefore, the use of a second-order Fickian
filter with the MacCormack scheme decreases the ac-
curacy of this scheme. The most significant difference
between case 4b and cases 1 and 4a is that the vertical
velocity minimum at the top center of the thermal dis-
appears with the larger diffusivity.

4. Comparison with D85

The equations of the fully compressible outflow
model (FCOM) in D85 are

]
X
[
x
<]
w e .,
I o .
o - o L
0 5 19 3 35 10
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=
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Fic. 6. Contour plots of (a) the perturbation pressure
[—180.0, 60.0; 10.0], (b) the horizontal velocity [—14.0,
14.0; 2.0], and (c) the vertical velocity [ —10.0, 26.0; 2.0] at
10 min for case 4a.

% + %pxli + %Zw =0 (6a)

Tt T = ()< (o)
T (@) R

(6¢)

%0, upb , el _ (6d)

__ (_R;)—'za)kg/az. (6¢)

Droegemeier’s (1985) simulations were done in a Car-
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F1G. 7. Same as Fig. 6 but for case 4b.
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TABLE 3. Maximum and minimum values of dependent variables in the domain at the times shown for cases 4 and 5.
At T Bmax omin P, max mm U max Un-u‘n Wmax Wmin
(s) (min) X) X (Pa) (Pa) (ms™) (ms™) (ms™) (ms™)
k =k =300 m*s™"
0.90 6 6.9 -0.2 102.0 1770 9.9 -10.1 22.4 -7.5
0.90 7 7.8 -0.2 104.0 -192.0 11.6 -11.7 23.4 -8.5
0.90 8 8.6 -0.2 101.0 —205.0 12.9 —-12.9 24.5 -9.1
0.90 9 8.3 -1.2 92.0 -213.0 13.8 —-14.0 24.7 -10.0
0.90 10 9.2 —24 72.0 —209.0 14.2 -14.3 26.0 -10.3
0.25 6 1.9 -0.2 102.0 —-199.0 118 —11.8 232 -8.2
0.25 7 8.6 -0.2 106.0 -218.0 133 -133 250 -93
0.25 8 9.1 -1.7 94.0 —-222.0 14.5 —14.5 25.1 -9.7
0.25 9 9.8 -3.1 89.0 -221.0 15.2 -15.2 28.5 -10.4
0.25 10 9.8 -39 68.0 —219.0 14.5 -14.5 29.3 -10.8
k., =k, = 3000 m*>s™!

0.90 6 6.8 -0.2 88.0 115.0 7.0 -7.0 17.5 —4.6
0.90 7 7.0 -0.3 88.0 -116.0 8.0 —-8.0 186 -49
0.90 8 7.2 -0.3 87.0 -114.0 8.7 -8.7 19.2 -53
0.90 9 8.1 -03 82.0 -112.0 9.5 -95 19.6 -5.6
0.90 10 8.2 -0.4 68.0 -101.0 10.7 ~10.7 21.1 -6.0
0.25 6 6.9 -0.3 89.0 -116.0 7.7 -7.7 18.1 —4.9
0.25 7 72 -0.3 89.0 -115.0 8.7 —8.7 189 -52
0.25 8 7.6 -0.4 87.0 -112.0 9.6 -9.6 19.3 -5.6
0.25 9 8.1 -04 83.0 -106.0 10.2 -10.2 19.7 ~-5.9
0.25 10 8.3 -0.5 76.0 -99.0 10.9 -10.9 20.7 -6.1

tesian staggered grid mesh using the second-order leap-
frog time-differencing scheme and the Asselin (1972)
time filter with a coefficient of 0.2. The finite differ-
encing for the spatial derivatives is the second-order
one recommended by Arakawa (1966). The spatial fil-
ter required to prevent the growth of nonlinear insta-
bilities (Phillips 1956 ) is a simple second-order Fickian
diffusion term (300 m?s™*) added to the right-hand
side of each prognostic equation, except pressure. The
coetficient was found by trial and error to favor damp-
ing of only very short wavelengths. In all of Droege-
meier’s simulations the grid spacing was 500 m and a
time step of 0.25 s was used. For the upper boundary
condition a row of fictitious grid points above the top
of the model was used. The pressure, temperature, and
momentum were held constant at the extra row. For the
lateral boundary conditions, D85 used

Ogt“+( +C)————0

(7
where C is the intrinsic gravity-wave phase speed of
the fastest mode in the system (Klemp and Lilly 1978)
and the plus and minus signs correspond to outflow and
inflow, respectively. Droegemeier (1985) used a value
of about 30 m s™! for C. However, if |u| > |C]|, the
quantity u + C was set to zero (D85, p. 130).
Droegemeier (1985) presents results obtained with
the LS at 10 min elapsed time. These do not compare
well with the MS results at 10 min, because the filtered

LS in a staggered grid exhibits a strong phase-speed
error (D85, p. 133). Hence, the physical state of the
thermal in the simulations using the MS at 10-min time
would not necessarily correspond with those using the
LS at the same model time. We show the results of the
MS simulation when overall the evolution of the rising
bubble corresponds to those presented in D8S.

a. Warm bubble in a neutral atmosphere

Droegemeier’s (1985) simulation results for a neutral
atmosphere after 10 min of simulation are shown in Fig,.
8. The simulation results for the entire domain with the
MS are shown at 6, 7, 8, and 9 min (see Figs. 9-11).

Comparing Fig. 8 with Figs. 911, it can be seen
that overall the simulation obtained with the MS using
no explicit numerical diffusion is very similar to that
obtained with the LS. It appears that the MS compu-
tation at 8 or 9 min corresponds much more closely to
the LS simulation at 10 min.

The horizontal velocities obtained by each scheme
(Fig. 8a and Fig. 9) are quite similar. The maximum
and minimum values of the two schemes are equal for
MS at 9 min in case 1 (see Table 2). In case 3 the
extreme values are 1 m s~ greater than in case 1, but
the pattern is more similar to the LS—that is, second-
ary calculations are well developed in both models.
Note that the magnitude of the extreme values increase
about 1 m s~! each minute, so the time of the compar-
isons of these parameters is not critical.
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Fig. 8. Contour plots (solid contours are positive values and
dashed contours are negative values) of (a) the horizontal velocity
(m s7"), (b) the vertical velocity (m s '), and (c) the perturbation
pressure from the hydrostatic initial pressure (mb) at 10 min for the
simulation of a warm bubble in a neutral atmosphere in D85. Each_
tick mark represents 500 m. The square brackets at the upper-left
corner show minimum value, maximum value, and contour interval
values (Fig. 4.1 in Droegemeier 1985).
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The vertical velocities obtained by each scheme
(Fig. 8b and Fig. 9) differ in several ways. The MS,
case 1, and the LS produce minima of about —10
m s~'. For MS, case 3, the minima exceed —11m s ',
The maxima obtained with the MS are about 5 m s™!
greater (case 1) than the LS. In case 3 this difference
increases to 10 m s™'. This is most likely because the
numerical diffusion in the MS model is smaller than
the total diffusion in the LS model. In the MS model,
case 4a, the vertical velocity minima match the LS, and
the maxima are only 2 m s ~* greater at 10 min (Table
3). The pattern of the vertical velocity isotachs in case
4a are also much more similar to the LS solution than
for the unfiltered MS cases.

The MS perturbation pressure fields at any CFL and
any time are much more complex than those of the LS
at the same time (see Fig. 11). Even with &, = &, = 300
m® s~ (see Fig. 6), the MS pressure field at 10-min
elapsed time is not as smooth as the D85 perturbation
pressure field, although the major features for both
models are similar.

b. Warm bubble in a stable atmosphere

For these simulations, the initial environmental lapse
rate (vertical gradient of potential temperature) is 4
K km™". Since the temperature increases with height,
as the thermal rises, it becomes less buoyant with re-
spect to the environment and starts spreading horizon-

tally.

Simulations were performed with the MacCormack
scheme with &k, = &, = 0 and a time step of 0.9 s (case
5). The results at 10 min into the integration are shown

15 2 £ 35 10
OISTANCE (Km)

Fi6. 9. Contour plots of the horizontal velocity at 6, 7, 8, and 9 min for case 3. The contour interval is 2ms™".
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FiG. 10. Same as Fig. 9 but vertical velocity. The contour interval is 2ms™.

in Fig. 12, and for the LS model (D85) in Fig. 13. The
two solutions are quite similar in terms of the locations
and magnitudes of the major features. To quantify dif-
ferences in the models, we plot the evolution in time
of the total kinetic energy integrated over the whole
domain (see Fig. 14). It can be seen that in all simu-
Iations with the MS the kinetic energy is larger than
the kinetic energy obtained with the LS. Thus, the
amount of implicit numerical diffusion in the MS is
probably smaller than the explicit numerical diffusion
used with the LS. Also, the smaller the CFL used, the
larger the kinetic energy. This reflects the fact that
the larger the CFL, the smaller the amount of im-

20
DISTANCE tKm)

1

plicit numerical diffusion and numerical dispersion of
the MS.

The periodic variation of kinetic energy and the
gradual decay of energy associated with the dominant
gravity wave modes are seen. Both models show the
same periodicity but the amplitudes of the MS solutions
are larger and increase with decreasing CFL. The
Brunt—Viisili frequency N in the simulation is

g do s
=— ~ (0.011 .
0 0.011s

2:

Thus, the period of oscillation for gravity waves would
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FiG. 11. Same as Fig. 9 but perturbation pressure. The contour interval is 20 mb.
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be about 9.5 min. In both models, the calculated period
is about 5 min. Droegemeier (1985) attributes this to
higher-frequency oscillations being excited by an initial
thermal impulse.

10 min
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Fi6. 13. Contour plots of (a) the horizontal velocity, (b) the ver-
tical velocity, and (c) the perturbation pressure at 10 min for the
simulation of a warm bubble in a stable atmosphere obtained with
the leapfrog scheme (Fig. 4.5 in Droegemeier 1985).
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Fi6. 12. Contour plots of (a) the horizontal velocity, (b)
the vertical velocity, and (¢) the perturbation pressure at 10
min for the simulation of a warm bubble in a stable atmo-
sphere (case 5a) obtained with the MaCormack scheme.

5. High-resolution 2D simulation of a buoyant
element

Carpenter et al. (1990) reported a high-resolution
simulation of thermal convection using the piecewise
parabolic method ( Colella and Woodward 1984 ). They
also present simulations using the leapfrog scheme ob-
tained using the Droegemeier and Wilhelmson (1987)
model. The background numerical diffusion used was
not explicitly reported. The physical domain in the
model is 3.2 km X 4 km. The initial thermal has
a radius of 1 km, with a potential temperature excess

16| A: LS 0.25sec.

B: MS 0.90 sec.

- C: MS 0.75 sec.

D: MS 0.25 sec.
1.4
-
12

1.0

T T
IR0

Time (minutes)

FiG. 14. The domain-averaged kinetic energy as a function of time
for the simulation of a buoyant thermal in a stable environment.

S8QDXWKHQWLFDWHG

_ 'RZQORDGHG



MAY 1994

4 L]

MENDEZ-NUNEZ AND CARROLL

997

HEIGHT (Km)
HEIGHT (Km)

HEIGHT (Km)

[ d 0
1
DISTANCE (Km)

1
DISTANCE (Km)

s '\ ke

1
DISTANCE (Km)

FiG. 15. Contour plots of the perturbation potential temperature obtained with the MacCormack scheme
(dx = dz = 20 m) at (a) 8 min, (b) 10 min, and (c) 12 min [0.0, 2.0; 2.0].

of 2 K at its center, which decreases linearly to 0 K at
its edge, and is located 1 km above the lower boundary
in the center of the domain, in a neutral environment
of 300 K. A 20-m grid space was used both in the
horizontal and vertical direction. Rigid-top and closed
lateral boundary conditions were used.

We have chosen to repeat the same numerical exper-
iment as Carpenter et al. (1990) for two reasons: first,
to show that the MacCormack scheme is not restrained
to open upper and lateral boundary conditions and can
easily be used with rigid top and closed lateral boundary
conditions; second, because at the time most of the re-
search of this paper was done this was one of the few
published results using the leapfrog scheme in a fully
compressible model. In the following high-resolution
simulations we have not used any explicit filtering ( nei-
ther temporal nor spatial). As stated in paper 1, the small
amount of implicit numerical diffusion inherent in the
MacCormack scheme makes this scheme stable without
the use of explicit numerical diffusion, with a negligible
smearing of the physical gradients present in the flow.

Figure 15 shows the perturbation potential temper-
ature from the MS model at 8, 10, and 12 min of the

integration. At 8 min the gradients of this and the other
fields (perturbation pressure, horizontal and vertical
velocity) are still relatively smooth, with all the prop-
erties described above-—that is, maximum vertical ve-
locity along the symmetry axis, one primary vortex on
each side of the axis, entrainment of air in the lower
part of the bubble, etc.

At 10 min, the potential temperature gradient is very
steep along the upper edge of the bubble. Due to this
steepness in the gradients some artificial oscillations are
present in the potential temperature field. The accuracy
in the regions where those oscillations occur is slightly
decreased, but the oscillations do not cause the model
to become unstable. No obvious oscillations in the
other fields were seen.

At 12 min, because of the steepening of the gradients
in the upper edge of the thermal, the proximity to the
top boundary, and the length of the integration, artifi-
cial oscillations in the temperature field start affect-
ing the solution. Some artificial oscillations appear
in the velocity field (not shown) as the descending
outer edge of the thermal is evolving into a ring vortex
structure. \\
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